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Abstract

This paper presents the effect of the magnetic problem of a functionally graded (FG) hollow sphere

subjected to mechanical and thermal loads. An analytical solution for stresses and perturbation of the

magnetic field vector were determined using the direct method and the power series method. All of the

material properties varied continuously across the thickness direction according to the power-law functions

of radial directions. The aim of this work was to understand the effect of the magnetic field on a FG hollow

sphere subjected to mechanical and thermal loads. The magnetic field decreased the radial displacement

and circumferential stress due to mechanical load, and had a negligible effect on mechanical radial stress.

The magnetic field also increased the radial displacement and the radial and circumferential stresses due to

thermal load. Increasing the power-law indices of the functionally graded material (FGM) decreased all of

the above quantities due to mechanical load.
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Introduction

Functionally graded materials (FGMs) are heterogeneous and advanced materials in which the elastic and
thermal properties vary gradually and continuously from one surface to another. FGMs decrease the thermal
stresses and hence are very useful in nuclear, aircraft, and space engineering applications. The application of
this issue is seen in geophysics, seismology, plasma physics, magnetic storage elements, magnetic structural
elements, and measurement techniques of magneto-elasticity.

Chen and Lee (2003) worked on magneto-thermoelasticity by introducing 2 displacement and 2 stress
functions. The governing equations of the linear theory of magneto-electro-thermoelasticity with transverse
isotropy were simplified. The material nonhomogeneity along the axis of symmetry was taken into account and
an approximate laminate model was employed to facilitate the deriving of analytical solutions. Dai and Fu (2007)
recently considered the magneto-thermoelastic problem of FG hollow structures subjected to mechanical loads.
The material stiffness, the thermal expansion coefficient, and the magnetic permeability were assumed to obey
simple power-law variations through the structures’ wall thickness. The aim of their research was to understand
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the effect of composition on magneto-thermoelastic stresses and to design optimum FG hollow cylinders and
hollow spheres. Dai and Wang (2006) presented an analytical method to solve the problem of the dynamic
stress-focusing and centered-effect of perturbation of the magnetic field vector in orthotropic cylinders under
thermal and mechanical shock loads. Analytical expressions for the dynamic stresses and the perturbation of
the magnetic field vector were obtained by means of finite Hankel transforms and Laplace transforms. Recently,
Poultangari et al. (2008) studied the nonaxisymmetric thermo-mechanical loads on functionally graded hollow

spheres. Abd-Alla et al. (2004) presented an investigation of stress, temperature, and magnetic field in an
isotropic, homogeneous, viscoelastic medium with a spherical cavity in a primary magnetic field, when the
curved surface of the spherical cavity was subjected to periodic loading. Tianhu et al. (2004) reported the
theory of generalized thermoelasticity, based on the theory of Lord and Shulman with one relaxation time, used
to study the electro-magneto-thermoelastic interactions in a semi-infinite, perfectly conducting solid subjected
to a thermal shock on its surface when the solid and its adjoining vacuum were subjected to a uniform axial
magnetic field. They used Laplace transform in the analysis. Maxwell’s equations were formulated and the
generalized electro-magneto-thermoelastic coupled governing equations were established. Tianhu et al. (2005)
reported a generalized electro-magneto-thermoelastic problem for an infinitely long solid cylinder based on the
theory of Lord and Shulman with one relaxation time. Eslami et al. (2005) presented a general solution for one-
dimensional, steady-state thermal and mechanical stresses in a hollow, thick sphere made of FGM. The material
properties, except Poisson’s ratio, were assumed to vary along the radius r according to a power-law function.
Lee (2009) recently considered the problem of 3D, axisymmetric, quasistatic coupled magneto-thermoelasticity
for laminated circular, conical shells subjected to magnetic and temperature fields. Laplace transform and finite
difference methods were used to analyze the problem. He obtained solutions for the temperature and thermal
deformation distributions in a transient and steady state. Lutz and Zimmerman (1996) solved the problem of
the uniform heating of a spherical body whose elastic modulus and thermal expansion coefficient vary linearly
with the radius. Maruszewski (1981) presented nonlinear magneto-thermoelastic equations in soft ferromagnetic

and elastic bodies. The symmetry of couplings in these equations was also investigated. Massalas (1991) dealt
with the phenomenological description of the magneto-thermoelastic interactions in a ferromagnetic material
within the framework of the generalized theory of thermoelasticity proposed by Green and Laws. The material
was assumed to be homogeneous, anisotropic, and elastic, undergoing large deformations. The analysis was
based on the thermodynamic laws of quasi-magnetostatics. Misra et al. (1991) presented a solution for the
induced temperature and stress fields in an infinite, transversely isotropic solid continuum with a cylindrical
hole using the integral transform. The solid medium was considered to be exposed to a magnetic field and the
cavity surface was assumed to be subjected to ramp-type heating. The Green and Lindsay model was used to
account for the finite velocity of heat conduction. Misra et al. (1992) considered the problem of a half-space
under the influence of an external primary magnetic field and an elevated temperature field arising out of the
ramp-type heating of the surface. It was found that the stress distribution and the secondary magnetic field
were almost independent of the thermal relaxation time, but were significantly dependent on the mechanical
relaxation time. Paul and Narasimhan (1987) studied the problem of axisymmetric axial stress wave generation
in a thermoelastic, circular cylindrical bar in the presence of an applied magnetic field. It was assumed that the
surface of the cylinder was free from mechanical loadings and thermal radiation. A general solution was obtained
by perturbation technique and was annihilated to a particular case, in which the applied magnetic field was
constant in space and time. Sharma and Pal (2004) investigated the propagation of a magnetic-thermoelastic
plane wave in an initially unstressed, homogeneous isotropic conducting plate under a uniform, static magnetic
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field. The generalized theory of thermoelasticity was employed by assuming the electrical behavior as quasistatic
and the mechanical behavior as dynamic. At short wavelength limits, the secular equations for symmetric
and skew-symmetric modes were reduced to a Rayleigh surface wave frequency equation, because a finite-
thickness plate in such situation behaves like a semi-infinite medium. Tanigawa et al. (1999) reported the
derivation of systems of fundamental equations for a 3D thermoelastic field with nonhomogeneous material
properties and its application to a semi-infinite body. Wang and Dong (2006) presented theoretical methods
for analyzing magneto-thermoelastic responses and perturbation of the magnetic field vector in a conducting,
nonhomogeneous, thermoelastic cylinder subjected to thermal shock. By making use of finite Hankel integral
transforms, the analytical expressions were obtained for the magneto-thermodynamic stress and perturbation
response of an axial magnetic field vector in a nonhomogeneous cylinder. Wang and Dink (2006) studied
the transient responses of a magneto-electro-elastic hollow sphere for the fully coupled spherically symmetric
problem. By means of the separation of variables technique and the electric and magnetic boundary conditions,
the dynamic problem of a magneto-electro-elastic hollow sphere under spherically symmetric deformation was
transformed to 2 Volterra integral equations of the second kind about 2 functions of time. Recently, Arani et al.
(2009) developed an analytical response to the magneto-thermoelastic stress and perturbation of the magnetic
field vector for a thick-walled, spherical FGM vessel placed in a uniform magnetic field. This vessel was subjected
to an internal pressure and transient temperature gradient. The dynamic equation of magneto-thermoelasticity
was solved using the Hankel and Laplace transform techniques. Loghman et al. (2010) recently presented a time-
dependent creep stress redistribution analysis of a thick-walled FGM cylinder placed in uniform magnetic and
temperature fields and subjected to internal pressure using the Prandtl-Reuss relation. The material creep and
the magnetic and mechanical properties through the radial graded direction were assumed to obey the simple
power-law variation. Yapıcı et al. (2010) studied the nonuniform temperature gradients and thermal stresses

produced by a moving heat flux applied to a hollow sphere. Yapıcı and Baştürk (2006) studied the thermally

induced stress in a solid disk heated by moving ring heat flux (radially periodic expanding and contracting)
and subsequently cooled by means of a coolant following the heat flux. It was assumed that the ring heat flux
per unit area at each ring surface was uniform. The Fluent 6.1 program was chosen as the computer code
to calculate the numerical solutions, using the Simpson integration method. Yapıcı et al. (2008) studied the
numerical analyses of transient temperature and thermally induced stress distributions in a stationary, hollow
steel disk partially heated by a moving uniform heat source from its outer surface under stagnant ambient
conditions. The moving heat source was applied on a certain angular segment of the processed surface, rotating

with a constant angular speed. Özışık and Genç (2008) studied the temperature and thermal stress distribution

in a plate heated from one side of its surface with a moving heat source. Genç et al. (2009) presented the
effects of a moving heat source on a rotating hollow steel disk heated from one side of its surface under stagnant
ambient conditions. As the disk rotated around the z -axis with a constant angular speed Ω, the heat source
moved along from one radial segment to the next radial segment in the radial direction on the processed surface
at the end of each revolution of the disk. Mahdi and Zhang (1997) investigated the correlation between the
thermal residual stresses and conditions of surface grinding using a finite element. The effect of a coolant was
simulated by heat convection. To obtain a reliable figure of thermal residual stresses induced by grinding,
temperature-dependent properties of the work materials were taken into account and a nonuniform convection
model with an effective cooling factor was introduced. Sen et al. (2000) studied the residual and thermal stresses
that occur during water quenching of a solid cylindrical rod and ring cross-sectioned steel tubes, in which a
finite element technique was used. The variations of residual stresses on different surfaces and cross-sections,
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e.g. in the radial, axial, and tangential directions, were examined, and the effect of the internal diameter of the
tubes on residual stress was investigated. Moulik et al. (2001) developed an efficient finite element procedure
to calculate the temperatures and stresses arising due to a moving source of heat. The procedure was applied
to calculate the thermal stresses produced in hardened steels during grinding.

In this work, the magnetic response of a FG hollow sphere subjected to mechanical and thermal loads was
considered. Analytical solutions for stresses and perturbation of the magnetic field vector were determined using
the infinitesimal theory of magneto-thermoelasticity. The material stiffness and the magnetic permeability varied
continuously across the thickness direction according to power-law functions of radial direction. The results
were validated with available results from the literature. The aim of this work was to understand the effect of
magnetic field on a FG hollow sphere subjected to mechanical and thermal loads.

Heat conduction problem

Consider a hollow sphere of inner radius a and outer radius b , made of FGM. The spherical coordinates (r, θ, φ)

are considered. The heat conduction equation for the 2D transient FG sphere is (Özışık, 1980):

T,rr + (
k′(r)
k(r)

+
2
r
)T,r +

1
r2

T,θθ +
cot θ

r2
T,θ = 0

a ≤ r ≤ b, 0 ≤ θ ≤ π (1)

where k(r) is the heat conduction coefficient. The general thermal boundary conditions are considered to be:

{
x11T (a, θ) + x12T,r(a, θ) = F1(θ)

x21T (b, θ) + x22T,r(b, θ) = F2(θ)
. (2)

By choosing suitable values for parameters xij(i, j = 1, 2), different types of thermal boundary conditions,
including conduction, heat flux, and convection, may be considered for the sphere. When a spherical vessel
is not completely full of hot fluid, is under sun radiation on one side, or the temperatures of inlet and outlet
nozzles are different, the distribution of temperature and stresses happens in a 2D and asymmetric form.

The material properties of the sphere are assumed to be graded along the thickness direction, according
to the power-law function, as (Dai and Fu, 2007):

E(r) = E0(
r

a
)m1 , α(r) = α0(

r

a
)m2 , k(r) = k0(

r

a
)m3 , μ(r) = μ0(

r

a
)m4 (3)

where E0, α0, k0, μ0 are respectively the modulus of elasticity, the thermal expansion coefficient, the heat
conduction coefficient, and the magnetic permeability, and m1, m2, m3, m4 are the power-law indices. Since
most of the literature deals with the power-law function, it was decided, for comparative purposes, to consider
the power-law function for FGM. Meanwhile, the solutions obtained were simple in engineering problems. The
solution for the temperature equation can be written in the form of a power series as:

T (r, θ) =
+∞∑
n=0

Tn(r)Pn(cos θ) (4)

234



KHALILI, MOHAZZAB, JABBARI

where Pn(cos θ) is the Legendre series. Using the definition for material properties and Eq. (4), the heat
conduction equation becomes:

T ′′
n + (m3 + 2)

1
r
T ′

n − n(n + 1)
r2

Tn = 0. (5)

The solution for Eq. (5) is as follows:

T g
n (r) = E1nrδ1n + E2nrδ2n (6)

where

δ1n,2n = −m3 + 1
2

±
√

(m3 + 1)2

4
+ n(n + 1). (7)

Therefore, by substituting Eq. (6) into Eq. (4), the solution of Eq. (5) is as follows:

T (r, θ) =
+∞∑
n=0

(E1nrδ1n + E2nrδ2n)Pn(cos θ). (8)

Constants E1n and E2n can be evaluated as follows by substituting Eq. (8) into the thermal boundary
conditions:

E1n =
bδ2n 2n+1

2

π∫
0

F1(θ)Pn(cos θ) sin θdθ − aδ2n 2n+1
2

π∫
0

F2(θ)Pn(cos θ) sin θdθ

aδ1nbδ2n − aδ2nbδ1n

E2n =
aδ1n 2n+1

2

π∫
0

F2(θ)Pn(cos θ) sin θdθ − bδ1n 2n+1
2

π∫
0

F1(θ)Pn(cos θ) sin θdθ

aδ1nbδ2n − aδ2nbδ1n
. (9)

Stress Analysis

Let u and v be the displacement components in the radial and circumferential directions. Thus, the strain-
displacement relations are:

εrr = u,r

εθθ = 1
r (u + v,θ)

εϕϕ = 1
r
(u + v cot θ)

εrθ = 1
2 (u,θ

r + v,r − v
r )

. (10)

Hooke’s law for a 2D hollow sphere can be written as:

σrr =
E(r)

(1 + ν)(1− 2ν)
[(1− ν)εrr + νεθθ + νεϕϕ] − E(r)α(r)

(1 − 2ν)
T (r, θ)

σθθ =
E(r)

(1 + ν)(1 − 2ν)
[νεrr + (1 − ν)εθθ + νεϕϕ] − E(r)α(r)

(1 − 2ν)
T (r, θ)

σϕϕ =
E(r)

(1 + ν)(1 − 2ν)
[νεrr + νεθθ + (1 − ν)εϕϕ] − E(r)α(r)

(1 − 2ν)
T (r, θ)

235



KHALILI, MOHAZZAB, JABBARI

σrθ =
E(r)

(1 + ν)
εrθ. (11)

The variation of the magnetic field with time or transient magnetic field results in an electrical field; when the
magnetic field is uniform, there is no electrical field. When the electrical field vanishes, then the coefficient
connecting the temperature gradient and the electrical current, as well as the coefficient connecting the current
density and the heat flow density, like the Thompson effect, can be ignored. Assuming that the magnetic
permeability, μ, of the FG hollow sphere is equal to the magnetic permeability of the medium around it, and
that the medium is nonferromagnetic and nonferroelectric, and ignoring the Thompson effect, the simplified
Maxwell’s equations of electrodynamics for a perfectly conducting elastic medium are (Abd-Alla et al., 2004;

Tianhu et al. 2004, 2005):

→
h = ∇× (

→
U ×

→
H),

→
J = ∇×

→
h, fi = μ(r)(

→
J ×

→
H)i , (i = r, θ). (12)

The cubical dilatation is as follows:

e = εrr + εθθ + εφφ = u,r +
2
r
u +

1
r
v,θ +

1
r
v cot θ. (12.1)

Applying an initial magnetic field vector
→
H = (0, 0, Hφ) in spherical coordinates (r, θ, φ) to Eq. (9) yields:

→
U = (u, v, 0),

→
hφ = −Hφ(e)

J = (−Hφ
1
r

∂e

∂θ
, Hφ

∂e

∂r
, 0), f = (H2

φ

∂e

∂r
, H2

φ

1
r

∂e

∂θ
, 0). (13)

Thus, the Lorentz force is evaluated as follows:

f = μ(r)H2
φ(u,rr+

2u,r

r
−2u

r2
+

v,rθ

r
−v,θ

r2
+

cot θv,r

r
− cot θv

r2
,
u,rθ

r
+

2u,θ

r2
+

v,θθ

r2
+

cot θv,θ

r2
− (1 + cot2 θ)v

r2
, 0). (13.1)

The equilibrium equations of the FG hollow sphere, irrespective of the body force and the inertia terms, are:

σrr,r + 1
r
(σrθ,θ + 2σrr − σθθ − σϕϕ + σrθ cot θ) + fr = 0

σrθ,r + 1
r (σθθ,θ + (σθθ − σϕϕ) cot θ + 3σrθ) + fθ = 0

. (14)

Using Eqs. (10) through (14) and Eq. (3), the Navier equations in terms of radial and circumferential
displacements are as follows:

u,rr + (m1 + 2)1
r
u,r + 2(m1ν

1−ν
− 1) 1

r2 u + (1−2ν
2−2ν

) 1
r2 u,θθ + (1−2ν

2−2ν
) cot θ

r2 u,θ + ( 1
2−2ν

)1
r
v,rθ

+(m1ν
1−ν

− 3−4ν
2−2ν

) 1
r2 v,θ + ( 1

2−2ν
) cot θ

r
v,r + (m1ν

1−ν
− 3−4ν

2−2ν
) cot θ

r2 v

+H2
φμ0(1+ν)(1−2ν)

E0(1−ν) rm4−m1 (u,rr + 2
ru,r − 2

r2 u + 1
rv,rθ − 1

r2 v,θ + cot θ
r v,r − cot θ

r2 v)

= (1+ν)α0a−m2

1−ν [(m1 + m2)rm2−1T + rm2T,r ]

v,rr + (m1 + 2)1
r v,r − (m1 + (2−2ν

1−2ν )(1 + cot2 θ)) 1
r2 v + (2−2ν

1−2ν ) 1
r2 v,θθ + (2−2ν

1−2ν ) cot θ
r2 v,θ + ( 1

1−2ν )1
r u,rθ

+(m1 + 4−4ν
1−2ν

) 1
r2 u,θ + 2H2

φμ0(1+ν)

E0
rm4−m1 [ 1

r
u,rθ + 2

r2 u,θ + 1
r2 v,θθ + cot θ

r2 v,θ − (1+cot2 θ)
r2 v]

= (2+2ν
1−2ν )α0a

−m2rm2−1T,θ

. (15)
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For simplifying the Navier equations, it is assumed that the 2 power-law indices, m1 and m4 , are equal.
Therefore, the solutions of the Navier equations are:

u(r, θ) =
+∞∑
n=0

un(r)Pn(cos θ)

v(r, θ) =
+∞∑
n=0

vn(r) sin θP ′
n(cos θ)

(16)

where Pn(cos θ) is the Legendre series and P ′
n(cos θ) is the differentiation of the Legendre series with respect to

the circumferential direction. Using Eq. (16) and substituting it into the Navier equations yields the following:

u′′
n(1 + A) + (m1 + 2 + 2A)1

ru′
n + [2(νm1

1−ν − 1 − A) − n(n + 1)(1−2ν
2−2ν )] 1

r2 un

+n(n + 1)( 1
2−2ν + A)1

r v′n + n(n + 1)(νm1
1−ν − 3−4ν

2−2ν − A) 1
r2 vn

= (1+ν)α0a−m2

(1−ν) [(m1 + m2)rm2−1Tn + rm2T ′
n]

v′′n + (m1 + 2)1
r v′n − [n(n + 1)(2−2ν

1−2ν ) + m1 + Bn(n + 1)] 1
r2 vn

−( 1
1−2ν

+ B)1
r
u′

n − (m1 + 4−4ν
1−2ν

+ 2B) 1
r2 un = − (2+2ν)α0a−m2

(1−2ν)
rm2−1Tn

(17)

where

A =
H2

φμ0(1 + ν)(1− 2ν)
E0(1 − ν)

, B =
2H2

φμ0(1 + ν)
E0

. (18)

The symbol (′) denotes differentiation with respect to r . The general solutions of Eq. (17) are:

ug
n(r) = Crμ, vg

n(r) = Drμ. (19)

Substituting Eq. (19) into the left side of Eq. (17) yields:

C{μ(μ − 1)(1 + A) + (m + 2 + 2A)μ + 2mν
1−ν − 2 − 2A − n(n + 1)(1−2ν

1−ν )} + {n(n + 1)( 1
2−2ν + A)μ

+n(n + 1)( mν
1−ν − 3−4ν

2−2ν − A)}D = 0

D{μ(μ−1)+(m+2)μ−n(n+1)
2 − 2ν

1 − 2ν
−m−Bn(n+1)}+C{−μ (

1
1 − 2ν

+B)−(m+
4 − 4ν

1 − 2ν
+2B)} = 0. (20)

Eq. (20) is a system of algebraic equations such that for obtaining their nontrivial solution, their determinant
should be equal to 0, and their 4 roots are evaluated as follows:

{μ(μ − 1)(1 + A) + (m + 2 + 2A)μ + 2mν
1−ν − 2 − 2A − n(n + 1)(1−2ν

1−ν )} × {μ(μ − 1) + (m + 2)μ

−n(n + 1)(2−2ν
1−2ν

) − m − Bn(n + 1)} + {n(n + 1)( 1
2−2ν

+ A)μ+

n(n + 1)( mν
1−ν − 3−4ν

2−2ν − A)} × {μ( 1
1−2ν + B) + m + 4−4ν

1−2ν + 2B} = 0

. (21)

Therefore,

ug
n(r) =

4∑
j=1

Cnjr
μnj , vg

n(r) =
4∑

j=1

NnjCnjr
μnj (22)
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where

Nnj = −
μ(μ − 1)(1 + A) + (m + 2 + 2A)μ + 2mν

1−ν − 2 − 2A − n(n + 1)(1−2ν
2−2ν )

n(n + 1)[μ( 1
2−2ν + A) + mν

1−ν − 3−4ν
2−2ν − A]

j = (1, ..., 4) n �= 0. (23)

The particular solutions of Eq. (17) are assumed to be as follows:

up
n(r) = F1nrm2+δ1n+1 + F2nrm2+δ2n+1

vp
n(r) = F3nrm2+δ1n+1 + F4nrm2+δ2n+1

. (24)

Substituting Eq. (24) into Eq. (17), the coefficients of the particular solution are evaluated from the algebraic
system of equations solved by Cramer’s method, as follows:

F1n =
d5d4 − d6d2

d1d4 − d3d2
, F3n =

d1d6 − d3d5

d1d4 − d3d2

F2n =
d11d10 − d12d8

d7d10 − d9d8
, F4n =

d7d12 − d9d11

d7d10 − d9d8
. (25)

The constants d1 ,. . . .,d12are given in the Appendix. Combination of the decoupled case, for n = 0, must be
considered:

urr − s1
1
r2

u = s2r
m2−1T + s3r

m2Tr . (26)

The general solution in this case is as follows:

ug
0(r) =

2∑
i=1

a0ir
ηi (27)

η1,2 =
1
2
±

√
1
4

+
(1 − 2ν)(m1 + 2 + 2A)(m1 + 4−4ν

1−2ν + 2B)
(1 + A)(1 + B(1 − 2ν))

− 2(
m1ν

(1 + A)(1 − ν)
− 1). (28)

The temperature distribution in this case becomes:

T0(r) = E10r
δ10 + E20r

δ20 (29)

where
δ10,20 = 0,−m3 − 1

E10 =
b−m3−1 1

2

π∫
0

F1(θ) sin θdθ − a−m3−1 1
2

π∫
0

F2(θ) sin θdθ

b−m3−1 − a−m3−1
(30)

E20 =

1
2

π∫
0

F2(θ) sin θdθ − 1
2

π∫
0

F1(θ) sin θdθ

b−m3−1 − a−m3−1

and the particular solution for displacement of the decoupled case is:

up
0(r) = F10r

m2−m3 + F20r
m2+1 (31)

238



KHALILI, MOHAZZAB, JABBARI

where

F10 =
[s2 − s3(m3 + 1)]E20

(m2 − m3)(m2 − m3 − 1) − s1
(32)

F20 =
s2E10

(m2 + 1)m2 − s1
.

Therefore, the solution of the Navier equations for the 2D hollow sphere is obtained as follows:

u(r, θ) =
+∞∑
n=1

{
4∑

j=1

Cnjr
μnj +F1nrm2+δ1n+1 + F2nrm2+δ2n+1}Pn(cos θ) +

2∑
i=1

a0ir
ηi + F10r

m2−m3 + F20r
m2+1

v(r, θ) =
+∞∑
n=1

{
4∑

j=1
NnjCnjr

μnj +F3nrm2+δ1n+1 + F4nrm2+δ2n+1} sin θP ′
n(cos θ)

.

(33)

Substituting Eq. (33) in Eq. (10) yields:

εrr =
+∞∑
n=1

{
4∑

j=1
μnjCnjr

μnj−1 + (m2 + δ1n + 1)F1nrm2+δ1n + (m2 + δ2n + 1)F2nrm2+δ2n}Pn(cos θ)

+
2∑

i=1
ηia0ir

ηi−1 + (m2 − m3)F10r
m2−m3−1 + (m2 + 1)F20r

m2

εθθ =
+∞∑
n=1

{
4∑

j=1
Cnjr

μnj−1 + F1nrm2+δ1n + F2nrm2+δ2n}Pn(cos θ) +
2∑

i=1
a0ir

ηi−1 + F10r
m2−m3−1 + F20r

m2

+
+∞∑
n=1

{
4∑

j=1
NnjCnjr

μnj−1 + F3nrm2+δ1n + F4nrm2+δ2n}[n(n + 1)Pn(cos θ) − cos θP ′
n(cos θ)]

εϕϕ =
+∞∑
n=1

{
4∑

j=1
Cnjr

μnj−1 + F1nrm2+δ1n + F2nrm2+δ2n}Pn(cos θ) +
2∑

i=1
a0ir

ηi−1

+F10r
m2−m3−1 + F20r

m2 +
+∞∑
n=1

{
4∑

j=1

NnjCnjr
μnj−1 + F3nrm2+δ1n + F4nrm2+δ2n} cos θP ′

n(cos θ)

εrθ = 1
2{−

+∞∑
n=1

{
4∑

j=1

Cnjr
μnj−1 + F1nrm2+δ1n + F2nrm2+δ2n} +

4∑
j=1

(μnj − 1)NnjCnjr
μnj−1

+(m2 + δ1n)F3nrm2+δ1n + (m2 + δ2n)F4nrm2+δ2n} sin θP ′
n(cos θ)}

. (34)

Substituting Eq. (34) into Eq. (11), the stress components are obtained as follows:

σrr =
E(r)

(1 + ν)(1 − 2ν)
{(1 − ν)

+∞∑
n=1

{
4∑

j=1

μnjCnjr
μnj−1 + (m2 + δ1n + 1)F1nrm2+δ1n

+(m2 + δ2n + 1)F2nrm2+δ2n}Pn(cos θ) +
2∑

i=1

ηia0ir
ηi−1 + (m2 − m3)F10r

m2−m3−1

+(m2 + 1)F20r
m2 + ν [2

+∞∑
n=1

{
4∑

j=1

Cnjr
μnj−1 + F1nrm2+δ1n + F2nrm2+δ2n}Pn(cos θ)
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+2
2∑

i=1

a0ir
ηi−1 + 2F10r

m2−m3−1 + 2F20r
m2

+n(n + 1)
+∞∑
n=1

{
4∑

j=1

NnjCnjr
μnj−1 + F3nrm2+δ1n + F4nrm2+δ2n}Pn(cos θ)}

σθθ =
E(r)

(1 + ν)(1− 2ν)
{ν [

+∞∑
n=1

{
4∑

j=1

(μnj + 1)Cnjr
μnj−1 + (m2 + δ1n + 2)F1nrm2+δ1n

+(m2 + δ2n + 2)F2nrm2+δ2n}Pn(cos θ) +
2∑

i=1

(ηi + 1)a0ir
ηi−1

+(m2 − m3 + 1)F10r
m2−m3−1 + (m2 + 2)F20r

m2

+
+∞∑
n=1

{
4∑

j=1

NnjCnjr
μnj−1 + F3nrm2+δ1n + F4nrm2+δ2n} cos θP ′

n(cos θ)]

+(1 − ν)[
+∞∑
n=1

{
4∑

j=1

Cnjr
μnj−1 + F1nrm2+δ1n + F2nrm2+δ2n}Pn(cos θ) +

2∑
i=1

a0ir
ηi−1

+F10r
m2−m3−1 + F20r

m2 +
+∞∑
n=1

{
4∑

j=1

NnjCnjr
μnj−1 + F3nrm2+δ1n + F4nrm2+δ2n}

×[n(n + 1)Pn(cos θ) − cos θP ′
n(cos θ)]}

σφφ =
E(r)

(1 + ν)(1 − 2ν)
{ν [

+∞∑
n=1

{
4∑

j=1

(μnj + 1)Cnjr
μnj−1 + (m2 + δ1n + 2)F1nrm2+δ1n

+(m2 + δ2n + 2)F2nrm2+δ2n}Pn(cos θ) +
2∑

i=1

(ηi + 1)a0ir
ηi−1

+(m2 − m3 + 1)F10r
m2−m3−1 + (m2 + 2)F20r

m2

+
+∞∑
n=1

{
4∑

j=1

NnjCnjr
μnj−1 + F3nrm2+δ1n + F4nrm2+δ2n}

×(n(n + 1)Pn(cos θ) − cos θP ′
n(cos θ))] + (1 − ν)[

+∞∑
n=1

{
4∑

j=1

Cnjr
μnj−1

+F1nrm2+δ1n + F2nrm2+δ2n}Pn(cos θ) +
2∑

i=1

a0ir
ηi−1 + F10r

m2−m3−1 + F20r
m2

+
+∞∑
n=1

{
4∑

j=1

NnjCnjr
μnj−1 + F3nrm2+δ1n + F4nrm2+δ2n} cos θP ′

n(cos θ)]}
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σrθ =
E(r)

2(1 + ν)
{−

+∞∑
n=1

{
4∑

j=1

Cnjr
μnj−1 + F1nrm2+δ1n + F2nrm2+δ2n} +

4∑
j=1

(μnj − 1)NnjCnjr
μnj−1

+(m2 + δ1n)F3nrm2+δ1n + (m2 + δ2n)F4nrm2+δ2n} sin θP ′
n(cos θ)}. (35)

Substituting Eq. (34) into Eq. (13), the perturbation of the magnetic field vector is:

hφ = −Hφ × {
+∞∑
n=1

{
4∑

j=1

(μnj + 2)Cnjr
μnj−1 + (m2 + δ1n + 3)F1nrm2+δ1n + (m2 + δ2n + 3)F2nrm2+δ2n}

+n(n + 1)
4∑

j=1

NnjCnjr
μnj−1+F3nrm2+δ1n + F4nrm2+δ2n}Pn(cos θ) +

2∑
i=1

(ηi + 2)a0ir
ηi−1 (36)

+(m2 − m3 + 2)F10r
m2−m3−1 + (m2 + 3)F20r

m2}.

The von Mises stress is as follows:

σv =
√

(σrr − σθθ)2 + (σθθ − σφφ)2 + (σφφ − σrr)2 + 6σ2
rθ

/√
2. (37)

To determine the displacements and stresses, 4 boundary conditions are required to evaluate the 4 unknown
constants, Cn1 to Cn4 and a01, a02 . The 4 boundary conditions may be selected from the list of boundary
conditions given in Eq. (38). The procedure is continued by expanding the given boundary conditions into
the Legendre series. These constants are calculated by solving the system of algebraic equations formed by 4
boundary conditions in the following expressions:

u(a, θ) = g1(θ), u(b, θ) = g2(θ)

v(a, θ) = g3(θ), v(b, θ) = g4(θ).

σrr(a, θ) = g5(θ), σrr(b, θ) = g6(θ)

σrθ(a, θ) = g7(θ), σrθ(b, θ) = g8(θ)
(38)

where gi(θ), (i = 1, ..., 8) are known boundary condition functions.

Results and Discussion

The present analytical solution may be validated by the results of previously published work. A simpler example
of this work is presented in Eslami et al. (2005), in which the FG sphere was subjected to only mechanical load.

The material properties and boundary conditions were assumed to be the same as in Eslami et al. (2005). The

FG sphere was fixed at the outer surface (U(b, θ) = 0, V (b, θ) = 0) and subjected to mechanical stress at the

inner surface of the sphere as: σrr(a, θ) = 400 cos 4θ , σrθ(a, θ) = 0. Figures 1 and 2 show, respectively, the
radial displacement and the stress due to mechanical load obtained from the present analysis. These results are
identical to those reported in Eslami et al. (2005), which indicates good agreement with previous publications.

Figure 3 shows the temperature distribution under the thermal conditions of Eslami et al. (2005), Table, as

T (a, θ) = 50 cos θ2
/
2 and zero temperature at the outer radius, and the mechanical boundary conditions were

fixed at the inner radius and traction-free at the outer radius. This figure is the same as Figure 6 in Eslami
et al. (2005).
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Figure 1. Radial displacement due to mechanical load

without magnetic field.

Figure 2. Radial stress due to mechanical load without

magnetic field.
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Figure 3. Temperature distribution at m = 1. Figure 4. Shear stress due to mechanical load and mag-

netic field (example 1).

As the first example, the effect of the magneto-mechanical response of an FG hollow sphere of inner radius
(metal constituent) a = 0.4 m and outer radius (ceramic constituent) b= 0.5 m was considered. Poisson’s ratio

was assumed to be constant and was taken as 0.3, Hφ = 2.23 × 109(A/m), and μ0 = 4π × 10−7(H/m)(Dai

and Fu, 2007). The evaluated power-law indices and material properties used for the analysis are given in the
Table.

In this section, the magneto-elastic and magneto-thermoelastic stresses were considered separately, be-
cause the values and order of magnitudes of these stresses were not the same, and surveying each of them clearly
would be impossible.

The mechanical boundary conditions were assumed to be as follows:

σrr(a, θ) = 0, σrr(b, θ) = 400 cos(3θ)

σrθ(a, θ) = 0, σrθ(b, θ) = 200 sin(3θ)
.

Figure 4 shows the shear stress due to mechanical load and magnetic field. The shear stress is 0 on the
internal surface, because in this example, this surface is considered to be traction-free. This Figure obeys
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harmonic patterns. Figures 5-7 show the effect of the magnetic field on radial displacement, radial stress, and
circumferential stress of the FG hollow sphere in the presence of a mechanical load for the evaluated power-law
indices indicated in the Table and at various θ . The left-side figures correspond to the effect without a magnetic
field, and the right-side figures correspond to the effect with a magnetic field. It is to be noted that the radial
displacement due to mechanical load with a magnetic field is smaller in magnitude than the radial displacement
due to mechanical load without a magnetic field. Radial stress due to mechanical load with a magnetic field
is almost similar in magnitude and variation to the radial stress due to mechanical load without a magnetic
field. At both the inner and outer surfaces, the radial stresses are equal in magnitude. Circumferential stress
due to mechanical load without a magnetic field is greater in magnitude than the circumferential stress due
to mechanical load with a magnetic field. The variations of the curves with and without a magnetic field are
almost similar through the wall thickness.
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Figure 5. Radial displacement due to mechanical load a) without magnetic field and b) with magnetic field.
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Figure 6. Radial stress due to mechanical load a) without magnetic field and b) with magnetic field.

In order to study the effect of power-law indices on the behavior of the first example of the FG hollow
sphere in the Table in the presence of a magnetic field and mechanical load, the power indices of material
properties were considered to be identical, m1 = m2 = m3 = m. For this case, m was considered to range from
-2 to +2. The zero-value of m corresponds to pure material. The positive value of m states the increase of the

243



KHALILI, MOHAZZAB, JABBARI

0 0.5 1 1.5 2
2.5 3 3.5

0.4
0.42

0.44
0.46

0.48
0.5

-400

-200

0

200

400

600

θ (rad)r(m)

σ
θθ

(M
Pa

)

0 0.5 1 1.5 2 2.5 3 3.5

0.4
0.42

0.44
0.46

0.48
0.5

-4000
-3000
-2000
-1000

0
1000
2000
3000

θ (rad)r(m)

σ
θθ

(M
Pa

)

                                 (a)                                                                                                                 (b) 

Figure 7. Circumferential stress due to mechanical load a) without magnetic field and b) with magnetic field.

Table. Material properties and evaluated power-law indices for the examples in the present study.

Power-law indices
Ceramic MetalSecond example First example

a = 1.0 m, b = 1.2 m a = 0.4 m, b = 0.5 m
m1 = m4 = 3.1236 m1 = m4 = 2.5521 E = 117GPa E = 66.2GPa

m2 = −2.0329 m2 = −1.6610 α = 7.11× 10−6 ◦K α = 10.3× 10−6 ◦K
m3 = −11.9839 m3 = 9.7916 k = 2.036 W/m ◦K k = 18.1 W/m ◦K

ceramic constituent in the FGM and the negative value of m states the increase of the metal constituent in the
FGM. Figures 8-11 show the distributions of radial displacement, radial stress, and circumferential and shear
stresses due to mechanical load and magnetic field for various FGM power-law indices. Figure 12 shows the
perturbation of the magnetic field vector due to mechanical load with power-law indices. As can be seen, when
the power-law index (m) increased, the radial displacement, the radial, circumferential, and shear stresses due
to mechanical load and magnetic field, and the perturbation of the magnetic field vector due to mechanical load
all decreased. The variation of displacement is uniform through the wall thickness for all values of m considered
here. The radial and shear stresses at both the inner and outer radius of the sphere are identical for different
values of m ; that is, for the above boundary conditions at the inner and outer radius of the sphere, m does not
affect the radial or shear stresses. However, its contribution to changing the circumferential stresses at these
surfaces is high; that is, at the inner surface of the sphere, by changing the value of m from -2 to +2, the
circumferential stresses are changed by 60%, and at the outer surface of the sphere, the effect of changing m is
almost negligible. Figure 13 shows the mechanical von Mises stress due to the magnetic field vector. As can be
seen, with increasing power-law indices, the maximum of the von Mises stress from inside the sphere turns to
the mid-radius of the sphere. This graph has a minimum value near the outside sphere at r= 0.8 thickness, and
at this point, all of the von Mises stresses with different power-law indices are almost equal. Figure 14 shows the
mechanical von Mises stress, without a magnetic field vector, for m= 1. The effective stress remained almost
constant and the hollow sphere became optimum.

The second example consisted of considering the magneto-thermoelasticity response in a FG hollow
sphere with inner radius (metal constituent) a = 1 m and outer radius (ceramic constituent) b = 1.2 m, with
the same material properties as in the first example. The evaluated power-law indices for the second example

244



KHALILI, MOHAZZAB, JABBARI

0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5
-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

−1

-0.9

-0.8

-0.7

-0.6 x 10 -3

r(m)

U
(m

)

m=−2
m=−1
m=0
m=1
m=2

0.4 0.42 0.44 0.46 0.48 0.5
-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

r(m)
σ r

r
(M

Pa
)

m=−2
m=−1
m=0
m=1
m=2

Figure 8. Radial displacement due to mechanical load

and magnetic field along the thickness of the FG sphere

with various power-law indices at θ = π/3 (example 1).

Figure 9. Radial stress due to mechanical load and mag-

netic field along the thickness of the FG sphere with vari-

ous power-law indices at θ = π/3 (example 1).
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Figure 10. Circumferential stress due to mechanical load

and magnetic field along the thickness of the FG sphere

with various power-law indices at θ = π/3 (example 1).

Figure 11. Shear stress due to mechanical load and

magnetic field along the thickness of the FG sphere with

various power-law indices at θ = π/3 (example 1).

are given in the Table. The temperature at the inner radius is 0, and that at the outer radius is defined by

T (b, θ) = 100 cos θ2
/
2. The mechanical boundary conditions are considered to be traction-free on both sides

of the sphere. Figures 15-17 show, respectively, the effect of the magnetic field on radial displacement, radial
stress, and circumferential stress of the FG hollow sphere, considering the thermal load as defined above and for
the evaluated power-law indices indicated in the Table and at variousθ . The left-side figures correspond to the
effect without a magnetic field and the right-side figures correspond to the effect with a magnetic field. It is to
be noted that the radial displacement due to thermal load with a magnetic field is greater in magnitude than the
radial displacement due to thermal load without a magnetic field. The variations of both cases of displacement
are almost the same. The radial stress due to thermal load without a magnetic field is smaller in magnitude
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than the radial stress due to thermal load with a magnetic field. The variations of the 2 cases are completely
different. At both the inner and outer surfaces, the radial stresses are equal in magnitude. Circumferential
stress due to thermal load with a magnetic field is greater in magnitude than the circumferential stress due to
thermal load without a magnetic field. The variations of the curves for the sphere subjected to a magnetic field
and without a magnetic field are almost the same.
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Figure 12. Perturbation of the magnetic field vector due

to mechanical load along the thickness of the FG sphere

with various power-law indices at θ = π/3 (example 1).

Figure 13. Mechanical von Mises stress due to magnetic

field vector along the thickness of the FG sphere with

various power-law indices at θ = π/3 (example 1).
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Figure 14. Mechanical von Mises stress without magnetic field vector along the thickness of the FG sphere with various

power-law indices at θ = π/3 (example 1).
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Figure 15. Radial displacement due to thermal load a) without magnetic field and b) with magnetic field.
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Figure 16. Radial stress due to thermal load a) without magnetic field and b) with magnetic field.
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Figure 17. Circumferential stress due to thermal load a) without magnetic field and b) with magnetic field.
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In order to study the effect of power-law indices on the behavior of the second example of the FG hollow
sphere in the Table in the presence of a magnetic field and thermal load, the power indices of the material
properties were considered to be identical, m1 = m2 = m3 = m. For this case, m was considered to range from
-1 to +3. Figure 18 shows the temperature distribution with various power-law indices. When the power-law
index (m) increased, the temperature decreased, since the FG sphere got cold faster. Figure 19 shows the
variation of radial displacement due to thermal load and magnetic field with various power- law indices. Since
an increase in m results in a higher gravity of the sphere, the radial displacement is decreased. Figure 20
shows the variation of radial stress due to thermal load and magnetic field with various power-law indices. As
can be observed, the radial stress becomes 0 at the inner radius of the sphere, since there is no constraint

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
0

10

20

30

40

50

60

70

80

90

100

r(m)

T
(0 K

)

m=-1
m=0
m=1
m=2
m=3

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
0

1

2

3

4

5

6

7

8 x 10-3

r(m)

U
(m

)

m=-1
m=0
m=1
m=2
m=3

Figure 18. Temperature distribution along the thickness

of the FG sphere with various power-law indices at θ = π/4

(example 2).

Figure 19. Radial displacement due to thermal load and

magnetic field along the thickness of the FG sphere with

various power-law indices at θ = π/4 (example 2).
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Figure 20. Radial stress due to thermal load and mag-

netic field along the thickness of the FG sphere with vari-

ous power-law indices at θ = π/4 (example 2).

Figure 21. Circumferential stress due to thermal load

and magnetic field along the thickness of the FG sphere

with various power-law indices at θ = π/4 (example 2).
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at the inner radius. By increasing the power-law index (m), the radial stress is increased. Figure 21 shows
the circumferential stress distribution due to thermal load and magnetic field with various power-law indices.
Contrary to the effect on radial stress, the circumferential stress is decreased by increasing m . Figure 22 shows
the shear stress distribution due to thermal load and magnetic field with various power-law indices. Similar
to the radial stress distribution, as m is increased, the shear stress is also increased. Figure 23 shows the
perturbation magnetic field vector due to thermal load with various power-law indices. By increasing m , the
perturbation is decreased.
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Figure 22. Shear stress due to thermal load and magnetic

field along the thickness of the FG sphere with various

power-law indices at θ = π/4 (example 2).

Figure 23. Perturbation of magnetic field vector due to

thermal load along the thickness of the FG sphere with

various power-law indices at θ = π/4 (example 2).

Conclusion

In this paper, the analytical solution for the magneto-thermo-mechanical response of a FG hollow sphere is
presented. The analytical solution for stresses and perturbation were determined using the power series method.
The material stiffness, thermal expansion coefficient, heat conduction coefficient, and magnetic permeability
varied continuously across the thickness direction according to the power-law functions of radial direction. A
magnetic field resulted in decreases of the radial displacement and circumferential stress due to mechanical load,
and had a negligible effect on mechanical radial stress. The magnetic field also resulted in increases of the radial
displacement and the radial and circumferential stresses due to thermal load. By increasing the power-law index
(m), the above mentioned quantities, due to mechanical loads, were all decreased. Increasing the power-law
indices in the presence of thermal loads resulted in increased radial stress and shear stress values, but had a
reverse effect on temperature, radial displacement, circumferential stress, and perturbation of the magnetic field
vector distributions. In general, the effect of mechanical loads with a magnetic field was more significant when
compared to the effect of thermal loads with a magnetic field.
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Appendix

d1 = (m2 + δ1n + 1)(m2 + δ1n)(1 + A) + (m1 + 2 + 2A)(m2 + δ1n + 1) + 2(
m1ν

1 − ν
− 1 − A) − n(n + 1)(

1 − 2ν

2 − 2ν
)

d2 = n(n + 1)[(m2 + δ1n + 1)(
1

2− 2ν
+ A) + (

m1ν

1 − ν
− 3 − 4ν

2 − 2ν
− A)]

d3 = −[(m2 + δ1n + 1)(
1

1 − 2ν
+ B) + m1 +

4− 4ν

1− 2ν
+ 2B]

d4 = (m2 + δ1n + 1)(m2 + δ1n) + (m1 + 2)(m2 + δ1n + 1) − n(n + 1)(
2 − 2ν

1 − 2ν
) − m1 − Bn(n + 1)

d5 =
(1 + ν)α0a

−m2

(1 − ν)
(m1 + m2 + δ1n)E1n

d6 = − (2 + 2ν)α0a
−m2

1 − 2ν
E1n

d7 = (m2 + δ2n + 1)(m2 + δ2n)(1 + A) + (m1 + 2 + 2A)(m2 + δ2n + 1) + 2(
m1ν

1 − ν
− 1 − A) − n(n + 1)(

1 − 2ν

2 − 2ν
)

d8 = n(n + 1)[(m2 + δ2n + 1)(
1

2− 2ν
+ A) + (

m1ν

1 − ν
− 3 − 4ν

2 − 2ν
− A)]

d9 = −[(m2 + δ2n + 1)(
1

1 − 2ν
+ B) + m1 +

4− 4ν

1− 2ν
+ 2B]

d10 = (m2 + δ2n + 1)(m2 + δ2n) + (m1 + 2)(m2 + δ2n + 1) − n(n + 1)(
2 − 2ν

1 − 2ν
) − m1 − Bn(n + 1)

d11 =
(1 + ν)α0a

−m2

(1 − ν)
(m1 + m2 + δ2n)E2n

d12 = − (2 + 2ν)α0a
−m2

1 − 2ν
E2n

s1 =
(1 − 2ν)(m1 + 2 + 2A)(m1 + 4−4ν

1−2ν + 2B)

(1 + A)(1 + B(1− 2ν))
+ 2(

m1ν

(1 − ν)(1 + A)
− 1)

s2 =
(1 + ν)α0a

−m2(m1 + m2)

(1 + A)(1 − ν)
− (m1 + 2 + 2A)(2 + 2ν)α0a

−m2

(1 + A)(1 + B(1− ν))
, s3 =

(1 + ν)α0a
−m2

(1 + A)(1− ν)

Nomenclature

→
U, u radial displacement vector and radial

displacement (m)
→
V , v circumferential displacement vector and

circumferential displacement (m)
α thermal expansion coefficient (1/˚K)
σij components of stresses (N/m2)
T temperature change (˚K)
ρ mass density (kg/m3)

r radial variable (m)
θ circumferential variable (rad)
→
H magnetic intensity vector (A/m)
→
h perturbation of magnetic field vector
→
J electric current density vector
μ magnetic permeability (H/m)
a, b inner and outer radius of the FG hollow

sphere (m)
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