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Abstract

This paper treats the Kelvin-Helmholtz instability arising at the interface separating 2 superposed,

viscous, electrically conducting fluids through a porous medium in the presence of a uniform 2D horizontal

magnetic field. The stability motion was also assumed to be uniform, 2D, and horizontal. By applying the

normal mode technique to the linearized perturbation equations, the dispersion relation was derived. The

stability analysis was carried out for fluids of high kinematic viscosities. It was found that both viscosity

and porosity suppressed the stability, while streaming motion had a destabilizing influence.
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1. Introduction

The Kelvin-Helmholtz discontinuity arising at the plane interface between 2 superposed streaming fluids is
of prime importance in various astrophysical, geophysical, and laboratory situations. The Kelvin-Helmholtz
instability arises in such situations as when air is blown over mercury, highly ionized hot plasma is surrounded
by a slightly cold gas, or a meteor enters the earth’s atmosphere.

A comprehensive account of investigations of these problems in hydrodynamics and hydromagnetics
was given by Chandrasekhar (1961) in his monograph. These problems of instabilities in hydrodynamic and
hydromagnetic configurations continue to attract the attention of researchers due to their importance in actual
physical situations.

The problems of nonstreaming, superposed instability (Rayleigh-Taylor instability) and Kelvin-Helmholtz

instability have been investigated by several researchers from different points of view. Jukes (1964) investigated
the problem by incorporating finite electrical conductivity effects and concluded that this inclusion introduced
new and unexpected solutions. Gerwin (1968) studied the stability problem of nonconducting, streaming gas
flowing over an incompressible conducting liquid. The influence of viscosity on the stability of the plane interface
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separating 2 incompressible, superposed fluids of uniform densities was studied by Bhatia (1974), who concluded
that viscosity has a stabilizing influence. A comprehensive account of various hydrodynamic stability problems
was also given by Joseph (1976) and by Drazin and Reid (1981). Several researchers have examined the Kelvin-
Helmholtz instability in superposed fluids in hydrodynamic, hydromagnetic, and plasma regimes from different
points of views.

Sengar (1984) analyzed the stability of 2 superposed gravitating streams in a uniform, vertical magnetic
field in the presence of effects of magnetic resistivity. He found that magnetic resistivity had a destabilizing
effect on the system. Mehta and Bhatia (1988) studied the Kelvin-Helmholtz instability of 2 viscous, superposed

plasmas in the presence of finite Larmor radius (FLR) effects and showed that both viscosity and FLR effects

suppressed the instability. Dávalos-Orozco and Aguilar-Rosas (1989a, 1989b) and Dávalos-Orozco (1996)
examined the effects of a general rotation and a horizontal magnetic field on the stability of superposed inviscid
fluids. El-Sayeed (2003) examined the effect of viscosity and finite ion Larmor radius on the hydrodynamic
transverse instability problem.

An excellent reappraisal of the Kelvin-Helmholtz problem was given by Benjamin and Bridges (1997),
who gave the Hamiltonian formulation of the classic Kelvin-Helmholtz problem in hydrodynamics. Allah
(1998) investigated the effects of magnetic field, heat, and mass transfer on the Kelvin-Helmholtz instability of

superposed fluids. El-Ansary et al. (2002) studied the effects of rotation on the hydrodynamic stability of 3

layers. Meignin et al. (2001) and Watson et al. (2004) studied the Kelvin-Helmholtz instability in a Hele-Shaw
cell and a weakly ionized medium, respectively.

In recent years, investigations of the flow of fluids through porous media have become an important
topic due to the recovery of crude oil from the pores of reservoir rocks. McDonnell (1978) pointed out the
physical properties of comets; meteorites and interplanetary dust strongly suggest the significance of the effects
of porosity in the astrophysical context.

Several applications of the problems of flow through a porous medium in geophysics may be found in
the work of Phillips (1991), Ingham and Pop (1998), and Nield and Bejan (1999). Several researchers (e.g.

Vaghela and Chhajlani (1988), Samaria et al. (1990), Sharma and Kumar (1997), and Khan and Bhatia (2003))
have studied the effects of the permeability of a porous medium on different problems in hydrodynamic and
hydromagnetic stability in view of the importance of such studies in rocks and heavy oil recovery.

In the absence of a magnetic field, Allah (2002) investigated the stability of superposed Newtonian fluids

through a porous medium in the presence of the effects of surface tension, while Kumar and Lal (2005) recently
studied the stability in 2 superposed Rivlin-Ericksen viscoelastic fluids through a porous medium. Kumar et al.
(2006) studied the instability of a rotating, superposed Walters B’ viscoelastic fluid through a porous medium.

More recently, Kumar et al. (2007) investigated the effect of viscosity on stratified, superposed, non-Newtonian
fluids. In all of the above mentioned studies of flow and stability in Newtonian and non-Newtonian fluids
through a porous medium, the effects of streaming motions were not included.

It would be of interest to examine the instability in superposed, streaming, viscous, electrically conducting
fluids through a porous medium in the presence of a magnetic field. One can study the problem of the stability
of the horizontal layer of stratified fluids and the stability of 2 superposed fluids, whether streaming or not,
in the presence of a horizontal or a vertical magnetic field. Khan and Bhatia (2001) studied the stability of 2
nonstreaming, superposed, viscoelastic fluids in a horizontal magnetic field. In this paper, we have examined
the stability of a planar interface separating 2 streaming, electrically conducting, viscous fluids in a horizontal
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magnetic field through a porous medium. For a uniform vertical magnetic field, Bhatia and Sharma (2003)
studied the problem of Kelvin-Helmholtz instability in superposed viscous fluids through a porous medium.

2. Mathematical formulation

We considered the motion of an incompressible, viscous, infinitely electrically conducting fluid of uniform

viscosityμ , moving with a uniform horizontal velocity �U = (Ux, Uy, 0) through a porous medium in the presence

of uniform 2D magnetic field �H = (Hx, Hy, 0) .

The relevant linearized perturbation equations are:

ρ

ε

∂�u

∂t
+

ρ

ε

(
⇀

U .∇
)

�u = −∇δp + �gδρ +
(
∇×�h

)
× �H +

μ

ε
∇2�u − μ

Q
�u (1)

ε
∂

∂t
(δρ) +

(
�U.∇

)
δρ + (�u.∇) ρ = 0 (2)

ε
∂�h

∂t
+
(−→

U .∇
)

�h =
(

�H.∇
)

�u (3)

∇.�h = 0 (4)

∇.�u = 0 (5)

where �h (hx, hy, hz) , δρ , and δp are the perturbations, respectively, in magnetic field �H , density ρ , and pressure

p , resulting from the disturbance, the Darcian velocity �u (u, v, w), to the system. In the above equations, μ is

the coefficient of viscosity, �g = (0, 0,−g) is the acceleration due to gravity, Q is the permeability of the porous
medium, and ε is the medium’s porosity. Analyzing in terms of normal modes, we assumed that the perturbed
quantities have the space (x, y, z) and time (t) dependence of the form:

f (z) exp (ikxx + ikyy + nt) (6)

where f (z) is some function of z, kx and ky are the horizontal wave numbers
(
k2 = k2

x + k2
y

)
, and n is the

rate at which the system departs away from equilibrium. Eliminating some of the variables, we get the following
equation in w :

n′

ε

[
ρk2w − D (ρDw)

]
− gk2

n′ε
(Dρ)w −

(
�k.

⇀

H
)2

n′ε

(
D2 − k2

)
w

+
μ

ε

(
D2 − k2

)2
w − μ

Q

(
D2 − k2

)
w = 0 (7)

where we have written n + i
(
�k.�U
)

= n′and D ≡ d
dz .

Eq. (7) holds for all ρ (z).
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3. Superposed fluids

Consider the case in which 2 superposed fluids, occupying the regions z > 0 and z < 0, are separated by a
horizontal boundary at z = 0. In the 2 regions of constant ρ , equation (7) becomes:

(
D2 − k2

) (
D2 − M2

)
w = 0 (8)

where

M2 = k2 +
n′

υ

⎛
⎜⎝1 +

(
�k.

⇀

H
)2

n′2ρ
+

υε

Qn′

⎞
⎟⎠ (9)

where υ = μ
ρ is the coefficient of kinematic viscosity. We assumed that the fluid of density ρ1 , kinematic

viscosity υ1 , and streaming velocities �U1 = (Ux1, Uy1, 0) occupy the lower region z < 0, while the fluid of

density ρ2 , kinematic viscosity υ2 , and streaming velocities �U2 = (Ux2, Uy2, 0) occupy the upper region z > 0.

We then sought the solution of Eq. (8) for the 2 fluids moving with the presence of magnetic field �H and
flowing through a porous medium of porosity ε .

Since w must be bounded both when z → +∞, in the upper fluid, and z → −∞ , in the lower fluid, the
solutions of Eq. (8), which remained bounded in the 2 regions, are:

w1 = A1n
′
1e

kz + B1n
′
1e

M1z , z < 0 (10)

w2 = A2n
′
2e

−kz + B2n
′
2e

−M2z , z > 0 (11)

where A1 , B1 , A2 , and B2 are constants of integration, n′
1 = n + i�k.�U1 , n′

2 = n + i�k.�U2 , and M1 and M2 are

respectively the square roots of M2 for the 2 regions.

The expressions determining M1 and M2 are

M2
1 = k2 +

n
′2
1

υ1

⎛
⎜⎝1 +

(
�k.
−→
H
)2

n
′2
1 ρ

+
υ1ε

Qn′
1

⎞
⎟⎠ (12)

M2
2 = k2 +

n
′2
2
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⎛
⎜⎝1 +

(
�k.
−→
H
)2

n
′2
2 ρ

+
υ2ε

Qn′
2

⎞
⎟⎠ (13)

In writing the solution of Eqs. (10) and (11), it was assumed that M1 and M2 were so defined that their real
parts were positive.

4. Boundary conditions

The solutions for Eqs. (10) and (11) must satisfy certain boundary conditions. These conditions require that
at the interface z = 0,
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w, Dw and μ
(
D2 + k2

)
w (14 a, b, c)

must be continuous.
These conditions ensure the requirement of the continuity of the normal component of velocity, its

derivative, and the tangential stress at the interface. By integrating Eq. (7) across the interface, z = 0,
we obtain another condition:

[{
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where w0 and (Dw)0 are the unique values of these quantities at z = 0. Applying boundary conditions (14 a,

b, c) and (15) to the solutions of Eqs. (10) and (11), we obtain the relations:
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On eliminating the constants A1 , B1 , A2 , and B2 and evaluating the determinant of the given matrix of the
coefficients in Eqs. (16) through (19), we obtained the following characteristic equation:
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and �VA is the Alfven velocity. On substituting the expression for M1 and M2 in Eq. (20), we obtained the

characteristic equation. Now the values of M1 and M2 are given by the square roots of Eqs. (12) and (13). To

obtain the values of M1 and M2 , we used the binomial theorem and retained terms up to 1
υ1,2

, as in the case

of nonstreaming fluids (Bhatia 1974). We could then write M1 and M2 as:

M1 = k

⎡
⎢⎣1 +

n′
1

2k2υ1
+

1
2

(
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)2

k2n′
1υ1α1

+
1
2
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⎡
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(
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+
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2

ε
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⎤
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It is obvious that the expansion resorted to here is due to reasons of mathematical tractability. This enabled
us to analyze the stability of the system.

Substituting the values of M1 and M2 , given by Eqs. (21) and (22), in Eq. (20), we obtained the
dispersion relation as a ninth degree polynomial:

i=9∑
i=0

Ein
i = 0 (23)

where the coefficients Ei (i = 0-9) are complicated expressions involving the wave number k and the parameters
α1 , α2 , Ux1 , Uy1 , Ux2 , Uy2 , Hx , Hy , υ1 , υ2 , ε , and Q , characterizing, respectively, the effects of density,

streaming velocity, the magnetic field, the viscosity, the porosity, and the permeability of the porous medium
of the fluids. These coefficients are not given here.

5. Numerical calculations

The dispersion relation given by Eq. (23) is quite complicated, particularly as the coefficient Ei values involve
several parameters. It is thus not feasible to analyze the dispersion relation analytically. We therefore solved
it numerically, for different values of the parameters, for an unstable arrangement of superposed fluids, i.e. a
top-heavy configuration and the same.

We were interested in the qualitative behavior of the various parameters on the instability of the
configuration. Therefore, the dispersion relation, Eq. (23), was numerically solved to ascertain the values
of the growth rate against the wave number for various values of one parameter, taking fixed values of other
parameters. The dispersion relation was first nondimensionalized by measuring n and the parameters in terms
of

√
g . For an unstable system, we must have α1 < α2(α1 +α2 = 1). One can, therefore, take any set of values

for α1 < α2 such that α1 + α2 = 1. In the present study, we took α1= 0.30 and α2 = 0.70.

For numerical calculations, we set Hx = Hy = 1. These calculations are presented in Figures 1-5.

In Figure 1, we plotted the growth rate n (positive real values) against wave number k for porosity
ε = 0.1, 0.2, 0.3, taking υ1 = υ2 = 1 and Ux1 = Uy1 = Ux2 = Uy2 = 1. We noticed that as the value of ε

increased, the growth rate decreased for the same wave number. The effect of porosity on the instability of the
system was consequently stabilizing. Among several researchers, Vaghela and Chhajlani (1988), Allah (2002),
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and Kumar and Lal (2005) have shown that the effect of porosity on the instability of a superposed fluid is
stabilizing. The results obtained here thus agree with the findings of the earlier authors.
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Figure 1. Plot of growth rate against wave number for porosity ε = 0.1, 0.2, 0.3.

The effect of kinematic viscosity on the system’s stability is presented in Figures 2 and 3, in which we
again plotted growth rate n versus wave number k for varying values of viscosity (υ1 and υ2) for ε = 0.1,
Ux1 = Uy1 = Ux2 = Uy2 = 1. From Figures 2 and 3, we notice that the kinematic viscosity had a stabilizing

influence on the instability of the system, as the increase in viscosity tended to decrease the value of n for the
same k . Several other authors have examined the effect of viscosity on the stability of different hydrodynamic
and hydromagnetic systems. For nonstreaming superposed fluids, Bhatia (1974), El-Sayeed (2003), and Kumar

et al. (2007) have pointed out the stabilizing character of viscosity on the stability of the system. The result
obtained in the present paper is thus in agreement with the observations of earlier researchers.
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Figure 2. Plot of growth rate against wave numbers for

variation of viscosity υ1 = 3, 4, 5.

Figure 3. Plot of growth rate against wave numbers for

variation of viscosityυ2 = 3, 4, 5.

The effect of streaming velocity on the system’s stability is presented in Figures 4 and 5, in which growth
rate n is plotted versus wave number k for varying values of streaming velocity for υ1 = υ2 = 1, ε = 0.1, and
Uy1 = Uy2 = 1.

We found that the more the values of streaming velocity increased for a fixed wave number, the larger the
values of the growth rate were. The streaming velocity thus had a destabilizing influence on the system. The
effect of streaming motion on the stability of a superposed fluid has been investigated by several researchers in
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the past, such as Allah (1998), Meignin et al. (2001), Watson et al. (2004), and Bhatia and Mathur (2006). For
nonporous fluid media, they all found that the streaming motion had a destabilizing influence on the system.
The result obtained in the present paper for the effect of streaming motion in porous fluids thus agrees with
earlier findings.
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Figure 5. Plot of Growth rate against wave numbers for

Stream Velocity Ux2 = 1, 2, 3.

6. Conclusion

The numerical calculations presented above, although carried out for a few representative values of the physical
parameters involved, reveal the tendencies of the nature of the physical effects on the instability of the superposed
porous streaming fluids. In conclusion, we can say that both viscosity and porosity suppress the instability of
streaming superposed fluids. The streaming motion tends to further destabilize the unstable arrangement of
the superposed fluids.
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Dávalos-Orozco, L.A. and Aguilar-Rosas, J.E., “Rayleigh-Taylor Instability of a Continuously Stratified Fluid Under a

General Rotation Field”, Physics of Fluids A: Fluid Dynamics, 1, 1192-1199, 1989a.
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