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İstanbul Technical University, Department of Naval Architecture and Marine Engineering
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Abstract

A practical design method was applied to obtain optimum cavitating ship propellers by combining a

vortex lattice lifting line method (propeller design program) and a lifting surface method (propeller analysis

program). The optimum circulation distribution that gives the maximum lift-to-torque ratio was computed

for given thrust and given chord lengths along the radius of the propeller by a vortex lattice solution to

the lifting line problem. The section details of the blades, such as pitch-to-diameter ratio and camber ratio,

were then found to obtain the desired (optimal) circulation distribution automatically by a lifting surface

method. In order to get the optimum circulation distribution, the radius of the blades was divided into a

number of panels extending from hub to tip. The radial distribution of bound circulation could be computed

by a set of vortex elements that have constant strengths. A discrete trailing free vortex line was shed at each

of the panel boundaries with strength equal to the difference in strengths of the adjacent bound vortices.

The vortex system was built from a set of horseshoe vortex elements, each consisting of a bound vortex

segment of constant strengths and 2 free vortex lines of constant strengths. An algebraic equation system

could be formed by using these vortex systems. Once this equation system for unknown vortex strengths was

solved with a specified thrust, the optimum circulation distribution and the forces could be computed by the

Betz-Lerbs method. When the radial distribution of optimum circulation and chord length were reached,

the lifting surface method could be applied to determine the blade pitch and camber in order to produce

the desired circulation automatically. The lifting surface method also accounts for cavitation, which is an

avoidable physical phenomenon on the blades. The cavity effects in the present method were represented by

using cavity sources and cavitating velocities, which were evaluated on the blade surface beneath the cavity.

The practical design technique was applied both to noncavitating and cavitating DTMB 4119 and DTMB

4381 propellers, for which the hydrodynamic characteristics are given in the literature, and the results were

compared with those given in the literature. A very good level of satisfaction was obtained for practical

applications.

Key Words: Optimum ship propeller, cavitation, propeller design, propeller analysis, vortex lattice method,

lifting surface method, lifting line method
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1. Introduction

A cavitating ship propeller that has the highest propeller coefficient (i.e. maximum thrust-to-torque ratio) is
known as optimum in terms of hydrodynamic performance. The objective of ship propeller design is to obtain
the highest efficiency subject to prescribed requirements from a hydrodynamic point of view. On the other
hand, cavitation, which is an avoidable physical phenomenon, has always been a major concern in propeller
design. Sheet cavitation is especially very common in ship propellers, as explained by Kerwin (1986) and Kinnas

et al. (2005). A reliable and effective numerical technique including sheet cavitation is thus very crucial for the
design of ship propellers. This paper addresses the computation of pitch, chord length, and camber distribution
along the radius of an optimum cavitating propeller in steady flow by combining a vortex lattice method and a
lifting surface method. The effects of skew and rake on the optimum cavitating propeller were, however, ignored
in this stage of the present study.

Cavitation occurs when the pressure is below the vapor pressure of fluid, and its presence can lead to
propeller erosion and noise. The periodic occurrence and collapse of cavities due to an unsteady, nonaxisymmet-
ric inflow also leads to periodic pressure fluctuations and can cause vibrations of the hull and the shaft, which
may lead to fatigue and failure of these structures. In the past, a propeller was designed in a way such that
cavitation was completely avoided. Although such methods have been well applied to lightly loaded propellers,
the application to heavily loaded and/or high-speed propellers is not appropriate, since cavitation is much more
likely to occur in these conditions. Additionally, the efficiency of a cavitating blade may be higher than that of a
noncavitating blade because of less frictional loss at the parts of the blade that are covered by sheet cavitation.
The present work addresses the simulation of sheet cavitation, which forms on the propeller blade’s surface
and remains attached to it like a thin vapor bubble. Studies on sheet cavitation are important because sheet
cavity is a very common type of cavity on ship propellers and can affect both the radiated pressure field and
the formation of cloud cavitation.

2. Previous works

Many researchers and engineers have contributed to the improvement of cavitating propeller design. Kerwin
(2001) stated that the actuator disk was one of the earliest and simplest theories for propeller analysis and
is the limit case of a propeller with the highest efficiency at a specified thrust. It corresponds to the case of
no hub with an infinite number of blades and an infinitesimally small advance coefficient and chord lengths.
Betz (1919), on the other hand, first developed the basis for determining the radial distribution of circulation
that would result in maximum efficiency for a propeller in uniform inflow. He analyzed the trailing vortex
wake far downstream of the propeller and found the “Betz condition,” stating that the induced inflow on the
lifting line must have a radial constant pitch. However, the propeller design problem was actually solved by
Goldstein (1929). He developed a propeller design method following Prandtl’s lifting line concept. He obtained
the “Goldstein circulation reduction factor,” the ratio of circumferential mean tangential induced velocity and
the local tangential induced velocity at the lifting line. The extension of Goldstein’s lifting line theory to
the case of propellers with arbitrary radial distributions of circulation in both uniform and radial varying
axisymmetric inflow was presented by Lerbs (1952), who derived the “Lerbs criteria” for optimum propellers.
The optimum circulation distribution on a propeller with a duct of finite length was determined by Sparenberg
(1969). He discussed the effects of tip clearances and hub diameter. A vortex lattice method to analyze and

design a marine propeller was used by Kerwin and Lee (1978) and Greely and Kerwin (1982), respectively. The
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continuous singularities on the lifting surfaces (blades) were represented by a set of vortex/source lattices. The
blade loading and vorticity in the trailing wake were represented by vortex lattices distributed on the mean
camber surface while the blade thickness was accounted for by adding thickness source panels. A review of the
hydrodynamic aspects of marine propellers up to the middle of the 1980s was published by Kerwin (1986). An

extensive overview of the hydrodynamics of ship propellers was presented by Breslin and Andersen (1994).

Coney (1992) later developed a design method for the optimal circulation distribution based on variational

optimization. He represented the propeller by concentrated lifting lines (horseshoe vortex elements) and
described the thrust and torque as functions of horseshoe strengths that were solved for constrained optimization.
The method was applicable to multicomponent propulsors, such as ducted propellers and propeller-stator
combinations. An unsteady propeller design method, which intended to optimize the cavitation inception speed,
was developed by Kuiper and Jessup (1993). They focused on blade section design. An artificial intelligence for

the preliminary propeller design was used by Dai et al. (1994). They discussed the numerical optimization and

genetic algorithms. Mishima and Kinnas (1997) developed a numerical method to determine the blade geometry
with the best efficiency for specified thrust and cavity size constraints. The propeller performance was described
as a function of design variables whose combination determined the blade geometry. The unsteady propeller
analysis algorithm was coupled with a constrained nonlinear optimization algorithm. Griffin and Kinnas (1998)
further improved the propeller analysis and design methods. In particular, the analysis method was improved in
such a way that the cavity search algorithm was included along the blade section. The design method was also
extended to include the skew distribution and minimum pressure constraint. The coupled axisymmetric RANS
calculation and vortex/source lattice method were later applied by Kerwin et al. (2003) to the design of ducted

propellers. Further analysis and design techniques for ducted propulsors and viscous/inviscid interaction can

be found in the works of Kinnas et al. (2005) and Sun (2008), respectively.

3. Present work

In the present study, the hydrodynamic design of a cavitating ship propeller was carried out in 2 steps. First, a
lifting line model was used to determine the optimum radial distribution of circulation over the blades to produce
the desired thrust with the highest propeller efficiency. Second, the shape of the blades (chord, pitch, and camber

distributions) required to produce this desired distribution of circulation was determined. The effects of skew

and rake were not considered in this stage of the present study. The propeller vortex lattice solution (PVL; code

given by Kerwin (2001)) to the lifting line problem of the propeller, in which the blades are considered to have
concentrated lines of bound vortices, was used to predict the optimum circulation distribution over the blades
in this study. However, the lifting line theory cannot alone provide the actual blade geometry that produces
the desired circulation distribution. A more elaborate representation of the propeller should be employed to
determine the blade pitch, chord, and camber distribution in order to produce the desired circulation over the
blade. A lifting surface method, very similar to the one applied to the podded propulsors presented by Bal and
Güner (2009), was used here for this purpose. The blades were modeled as sheets of vortex/source singularities
with unknown strengths. The lifting surface method accounts for cavitation characteristics of the blades by
using cavity source singularities. The strengths of singularities can then be found by applying the appropriate
boundary conditions on the blades and cavity surfaces. The steady loading as well as the unsteady forces and
cavity patterns on the blades can be predicted by this lifting surface method. In the following sections, the
design and analysis methods of the propeller are explained and these methods are applied to a DTMB 4119
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propeller, working both at noncavitating and cavitating conditions, and to a DTMB 481 propeller, and the
results are compared with those given in the literature.

4. Propeller design method

The lifting line theory was employed here to represent the propeller as a set of a number of blades (NB) and
straight and radial lifting lines. The lifting lines represent blades of the propeller. The blades have angular
spacing and equal loading. The geometry (i.e. pitch, camber, and chord) of the actual propeller is replaced
by a radial distribution of circulation. The lifting lines rotate with angular velocity ω around the x-axis. The
lifting line starts at hub radius rh and extends to propeller radius R. A cylindrical coordinate system (x, r, θ)

is assumed to be rotating with the propeller. Refer to Kerwin (2001) for details.

The strength of bound vortices on the blades is the circulation distribution over the blades, Γ(r). The
shape of the free vortex wake is, however, assumed to be helical. Under the linear lifting line method, the pitch
(β (r)) of the helixes can be determined by the propeller’s rotation and undisturbed inflow:

β(r) = tan−1

[
Va(r)

ωr + Vt(r)

]
, (1)

where Va (r) is an effective axial inflow and Vt (r) is an effective tangential inflow for each radius over the blades.
The shape of the helixes can also be aligned with the induced velocities at the lifting line. For a propeller with
optimum radial load distribution according to the Betz (1919) condition, the efficiency for each blade section

should be constant and equal to (see also Kerwin (2001)):

tan β (r)
tan βi (r)

= constant. (2)

Here, βi is the hydrodynamic pitch angle and can be given as:

βi(r) = tan−1

[
Va(r) + u∗

a(r)
ωr + Vt(r)

]
, (3)

where u∗
a(r)is the axial induced velocity due to the helical free vortex system. Similarly, the Betz condition can

be extended to the case of nonuniform axial inflow according to the Lerbs (1952) condition:

tan β (r)
tan βi (r)

= γ
√

1 − wx(r). (4)

Here, wx (r) = 1 – [Va (r) / Vs ], Vs is the ship speed, and γ is an unknown constant.

Expressions for the forces acting on radius r on the lifting line can be developed from a local application
of the Kutta-Joukowski theorem. These forces can then be resolved into components in the axial and tangential
direction, integrated over the radius, and summed over the number of blades to produce the total propeller
thrust and torque values. Refer to Kerwin (2001) for details about the lifting line theory of propellers.

5. The vortex lattice solution to the lifting line problem

The continuous distribution of vortices along the lifting line is discretized by vortex lattice elements with
constant strengths. The element arrangement along the lifting line employs both uniform spacing and cosine
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spacing. The induced velocity is calculated at control points located at the mid-radius of each panel. Thus, the
radius of each lifting line is divided into M panels of length Δr and the continuous distribution of circulation
over the radius can be replaced by a step-like distribution. The value of the circulation in each panel, Γ(i), is
set equal to the value of the continuous distribution at the control points. Since the circulation is piecewise
constant, the helical free wake vortex sheet is replaced by a set of concentrated, helical vortex lines shed from
each panel boundary. The strength of these trailing vortices is equal to the difference in bound vortex strength
across the boundary. Therefore, it can be considered that the continuous vortex distribution is to be replaced
by a set of vortex horseshoes. Each of these horseshoes consists of a bound vortex filament and 2 helical trailing
vortices.

The velocity induced at the lifting line by this system of vortices can be computed using the very efficient
formulas given by Kerwin (2001). They are not repeated here. The velocity induced at a given point is a
summation of the velocities induced by each vortex horseshoe:

u∗
a (r(i)) ≡ u∗

a(i) =
M∑

m=1

Γ(m)ū∗
a(i, m), (5)

u∗
t (r(i)) ≡ u∗

t (i) =
M∑

m=1

Γ(m)ū∗
t (i, m), (6)

where u∗
a and u∗

t are the axial and tangential components of induced velocity. ū∗
a and ū∗

t are the axial and

tangential components of induced velocity at the control point at radius r(i) by a unit, the helical horseshoe

vortex surrounding the control point at r(m). Under this discrete model, the integrations for the total forces
are replaced by the summations over the number of panels. The PVL code is based on this method and uses
the Betz-Lerbs condition to obtain the optimum circulation distribution over blades. Here it was used to get
the optimum circulation distribution (i.e. maximum thrust-to-torque ratio) for a given thrust. Refer to Kerwin

(2001) for details of the vortex lattice solution to the lifting line model and PVL code.

6. Propeller analysis method

A lifting surface method was developed and used to calculate the propulsive performance and induced velocities
due to the propeller, similar to the one given by Bal and Güner (2009). The lifting surface method (propeller

analysis code) models the 3-dimensional unsteady cavitating flow around a propeller by representing the blade
and wake as a discrete set of vortices and sources, which are conveniently located on the blade mean camber
surface and wake surface. In particular, the 3 components of the discretization are as follows:

i) A vortex lattice on the blade mean camber surface and wake surface to represent the blade loading and
trailing vorticity in the wake.

ii) A source lattice on the blade mean camber surface to represent blade thickness.

iii) A source lattice throughout the cavity extent to represent cavity thickness.

The sources representing blade thickness are line sources along the spanwise direction. The strengths of
the line sources are given in terms of derivatives of the thickness in the chordwise direction and are independent
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of time as presented by Griffin and Kinnas (1998). The unknown bound vortices on the blade and the unknown
cavity sources are determined by applying the kinematic boundary condition and the dynamic boundary
condition. The kinematic boundary condition is given as:

∂φ

∂n
= −�Uin.�n, (7)

where �n is the surface unit normal vector to the mean camber blade surface at the kinematic boundary condition

control point, �Uin is the inflow velocity with respect to the propeller-fixed coordinate system, and φ is the
perturbation potential. In this method, a discretized version of the kinematic boundary condition is employed
as: ∑

Γ

Γ�vΓ · �nm = −�vin · �nm −
∑
QB

QB �vQ · �nm −
∑
QC

QC �vQ · �nm, (8)

where �vΓ is the velocity vector induced by each unit strength vortex element, �vQ is the velocity vector induced

by each unit strength source element, and �nm is the unit vector normal to the mean camber line or trailing
wake surface. QB and QC represent the magnitude of the line sources that model the blade thickness and
cavity source strengths, respectively. The kinematic boundary condition must be satisfied at certain control
points located on the blade mean camber surface. The kinematic boundary condition requires that the sum of
the influences for all of the vortices’ sources and the inflow normal to a particular control point on the blade
is equal to zero. Another way to explain this is that the kinematic boundary condition requires the flow to be
tangential to the surface. The dynamic boundary condition is based on Bernoulli’s equation between a point
far from the propeller and the point of interest. This condition is defined as given by Griffin and Kinnas (1998):

p − pshaft = −ρ
∂φ

∂t
− ρuV r − ρgys, (9)

where p is the pressure at the point of interest, pshaft is the pressure at a point far from the propeller at the

depth of the shaft axis, ρ is the density of water, ∂ φ
∂ t is the time derivative of the potential induced by all of

the singularities, u is the perturbation velocity along the chordwise direction, Vr is the unperturbed velocity
with respect to the propeller system, and ys is the hydrostatic depth of the point of interest.

The dynamic boundary condition requires that the pressure must be equal to vapor pressure at control
points covered by the cavity. The area of application of the dynamic boundary condition changes with time
as the cavity extent changes with time. The unknown cavity extent is determined by searching for the cavity
length along each spanwise location. The desired cavity length is the one that renders the cavity pressure
equal to vapor pressure. The pressures on the cavity and blade are evaluated via Bernoulli’s equation with

the 3-dimensional linearized velocity terms, the unsteady terms ∂ φ
∂ t

, and the hydrostatic terms fully included.

The cavity thickness (and thus volume) is determined by integrating the cavity source distribution over the
cavity surface along each strip. The problem is solved in the time domain with each time step representing
an angular rotation of the propeller. The time domain solution allows for the effects of all strips and blades
to be accounted for in an iterative fashion. After the first complete propeller revolution, the method achieves
the fully wetted steady solution, and 3 more propeller revolutions produce the fully wetted unsteady solution.
Finally, the cavitating unsteady solution is attained after a total of 7 or more propeller revolutions. Refer to
Griffin and Kinnas (2001) for details.

Other assumptions employed throughout the method include:
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i) The cavity thickness varies linearly across panels in the chordwise direction and is piecewise constant
across panels in the spanwise direction.

ii) There are no spanwise flow effects in the cavity closure condition.

iii) Viscous force is calculated by applying a uniform frictional drag coefficient, Cf , on the wetted regions of

the blade.

The induced velocities due to vortex elements of the lifting surface are calculated using the Biot-Savart
law, expressed as:

−→
V Γ =

Γ
4π

.
�Lx�d

�d3
, (10)

where
−→
V Γ is induced velocity, Γ is circulation, �L is the vortex length element, and �d is the distance between

the element and the field point. The induced velocities due to sources/sinks are also computed on the basis of

given source/sink intensity. Once the bound vortex elements’ intensity is solved, then the velocity induced by
the propeller in any point in space can be computed using angular positions of the propeller blade. The forces
on the propeller blade are found by the Kutta-Joukowski theorem. The contributions of all lattice elements to
the total forces are added along the blades. If the propeller is working in a steady state condition, the forces on
all blades are the same. Hence, the force on the entire propeller is found by multiplying each blade force by the
number of blades. Hub effect, using the method of images, can also be included into the calculations. Refer to
Kerwin (2001), Griffin and Kinnas (1998), and Bal and Güner (2009) for details of the lifting surface method
of solution to the propeller analysis problem.

7. Combining propeller design and analysis methods

The steps of hydrodynamic design of a cavitating ship propeller can be simply accomplished as follows:

1. First, the radial distribution of circulation over the blades that will produce the required total
thrust with maximum efficiency is established using a propeller design method (PVL code) for a given chord
distribution. The radial distribution of chord length is a necessary input to the viscous force calculations of
the circulation optimization. In order to minimize viscous drag forces, it is desirable to keep the propeller
chord length as short as possible. However, the strength considerations limit how short these chord lengths
may become. The selection of these quantities, however, is not discussed in this stage of the present study. It
is assumed that the initial chord length distribution is taken from original propellers and kept fixed during the
calculations.

2. The actual shape of the blade (pitch and camber distribution over the blade) that will produce this

prescribed distribution of circulation can then be developed using the propeller analysis method (lifting surface

solution) automatically. In order to do this, a code that calls the propeller analysis method (lifting surface

solution) repeatedly is developed. This code changes automatically, in a systematic way, the pitch distribution

and camber distribution to produce the desired (optimum) circulation distribution for given chord lengths over
the blades. The code runs very fast and includes cavity patterns. It should, however, be noted that the number
of blades and the chord distribution can be changed to produce the required thrust value and to minimize the
cavity formation.
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8. Validation and numerical results

8.1. Noncavitating DTMB 4119 propeller

The lifting surface method for validation was first applied to a noncavitating DTMB 4119 propeller. The
DTMB 4119 propeller has the following geometric characteristics and working conditions (refer to Brizzolara et

al. (2008) for details):

i) The propeller inflow is uniform.

ii) The propeller has 3 blades, i.e. NB = 3.

iii) The hub-to-diameter ratio is 0.2.

iv) The blade geometries from reference in terms of radial distribution of the chord length (c), camber (f),

thickness (t), and pitch (P) are shown in Table 1.

v) The blade sections are designed with NACA 66 modified profiles and a camber line of a = 0.8. Refer to

Abbott and Doenhoff (1959).

vi) The propeller has no skew and no rake.

Table 1. DTMB 4119 propeller geometry taken from Brizzolara et al. (2008).

r/R c/D P/D tmax/c fmax/c
0.20 0.3200 1.1050 0.2055 0.0143
0.30 0.3635 1.1022 0.1553 0.0232
0.40 0.4048 1.0983 0.1180 0.0230
0.50 0.4392 1.0932 0.0902 0.0218
0.60 0.4610 1.0879 0.0696 0.0207
0.70 0.4622 1.0839 0.0542 0.0200
0.80 0.4347 1.0811 0.0421 0.0197
0.90 0.3613 1.0785 0.0332 0.0182
0.95 0.2775 1.0770 0.0323 0.0163
0.98 0.2045 1.0761 0.0321 0.0145
1.00 0.0800 1.0750 0.0316 0.0118

The lifting surface analysis program was run for the propeller under the above conditions. There were
20 vortex lattices (N = 20) used along the chordwise direction and 18 vortex lattices (M = 18) used along the
radius of the blades. The frictional drag coefficient Cf = 0.004 was used in the calculations. The perspective

view of the DTMB 4119 propeller with its wakes and the vortex elements used in the lifting surface analysis
program are shown in Figures 1 and 2, respectively. The thrust and torque coefficients (KT and KQ) and

efficiency (η = Js

2 π
KT

KQ
) of the propeller versus advance coefficients (Js) computed from the analysis program

are compared with those given by Brizzolara et al. (2008) in Figure 3. The agreement between the results of the

analysis program and those given by Brizzolara et al. (2008) is satisfactory. Therefore, the developed propeller
analysis program is validated for the DTMB 4119 propeller. The pressure contours for advance coefficient
values, Js = 0.6 and 0.8, are also shown in Figures 4 and 5, respectively, for the completeness of the results.
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Note that for this propeller, the pressure contours on all blades and for all blade angles are identical, due to the
steady and uniform incoming flow.

XY

Z

Blades
Wakes

 

Figure 1. Perspective view of DTMB 4119 propeller blades and wakes.
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Figure 2. Front and side views of DTMB 4119 propeller and panels used on the blades.
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Figure 3. Comparison of KT , KQ , and η values with

those given by Brizzolara et al. (2008).

Figure 4. Pressure contours on both sides of blades for

noncavitating DTMB 4119 propeller at Js = 0.6.
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Figure 5. Pressure contours on both sides of blades for

noncavitating DTMB 4119 propeller at Js = 0.8.

Figure 6. Comparison of circulation distribution with

PVL for noncavitating DTMB 4119 propeller.

The design technique was then applied to the DTMB 4119 propeller to check whether or not it is optimum.
The advance coefficient (Js) was assumed to be equal to 0.833 (the design value). The vortex lattice lifting line

design program (PVL code given by Kerwin (2001)) was run for the DTMB 4119 propeller at the conditions
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given above. The radial optimum circulation distribution, nondimensionalized by 2πRVR (here VR is the

resulting velocity,VR =
√(

V 2
S + (0.7D π n)2

)
) for design Js = 0.833, is shown in Figure 6. The thrust and

torque coefficients are also included in Figure 6. The lifting surface analysis program was then run to obtain
the optimum radial circulation distribution as PVL code. The radial circulation distribution computed from
the analysis program (lifting surface method) was compared with those from the PVL code, as shown in Figure
6. The differences between the results of the analysis program and design program are very small. Thus, it can
be stated that the blade geometry given in Table 1 for the DTMB 4119 propeller is almost optimum under
the above design conditions. The thrust and torque coefficients from both the analysis and the design program
are also included in Figure 6. Note that the thrust and torque coefficients are also very close to each other. The
pressure distributions for 2 different strip numbers (strip numbers 1 and 10) by the propeller analysis program
are presented for various advance coefficients in Figures 7 and 8, respectively. Strip 1 corresponds to the blade
section at r = rh , while strip 10 is very close to the section at r = 0.7R.
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Figure 7. Pressure distribution on strip 1 for different ad-

vance coefficients for noncavitating DTMB 4119 propeller.

Figure 8. Pressure distribution on strip 10 for different

advance coefficients for noncavitating DTMB 4119 pro-

peller.

8.2. Cavitating DTMB 4119 propeller

The design technique was later applied to the same DTMB 4119 propeller with a cavitation number of σ =
1.02. The working conditions were the same as in the above noncavitating case. There were 20 vortex lattices
(N = 20) used along the chordwise direction and 18 vortex lattices (M = 18) used along the radius of the blades.
The computed cavity patterns, both on the back and face sides, are shown for design advance coefficient Js =
0.833 in Figure 9. Note that the cavity occurred only on the back side; there was no cavity on the face side.
The radial circulation distribution computed from the analysis program (lifting surface method) is compared
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with those from the PVL code in Figure 10. The differences between the results of the analysis program and
design program are significantly higher. Thus, it can be stated that the blade geometry given in Table 1 for
the original DTMB 4119 propeller with cavitation number σ = 1.02 is not optimum under the above design
conditions.
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Figure 9. Cavity pattern of original DTMB 4119 pro-

peller for design Js = 0.833 and σ = 1.02.

Figure 10. Comparison of circulation distribution with

PVL for noncavitating DTMB 4119 propeller.

The code that calls the propeller analysis method (lifting surface solution) repeatedly was then run.

This code changes automatically, in a systematic way, the pitch distribution to produce the desired (optimum)
circulation distribution for the given chord lengths over the blades. The camber distribution is assumed to be
fixed as a first step in this application. The new circulation distribution is given as compared with those from
the PVL code in Figure 11. The agreement between the results of the analysis program and design program is
very satisfactory. It can be said that the propeller with this new pitch distribution, as given in Figure 12 and
as compared with those of the original DTMB 4119 propeller, is optimum. Note that the pitch distribution
for the original DTMB 4119 propeller decreases from the hub to tip gradually. On the other hand, the pitch
distribution for the optimum propeller modified from the DTMB 4119 propeller is constant between r/R = 0.2

and 0.3, then decreases gradually up to r/R = 0.7 and increases faster until the tip of the blade. The thrust and

torque coefficients from both the analysis (lifting surface method) and design programs (PVL) are also included
in Figure 11. Note also that while the thrust coefficients are very close to each other, the torque coefficients
are equal to each other. The cavity patterns for both the original DTMB 4119 propeller and the optimum
DTMB 4119 with the new pitch distribution are compared for advance coefficient Js = 0.833 in Figure 13.
Both propellers have cavity occurrence on only the back sides of the blades, not on the face sides. The optimum
propeller has a smaller cavity formation than the original one.
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Figure 13. Comparison of cavity pattern of original DTMB 4119 propeller with optimum propeller.

Moreover, the pressure distributions on the optimum propeller for strip number 17 by the propeller
analysis program are presented as compared with those of the original DTMB 4119 propeller in Figure 14. Strip
number 17 is located very close to the tip and lies under the cavity region on the blade. Note that for the
optimum propeller, the cavity length is smaller than that of the original DTMB 4119 propeller. The pressure
contours for both the original DTMB 4119 propeller and the optimum propeller are also shown in Figures 15
and 16, respectively, for the completeness of the results. The thrust and torque coefficients (KT and KQ) and

efficiency (η) of the original DTMB 4119 propeller versus advance coefficients (Js) computed from the analysis
program are compared with those of the optimum propeller in Figure 17. The optimum propeller performance
for all of the advance coefficients is slightly better than that of the original DTMB 4119 propeller since the
torque coefficients are less than those of the original DTMB 4119 propeller. The cavity formation on both sides
of the blades, both for the optimum propeller and the original DTMB 4119 propeller, are also compared for 3
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Figure 15. Pressure contours on blades of original DTMB

4119 propeller.
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advance coefficients (Js = 0.5, 0.7, and 0.9) in Figures 18, 19, and 20, respectively. Note the increasing cavity

lengths for decreasing advance coefficients (increasing loading), both for the optimum and the original propeller.
Note also the smaller cavity formation for the optimum propeller than for the original propeller for all advance
coefficients.
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Figure 18. Comparison of cavity pattern of original DTMB 4119 propeller with optimum propeller for J s = 0.5 and

σ = 1.02.
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Figure 19. Comparison of cavity pattern of original DTMB 4119 propeller with optimum propeller for J s = 0.7 and

σ = 1.02.
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8.3. DTMB 4381 propeller

The design technique was applied to the DTMB 4381 propeller, for which the hydrodynamic characteristics and
design conditions were given by Brizzolara et al. (2008). The DTMB 4381 propeller has the following geometric
characteristics and working conditions:

i) The propeller is working under uniform inflow.

ii) The propeller has five blades, i.e. NB = 5.

iii) The hub-to-diameter ratio is 0.2.

iv) The cavitation number is 10.

v) The blade geometries from Brizzolara et al. (2008) in terms of radial distribution of the chord length (c),

camber (f), thickness (t), and pitch (P) are shown in Table 2.

vi) The blade sections are designed using NACA 66 modified profiles and a camber line of a = 0.8 (refer to

Abbott and Doenhoff (1959)).

vii) The propeller has no skew and no rake.

The lifting surface analysis program was run for the DTMB 4381 propeller under the conditions described
above. There were 20 vortex lattices used along the chordwise direction and 18 vortex lattices used along the
radius of the blades, similar to the case of the DTMB 4119 propeller. The frictional drag coefficient Cf = 0.0035

was used in the calculations. The perspective view of the propeller, with its wakes and the vortex elements used
in the lifting surface analysis program, is shown in Figure 21. The thrust and torque coefficients and efficiency
of the propeller versus advance coefficients (Js) computed from the analysis program are compared with those

of the experiments of Brizzolara et al. (2008) in Figure 22. The agreement between the results of the analysis

program and those given by Brizzolara et al. (2008) is satisfactory.
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Table 2. DTMB 4381 propeller geometry from Brizzolara et al. (2008).

r/R c/D P/D tmax/c fmax/c
0.20 0.1740 1.3320 0.2494 0.0351
0.25 0.2020 1.3380 0.1960 0.0369
0.30 0.2290 1.3450 0.1563 0.0368
0.40 0.2750 1.3580 0.1069 0.0348
0.50 0.3120 1.3360 0.0769 0.0307
0.60 0.3370 1.2800 0.0567 0.0245
0.70 0.3470 1.2100 0.0421 0.0191
0.80 0.3340 1.1370 0.0314 0.0148
0.90 0.2800 1.0660 0.0239 0.0123
0.95 0.2100 1.0310 0.0229 0.0128
1.00 0.0010 0.9950 0.0160 0.0123

The vortex lattice lifting line design program was then run for the DTMB 4381 propeller at the conditions
given above. The radial optimum circulation distribution for the design Js = 0.889 is shown in Figure 23. The
lifting surface analysis program was then run to get the optimum radial circulation distribution for the same
chord length distribution as in the PVL code. The radial circulation distribution computed from the analysis
program is compared with those from the PVL code in Figure 23. The differences between the results of
the analysis program and design program are now significantly higher. Thus, it can be stated that the blade
geometry given in Table 2 for DTMB 4381 is not an optimum propeller under the above design conditions.
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Figure 23. Circulation distribution compared by present design technique and PVL for DTMB 4381 propeller.

The code that calls the propeller analysis method repeatedly was then run. The camber distribution is
assumed to be fixed as a first step in this specific application. The new circulation distribution is given, as
compared with those of the PVL code, in Figure 23. The agreement between the results of the analysis program
and design program is now very satisfactory. It can be said that the propeller with this new pitch distribution,
which is given in Figure 24 as compared with that of the original DTMB 4381 propeller, is optimum. Note
that the pitch distribution for the original DTMB 4381 propeller increases slightly up to Js = 0.4 and then
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decreases gradually until the tip of the blade. On the other hand, the pitch distribution for the optimum
propeller modified from DTMB 4381 increases up to Js = 0.9 and then decreases until the tip of the blade.
Note also that the pitch values are different for both the original and optimum propellers. The thrust and
torque coefficients from both the analysis and design programs are included in Figure 13. Note also that the
thrust and torque coefficients are very close to each other.
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Figure 24. The pitch distribution over blade for both the DTMB 4381 propeller and optimum propeller at design

Js = 0.889.

9. Conclusions

A practical design technique for optimum cavitating ship propellers has been described. The hydrodynamic
design of a cavitating ship propeller was accomplished in 2 steps, by combining a propeller design method
and an analysis method iteratively. The lifting surface analysis method was first validated in the case of a
noncavitating DTMB 4119 propeller, for which the geometric and hydrodynamic characteristics are given in
the literature. It was found that the agreement between the results (thrust, torque, optimum circulation, and

pressure distribution) of the present design technique and those given in the literature is very satisfactory. The
design technique was then applied to the same propeller to check whether it is optimum or not, under the given
cavity conditions. The method was applied to the DTMB 4381 propeller and the propeller was made optimum
under the given working conditions by changing the pitch distribution. It was concluded that:

1. The DTMB 4119 is an optimum propeller in noncavitating conditions. On the other hand, it is not
optimum in cavitating working conditions.

2. However, the modified propeller (from the DTMB 4119 propeller) with a new pitch distribution was
obtained as optimum while keeping all other geometric characteristics, including pitch, camber, and chord,
fixed.

3. The technique is very fast and effective and can be used as a reliable tool for many practical applications.
Refer to Bal (2011a) for the other practical applications of the present lifting surface method to noncavi-
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tating propellers. Refer also to Bal (2011b) for applications of the present method to different cavitating
propellers.

Nomenclature

a NACA camber (mean) line constant
c(r) chord length along blade
Cf frictional drag coefficient
Cp (P i) pressure coefficient
d distance between vortex element and field

point
D propeller diameter
f camber parameter for blade section
fmax maximum camber of each blade section
Js advance coefficient = Vs /(nD)
NB number of blades
KT thrust coefficient of propeller = T/(ρn2 D4)
KQ torque coefficient of propeller = Q/(ρn2 D5)
M number of radial vortex lattice elements
n propeller rotational speed [rps]
�nm unit vector normal to the mean camber or

trailing wake surface
p pressure
P(r) pitch of blade section
Q propeller torque
rh radius of hub

PVL propeller vortex lattice code
R radius of propeller
t thickness parameter for blade sections
tmax maximum thickness of each blade section
T propeller thrust
u∗

a (r) axial induced velocity along blade
u∗

t (r) tangential induced velocity along blade
x, r, θ cylindrical coordinates rotating with blade
Va effective axial inflow

VR resulting velocity =
√(

V 2
S + (0.7Dπ n)2

)
VS uniform incoming flow velocity
V t effective tangential inflow
�vΓ velocity vector induced by each unit strength

vortex element
�vQ velocity vector induced by each unit strength

source element
wx r axial wake fraction
β (r) pitch angle of blade section
η propeller efficiency = Js /(2π)KT /KQ

Γ circulation
ω angular velocity = 2πn
ρ density of water
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