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Abstract

Bridges are exposed to various loading conditions, and influence lines have important applications for

the design of beams that are subjected to moving loads. The main purpose of this study was to evaluate the

applicability of a transfer matrix method (TMM)-based static analysis of monolithic concrete beams with

external prestressing cables subjected to moving loads. This approach is important for helping engineers

in the preliminary design and is consistent with the design prescriptions of modern codes. The results, in

terms of the load deflections and load increase of cable stress, are presented and discussed. The effects of

friction at the deviators on the behavior of the externally prestressed concrete beams were also examined.

Key Words: External cables, moving loads, influence lines, transfer matrix method, linear elastic support,

deviators, friction effect

1. Introduction

External prestressing has been extensively used in various engineering structures (Virlogeux, 1983; Hoang and

Pasquignon, 1985; Jartoux, 1986; Virlogeux, 1990). This technique is considered an important tool in new

constructions as well as in strengthening and repairing existing bridges (Foure and Hoang, 1993; Mutsuyoshi
et al., 1995; Miyamoto and Nakamura, 1997; Abdunur and Godart, 1998; Lebet and Utz, 2005; Nordin, 2005;
Fernàndez Ruiz et al., 2006), since it provides many advantages, such as extension of elastic behavior to higher
loads, increase of ultimate capacity, and decrease of deflection under service loads. Many experimental studies
(Harajli, 1993; Tan and Ng, 1997; Tan et al., 2001; Aparicio et al., 2002; Harajli, 2002; Tan and Tjandra, 2003;

Aravinthan, 2005) have been conducted on the behavior of externally prestressed members. Some numerical

analyses (Harajli, 1999; Ariyawardena and Ghali, 2002; Wu and Lv, 2003; El-Ariss, 2004) have also been
undertaken. Although finite element models are capable of analyzing nonlinear behavior and incorporating
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complex phenomena such as slip, friction between external tendons and deviators, and material and geometrical
nonlinearities, the analytical procedure is too complicated for these structures and the number of elements
is extremely large. The present study is focused on the computation of influence line forces developed in an
externally prestressed monolithic concrete beam, considering the displacement compatibility and friction effects
at the elastic supports (deviator points) using the transfer matrix method (TMM) (Gery and Calgaro, 1973).
This approach is simple and important in helping engineers in the design process. In addition, the proposed
approach is consistent with the prescriptions of modern codes (Eurocode (EC2), 2004; AASHTO-LRFD, 2004)
and represents an alternative for the preliminary design process, leaving the more complex and nonlinear analysis
to the final structural verification. To this end, a Fortran 77 computer program was developed to perform the
computations required. The TMM technique is proposed to evaluate both the bending moment and shear
forces produced by the influence lines at some locations (deviator points and anchorage ends) of an externally
prestressed concrete beam. The analytical equations used to calculate forces produced by the moving loads
and external prestressing cables are reviewed hereafter. This analytical review gives insight into the elegance of
the proposed method. With the proposed method, the problem can be efficiently handled by using a personal
computer or undertaken by hand calculations with minimal computation effort. The steps are also simple, and
they can be used for any arbitrary loading and extended to multi-span beams.

2. Method of analysis

Figure 1 shows a layout scheme of a simply supported beam prestressed by external cables. At equal distances
along the beam, 2 external cables with a polygonal profile and 4 deviator points were provided. In this example,
the prestressing load is transferred to the concrete beam through the deviator points and anchorage ends. It is
assumed that the bearing supports are absolutely rigid and the intermediate supports at the deviator locations
are linear elastic, with a spring constant only (neglecting rotational effects). As can be noted, the external
prestressing cables extend horizontally in the inner part of the concrete beam, and one of the cables undergoes
deviations from the horizontal line at the first and forth deviators and at the second and third deviators for
the second cable. The deviators are mounted symmetrically about the median section of the beam and cables
are anchored at both ends of the beam. According to EC2, spacers are used to reduce the vibration effects
where the length of the unsupported external tendons is too long (≥8 m). Another modern code, namely the
AASHTO-LRFD, specifies a similar procedure.

2.1. Input data, modeling of the beam, and calculation assumptions

The data describing the dimensions, material, and loading of the beams taken as examples in this study,
together with the data describing the bearing concepts at the deviator points, should be available for calculations
(such data are useful for analytical or numerical examples). The actual structure was modeled as a statically
indeterminate system with multiple span elements, and the bearings were modeled as absolutely stiff supports
(at anchorage ends and bearing supports of the beam) and linearly elastic supports (at intermediate locations,

where deviators are mounted). A general span element model is shown in Figure 2, with the main general
loading that can be applied on each element, including the self-weight.

All calculations were performed in the vertical plane, where the moving concentrated loads are supposed
to be acting, and deviator forces with the types of supports should be taken into consideration within the loading
of the model. In addition, all calculations were based on real beam dimensions and the following 2 assumptions.
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First, the calculations were performed with conventional friction because of its unknown extent, and because
the real value of the friction coefficient depends on many factors and can only be determined by experimental
investigations. Second, the deflection of the external cable does not follow the beam deflection, except at the
deviator points when the beam is deformed by the externally prestressing cables and does not meet exactly the
proposed method of analysis at every cross section; however, it was assumed that the accuracy of the outcomes
was strongly dependent upon the initial conditions of the beam.
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Figure 1. Typical layout scheme of an externally pre-

stressed concrete beam.

Figure 2. Model of an element with external loading.

2.2. Selection of the transfer matrix method

The most appropriate modeling and calculation procedures are the method of initial parameters in matrix
form, that is, the so-called transfer matrix method (TMM) and the finite element method (FEM). Practically,
equivalent results may be obtained by means of either of these 2 methods. However, the TMM was chosen and
preferred, as it requires linear systems of significantly smaller ranges to be solved. Particularly, the FEM requires
solving 2m equations (where m is the number of elements), while the TMM requires only z+2 equations (where

z is the total number of rigid supports between the end supports of the beam). In addition, the TMM is purely
analytical, implementing the solution to differential equations for beams in bending and shears. Furthermore,
FEM results (solutions) are valid in the nodes only, whereas the TMM allows the user to obtain deflections,
slopes, bending moments, and shear forces along the element itself on the basis of the calculated results in the
nodes. The TMM also produces a system of equations that are simpler in comparison to those produced by the
FEM. Consequently, the calculation model based on TMM was chosen and is further described hereafter.

2.3. Element transfer matrices and selection of initial parameters

In this section, a simplified TMM technique is reviewed to evaluate the state vectors at each cross section of a
prestressed beam. The TMM uses a mixed form of the element force-displacement relationship and transfers
the structural behavior parameters (state array) from one section to the other.

For calculation purposes, the beam is modeled as a system of multi-span beam elements, supported on
rigid (absolute stiff) and/or linearly elastic supports (deviators). Each beam element is assumed to have a
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uniform cross section and all calculations are performed in the vertical plane. The basic object of the TMM is
to determine the state vector (vi in each section of the whole beam and at the supports.

Figure 3 illustrates the positive directions of the internal forces and associated displacements, i.e. the
element state vector. A state vector of a beam at an arbitrary section has 4 components, which are the
displacement, the rotation, the bending moment, and the shear force. These components are written, in the
same order, in the following array:

vi =
[

wi θi Mi Qi 1
]T

, (1)

where wi is the displacement or deflection components, θi is the slope of the element, Qi is the internal shear
force, and Mi is the internal bending moment.

Let us consider the beam element (j+1) between 2 nodes, (i) and (i+1), shown in Figure 4. The relation

of the state vector (vi+1) at the left side of node (i+1) and the state vector (vi) at the right side of node (i)
can be written, considering the span transfer matrix Li , in the following form:
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Figure 3. Positive direction of internal forces and element

state vector.

Figure 4. State vectors of beam element and nodes.

vleft
i+1 = Lj · vright

i . (2)

Once more, considering the span (j+1), state vector (vi+1 ) at the right side of node (i+1) is related to the state

vector (vi+1) at the left side of the same node, (i+1), using the span length transfer matrix Si , as follows:

vright
i+1 = Si+1 · vleft

i+1 . (3a)

Using Eq. (2), this becomes:

vright
i+1 = Lj · Si+1 · vright

i . (3b)

Hence:

vright
i+1 = Zj · vright

i . (4)

Zj = Lj · Si+1, denotes the total transfer matrix of element (j), including the support at its right end. The
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expanded form of this matrix, with all of the loads considered, is written as follows:

Zj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ai
a2

i

2EIi

a3
i

6EIi
− κiai

GAi
− a4

i

EIi

(
Ti

2
+ Fiai

6
+ qia2

i

24

)
+ κiai

GAi

(
Fi + qiai

2

)

1 ai

2EIi

a2
i

2EIi
− ai

EIi

(
Ti + Fiai

2 + qia2
i

6

)

1 −
(
Ti + Fiai + qia

2
i

2

)

1 − (Fi + qiai + Ri)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where ai is the considered element length, EI i is the element bending stiffness, GA i is the element shear
stiffness, Fi is the external concentrated force, Zj is the total transfer matrix of any element (j), qi is the

external uniformly distributed load, κi is the shear form factor, and Ri is the support reaction.

In the event that there is only an external concentrated force static load acting at an arbitrary node (i)

with shear stiffness κi ignored, Eq.(5) may take the following matrix form:

Lj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ai
a2

i

2EIi

a3
i

6EIi
− a4

i

6EIi
Fi

1 ai

2EIi

a2
i

2EIi
− ai

2EIi
Fi

1 −aiF i

1 − (Fi + Ri)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

In such a case, the displacements and the moment are equal on both sides of the node, while the shear force is
changed with the value of the concentrated load. The relations of the state vector at the right side of node (i)

and the state vector at the left side of the same node (i) can be written in matrix form as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wi

θi

Mi

Qi

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

right

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 −Ri

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
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wi

θi

Mi

Qi

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

left

(7)

It should be noted that, in case there is no support at the considered node, (i), the transfer matrix Si is

obtained from Eq. (7) by taking Ri = 0.

The TMM scheme is accomplished by modeling the actual beam with external prestressing cables with
different cross sections by dividing it into (n) beam elements with uniform values of loads and stiffnesses. The
properties of each element, such as moment of inertia or modulus of elasticity, are calculated as mean values.
Applying the TMM to a beam with (n) elements and (n+1) supports, the relation between the state vectors at
both the utmost left and right ends is:

vuttermost−right
n+1 = Zn · Zn−1 · · ·Z1·v

uttermost−left
1 (8)
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or
vuttermost−right

n+1 = Hi · vuttermost−left
1 . (9)

The effect of intermediate conditions such as rigid or elastic support can be taken into account when the overall
transfer matrix is being calculated. After the transfer matrix scheme is completed and the overall transfer
matrix has been computed, the boundary conditions at both utmost ends of the beam must be applied to
obtain the unknown state vector elements at both ends. The initial parameters to be selected are the unknowns
at the whole span’s utmost left end. These are finally determined from the known parameters at the utmost
right end of the whole beam, together with the reactions at the deviators. For the case of an intermediate rigid
support, there is an internal unknown discontinuity (the reaction R) corresponding to this unknown, and the
displacement is restrained. Applying this condition at the support, one of the initial unknowns of the state
vector is eliminated and the new unknown reaction is introduced.

The whole elastic beam is described by means of a whole beam matrix (H) and a whole beam vector

(b). Both of them are assembled on the basis of the boundary conditions at each support and at the rightmost
end, by means of the span transfer matrices. For each span, the transfer matrices are simply matrix products
of transfer matrices that relate the state vector in the section of any support (deviator elastic support or the

leftmost end rigid support) to the next one, as in Eqs. (8) and (9). The displacements and forces at each node
of the beam are then calculated using the matrix multiplication scheme. The calculation is performed for the
different loading cases taken all together to determine the state vectors at the end of the beam.

The beam ends may be free, simply supported, or fixed. Any case can be analytically considered; however,
the most common situation is that both of the ends are simply supported. In the case of a beam with simply
supported ends, the unknown initial parameters are θo and Qo , the beam’s leftmost end slope and shear force,
respectively. These parameters, together with all of the reaction forces in existing supports Ri , are determined
from the known boundary conditions at the rightmost end of the beam (the total number of equations to be

solved is thus (z+2) only). The vector of unknowns consists then of the 2 initial parameters (θo and Qo) and

of the reaction forces at the deviators (Ri), as follows:

bo =
(

θo Qo R1 · · · Rz

)
. (10)

Using Eq. (9), the following relation is obtained:

vuttermost−right = H · vuttermost−left, (11)

where H is the overall transfer matrix, which can be easily calculated by multiplying the span and support
transfer matrices.

In the particular case of a beam with simply supported ends, as shown in Figure 1, Eq. (11) can be
written, in the expanded form, as follows:

v5 = H · bo + (H1 + H2 + H3 + H4 + H5) · b, (12)

where:
H1 = L1, (13a)

H2 = L1 · SB · L2, (13b)

H3 = L1 · SB ·L2 · SC · L3 · SD · L3, (13c)
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H4 = L1 · SB · L2 · SC · L3 · SD ·L3 · SE , (13d)

H5 = L1 · SB ·L2 · SC · L3 · SD · L3 · SE · L4, (13e)

and
H = L1 · SB · L2 · SC · L3 · SD ·L3 · SE · L4 · SF · L5. (13f)

Once the components of vector bo are known, the state vectors in each section of the beam may be easily found
by a simple matrix multiplication, beginning from the known state vector at the leftmost end of the beam. This
is the beam bending and shear response in terms of deflection, slope, bending moment, and shear force at both
ends of each element.

2.4. Linear elastic support reaction

In a concrete beam under flexure, the strain induced at every cross section varies according to the bending
moment diagram. In the case of a beam prestressed with external cables, the unbounded cable freely moves
in a relative change of the beam deformation, under external loadings. Therefore, the cable strain is basically
different from the concrete strain at every cross section and, as stated above, the deflection of the external
cable does not follow the beam deflection, except at the deviator points as the beam is deformed. One of the
major difficulties concerning beams prestressed with external cables is in calculating the cable strain. In this
section, an analytical method based on the deformation compatibility and friction at the deviators is reviewed
(Aparicio, 2002; Harajli, 2002).

In Figure 5, Fi and Fi+1 are tensile forces in the cable segments (i) and (i+1) at any deviator and θi and
θi+1 are cable angles, respectively. Thus, the force equilibrium in the horizontal direction, taking into account

the friction effect (Aparicio, 2002), can be expressed as:

Fi+1 · cos θi+1 = Fi · cos θi + (−1)λi · μ · (Fi · sin θi + Fi+1 · sin θi+1), (14)

where μ is the friction factor at the deviator, and λi is the coefficient that depends on the slipping direction
and has a value of λi = 1 if Fi · cos θi > Fi+1 · cos θi+1 , and λi = 2 if Fi · cos θi < Fi+1 · cos θi+1 .

Eq. (18) can be rewritten in terms of increments of tensile forces, where ΔFi and ΔFi+1 are the
increments of tensile forces at both sides of the deviator:

ΔFi+1 · cos θi+1 = ΔFi · cos θi + (−1)λi · μ · (ΔFi · sin θi + ΔFi+1 · sin θi+1). (15)

At this stage, it should be pointed out that the friction between the cable and the deviator is expressed by the
coefficient μ , the actual value of which depends on many factors and can only be determined by experimental
investigations. It should also be kept in mind that friction coefficients are not easy to find in the literature from
a qualitative point of view. The available values cannot be true and no comparison could be made with any
experimental results; for the purpose of simplicity, many of the previous studies (Pisani, 1996; Aparicio et al.

2002) considered only 2 extreme cases, namely free slip and perfectly fixed.

Since the stress in an external cable usually remains below the elastic limit up to the failure of the beam,
it is possible to rewrite the force equilibrium at the deviator in terms of cable strain by dividing both sides of
Eqs. (14) and (15) by EA , where E and A are the elastic modulus and the area of the cable, and Δεi and
Δεi+1 are the cable strains at both sides of the deviator. The force equilibrium can then be expressed as:

Δεi+1 · cos θi+1 = Δεi · cos θi + (−1)λi · μ · (Δεi · sin θi + Δεi+1 · sin θi+1). (16)
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As stated above, the strain induced at every cross section of a concrete beam under flexure varies according
to the bending moment diagram and is uniform over the length of the cable segment between any 2 successive
deviators or anchorage ends. Furthermore, the cable friction obviously exists at the deviator points, resulting
in a different level of strain increase between the 2 successive cable segments.

Since the elongation of an external cable is assumed to be uniform over the length of the cable segment
between any 2 successive deviators or anchorage ends, Eq. (16) can alternatively be written in terms of cable

displacements. Therefore, using Eq. (16), one can analytically obtain the cable displacements of each segment.
The mathematical expression of the displacement at any arbitrary deviator can be expressed as:

li+1 · εi+1 · cos θi+1 = li · εi · cos θi + (−1)λi · μ · (li · εi · sin θi + li+1 · εi+1 · sin θi+1) (17)

or

δi+1 · cos θi+1 = δi + (−1)λi · μ · (δi + δi+1 · sin θi+1). (18)

It can be seen from Eq. (18) that the displacement variation within one external cable element depends mainly
upon the friction at the deviator and cable angle.

Figure 6 shows the vertical force and displacement components in one external cable element. The vertical
force and displacement components of the inclined cable are defined, respectively, as follows:

i i+1

Fi+1Fi

Y  

X

i 

i+1 

F i+1 

Fi

Y 

X

i+1

Figure 5. Force equilibrium at a deviator. Figure 6. Force and displacement components in an

external cable.

Ri = Fi+1 · sin θi+1 , (19)

vi+1 =
δi+1

sin θi+1
. (20)

By definition, the stiffness is the ratio of a force divided by the corresponding displacement, taken in the same
direction. Hence, the elastic spring (cable) constant at the deviator point of the inclined cable segment is defined
as follows:

ki+1 = −Fi+1

δi+1
sin2 θi+1 . (21)

The minus sign in Eq. (21) is introduced as the reaction acts naturally in the opposite direction of the applied
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force. The matrix transfer for a linear elastic support is then written in the following form:

Zi =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
ki 0 0 1

⎤
⎥⎥⎥⎦ . (22)

The vertical reaction at an arbitrary linear elastic support (deviator point) is proportional to the longitudinal

deformation (elongation) and the friction effect, if any. It is computed using the following relation:

Ri = ki · vi. (23)

3. Validity of the proposed method and numerical results

To evaluate the performance of the method, static bending moments and shear forces of 2 simply supported
beams, subjected to unit moving loads, were first calculated and the accuracy of the static solutions obtained by
the present method was examined by comparing the issued results with those obtained by the analytical beam
method. Verification of the model against experimental data is expected to be the matter of further work, as
the implementation of the calculation procedure is in constant progress.

To examine the accuracy of the method, analysis was carried out on a beam without prestressed rein-
forcements. A layout scheme of the simply supported beam, cross section, and loading arrangements are shown
in Figure 7. For the unit moving load, 5 loading points were considered. The locations of the unit moving
loads provided were at distances that varied from 0 to 28,000 mm with an increment of 7000 mm, starting
from the left support. The results obtained by the proposed static solution transfer matrix method and those of
analytical calculations, in terms of static bending moments and shear forces, are shown in Tables 1-5. All results
are given in absolute values, as the signs of the bending moments or the shear forces may change. The bending
moment and shear force values were both computed using numerical and analytical methods. Numerical and
theoretical values with respective ratios are reported in each Table. As one can observe, columns 2 to 4 report
the bending moments, and columns 5 to 7 those of shear forces. One can also observe the absence of bending
moment values as the unit point load is applied to left and right supports, respectively, and for which cases the
bending moment cannot be developed. However, the results show that the numerical bending moments and
shear forces are equal to or very close to the values of the analytical method.

Table 1. Bending moments and shear forces for a beam without prestressing cables.

Unit Load M nu Mth Mnu/Mth Qnu Qth Qnu/Qth

P = 1 at A (kNm) (kNm) (kN) (kN)
A 0.00 0.00 - 1.00 1.00 1.00
B 0.00 0.00 - 0.75 0.75 1.00
C 0.00 0.00 - 0.50 0.50 1.00
D 0.00 0.00 - 0.25 0.25 1.00
E 0.00 0.00 - 0.00 0.00 -
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Figure 7. Layout scheme of a beam without externally prestressed cables.

Table 2. Bending moments and shear forces for a beam without prestressing cables.

Unit Load M nu Mth Mnu/Mth Qnu Qth Qnu/Qth

P = 1 at A (kNm) (kNm) (kN) (kN)
A 0.00 0.00 - 0.00 0.00 -
B 4.35 4.50 0.97 1.00 1.00 1.00
C 2.90 3.00 0.97 0.50 0.50 1.00
D 1.45 1.50 0.97 0.25 0.25 1.00
E 0.00 0.00 - 0.00 0.00 -

Table 3. Bending moments and shear forces for a beam without prestressing cables.

Unit Load M nu Mth Mnu/Mth Qnu Qth Qnu/Qth

P = 1 at A (kNm) (kNm) (kN) (kN)
A 0.00 0.00 - 0.00 0.00 -
B 2.98 3.00 0.99 0.22 0.25 0.88
C 5.95 6.00 0.99 1.00 1.00 1.00
D 2.98 3.00 0.99 0.27 0.25 1.08
E 0.00 0.00 - 0.00 0.00 -

Table 4. Bending moments and shear forces for a beam without prestressing cables.

Unit Load M nu Mth Mnu/Mth Qnu Qth Qnu/Qth

P = 1 at A (kNm) (kNm) (kN) (kN)
A 0.00 0.00 - 0.00 0.00 -
B 1.45 1.50 0.97 0.25 0.25 1.00
C 2.91 3.00 0.97 0.50 0.50 1.00
D 4.35 4.50 0.97 1.00 1.00 1.00
E 0.00 0.00 - 0.00 0.00 -
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Table 5. Bending moments and shear forces for a beam without prestressing cables.

Unit Load M nu Mth Mnu/Mth Qnu Qth Qnu/Qth

P = 1 at A (kNm) (kNm) (kN) (kN)
A 0.00 0.00 - 0.00 0.00 -
B 0.00 0.00 - 0.25 0.25 1.00
C 0.00 0.00 - 0.50 0.50 1.00
E 0.00 0.00 - 0.75 0.75 1.00
D 0.00 0.00 - 1.00 1.00 1.00

The accuracy of the proposed method was also verified by computing the bending moments and shear
forces of a simply supported beam with external prestressing cables and 5 moving loads. The dimension, span
length, and loading arrangement are shown in Figure 8. At the distance of 8000 mm from each other and
symmetrically located about the mid-span section, 4 deviators were provided. Numerical and theoretical values
for bending moments and shear forces are reported in Tables 6 and 7, respectively. Values of bending moments
and shear forces are indicated for each unit point load and at every support along the prestressed beam.
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Figure 8. Layout scheme of a beam with externally prestressed cables.

Table 6. Numerical values of bending moments for a beam with prestressing cables.

Unit Load AQnu
BQnu

CQnu
DQnu

EQnu
F Qnu

GQnu

Locatins (kN) (kN) (kN) (kN) (kN) (kN) (kN)
P=1 at A 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P=1 at B 0.00 6.40 4.82 4.02 3.23 1.64 0.00
P=1 at C 0.00 4.80 9.62 8.02 6.42 3.23 0.00
P=1 at D 0.00 4.00 8.01 10.02 8.02 4.03 0.00
P=1 at E 0.00 3.21 6.41 8.00 9.61 4.81 0.00
P=1 at F 0.00 1.60 3.21 4.05 4.81 6.40 0.00
P=1 at G 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 7. Numerical values of shear forces for a beam with prestressing cables.

Unit Load AQnu
BQnu

CQnu
DQnu

EQnu
F Qnu

GQnu

Locatins (kN) (kN) (kN) (kN) (kN) (kN) (kN)
P=1 at A 1.00 0.83 0.67 0.50 0.33 0.17 0.00
P=1 at B 0.00 0.99 0.60 0.45 0.30 0.18 0.00
P=1 at C 0.00 0.19 0.99 0.45 0.35 0.15 0.00
P=1 at D 0.00 0.12 0.38 0.99 0.45 0.25 0.00
P=1 at E 0.00 0.19 0.32 0.40 1.00 0.35 0.00
P=1 at F 0.00 0.05 3.21 4.05 4.81 6.40 0.00
P=1 at G 0.00 0.17 0.33 0.50 0.67 0.83 1.00

Finally, as the presented method is proved to be reliable, it can be used to generate information on some
aspects relative to the characteristic responses of the concrete beam with external prestressing cables and linear
elastic supports, such as static load versus displacement, bending moments versus displacement, and stress
versus mid-span displacement relationships, for the sake of analytical purposes, taking into account various
conditions and parameters such as the locations of the unit moving loads, the contribution of linear elastic
supports at deviators, and friction effects.

The computed results of the beam in terms of loads versus displacements and bending moments versus
displacement relationships are shown in Figures 9 and 10, respectively. One can observe that all beams behave
essentially in the same manner for the different locations of the unit loads. Figure 11 shows the computed
results of the beam in terms of increase of cable loads versus mid-span displacements. One can also observe
that the increase of cable load exhibited essentially similar curves. This means that the stress in the external
cables increased by a small amount in the range of analysis considered. It is also interesting to point out, by
comparing the curves of loads versus displacements (Figure 9) and the increase of cable load versus mid-span

displacements (Figure 10), that the 2 curves are very similar in shape, indicating the close relationship between
the deflections and the load increase in the external cables. Therefore, close relationships can then be drawn by
a linear relationship in terms of load variations in the external cable versus the mid-span deflection responses.
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Figure 9. Load versus mid-span displacement of the

externally prestressed beam.

Figure 10. Moment versus mid-span displacement of the

externally prestressed beam.
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Figure 11. Increase of cable stress versus mid-span displacement.

In the range of analysis, which generally corresponds to the conditions under service load, the displace-
ments of the beam are very small and induce a small amount of tensile load in each external cable, leading
inevitably to an extremely small unbalanced force at the deviator location. As a result, the cable slip generally
cannot occur at this stage. That is, the friction at the deviators has a negligible effect on the deflection re-
sponses. The beam deflection responses with consideration of free slip, slip with friction of 0.20, and perfectly
fixed states could be more or less identical.

4. Conclusion

This paper described details of a calculation procedure promoting the advantage of the “somewhat forgotten”
transfer matrix method. The method was used to study the static behavior of a concrete beam with external
prestressing cables subjected to a unit moving load. Computed results of bending moments and shear forces were
presented. Comparisons between computed numerical and analytical theory results highlighted the effectiveness
and the degree of accuracy of the proposed model. Further results related to loads versus displacements, bending
moment versus displacements, and increase of cable load versus mid-span displacement relationships were also
analyzed. However, verifications of the model against experimental data were not made. A proposal of this
kind is expected to be the matter of a forthcoming paper. It is to be pointed out once again that this paper
presented only the basic information related to concrete beams with external prestressing cables computations,
in order to understand the usefulness of the proposed method.

Nomenclature

ai element length [m]
Fe external concentrated force [N]
EIi element bending stiffness [Nm2 ]
GAi element shear stiffness [N]
Fi external concentrated force [N]
Lj total transfer matrix of the element (j)
Me external concentrated moment [Nm]
Mi internal bending moment [Nm]

qe external uniformly distributed load [N/m]
qi external uniformly distributed load [N/m]
Qi internal shear force [N]
Ri support reaction [N]
Sj support transfer matrix of the element (j)
Ti external concentrated bending moment [Nm]
Zi extended support transfer matrix
wi displacement or deflection components [m]
κi shear form factor
θi slope of the element [m/m]
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