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Abstract

An analytical study of free convection flow near an impulsively started infinite vertical plate with

Newtonian heating in the presence of thermal radiation and constant mass diffusion was performed. The

mathematical model reduced to a system of coupled linear partial differential equations for the velocity, the

temperature, and the concentration; the closed-form exact solutions were obtained by the Laplace transform

method. Representative velocity and temperature profiles were graphed and the numerical values of the

skin friction and the Nusselt number were calculated. The effects of different system parameters, such as

the radiation parameter, buoyancy ratio, Grashof number, Prandtl number, Schmidt number and time on

the velocity, temperature, skin friction, and Nusselt number, were examined in detail. It was observed that

the velocity increased for aiding flows, whereas it decreased for opposing flows. The velocity decreased with

increasing Schmidt number and radiation parameter. The skin friction decreased in the presence of aiding

flows whereas it increased in the presence of opposing flows. Furthermore, the skin friction increased with

increasing Schmidt number and radiation parameter.

Key Words: Unsteady free convection flow, Newtonian heating, thermal radiation, heat transfer, mass

transfer, impulsively started vertical plate

1. Introduction

The analysis of natural convection heat and mass transfer near a moving vertical plate has received much
attention in recent times due to its wide application in engineering and technological processes. There are
applications of interest in which combined heat and mass transfer by natural convection occurs between a
moving material and the ambient medium, such as the design and operation of chemical processing equipment,
design of heat exchangers, transpiration cooling of a surface, chemical vapor deposition of solid layers, nuclear
reactors, and many manufacturing processes like hot rolling, hot extrusion, wire drawing, continuous casting,
and fiber drawing. Gebhart and Pera (1971) studied the effects of mass transfer on a steady free convection flow
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past a semiinfinite vertical plate by the similarity method, and it was assumed that the concentration level of
the diffusing species in the fluid medium was very low. This assumption enabled them to neglect the diffusion-
thermo and the thermo-diffusion effects, as well as the interfacial velocity at the wall due to species diffusion.
Following this assumption, Soundalgekar (1979) studied the effects of mass transfer on the free convection flow
past an impulsively started infinite vertical plate and presented an exact solution by the Laplace transform
method. Soundalgekar and his co-researchers (1984, 1992, 1994, 1996, 2000, 2001) investigated the effects
of simultaneous heat and mass transfer on free convection flow past an infinite vertical plate under different
physical situations.

When the temperature of the surrounding fluid is rather high, radiation effects play an important role,
and this situation exists in space technology applications such as cosmic flight aerodynamics, rocket propulsion
systems, plasma physics, and space craft reentry aerothermodynamics. In these cases, it is necessary to consider
the radiation effects in free convection flows. Cess (1966) investigated the interaction of radiation with laminar
free convection heat transfer from a vertical plate for an absorbing, emitting fluid in the optically thick region,
using the singular perturbation technique. Arpaci (1968) considered a similar problem in both the optically
thin and optically thick regions and used the approximate integral technique and first-order profiles to solve the
energy equation. Das et al. (1996) analyzed the radiation effects on flow past an impulsively started infinite
isothermal vertical plate, and the governing equations were solved by the Laplace transform technique. Hossain
et al. (1999) determined the effect of radiation on the natural convection flow of an optically thick, viscous,
incompressible flow past a heated vertical porous plate with a uniform surface temperature and a uniform rate
of suction, where the radiation was included by assuming the Rosseland diffusion approximation. Raptis and
Perdikis (1999) studied the effects of thermal radiation and free convective flow past a uniformly accelerated

vertical plate. Chamkha et al. (2001) studied radiation effects on the free convection flow past a semiinfinite

vertical plate in the presence of a low-level chemical species concentration. Loganathan and Ganesan (2006)
considered the effect of radiation on the free convection flow past an impulsively started vertical plate in the
presence of mass transfer. A 2-dimensional analysis of heat and mass transfer inside a rectangular moist object
under the drying process was presented by Kaya et al. (2006) using an implicit finite difference method. Prasad

et al. (2007) examined the radiation and mass transfer effects on the unsteady 2-dimensional free convection
flow of a viscous incompressible fluid past an impulsively started infinite vertical plate. Recently, Narahari and
Dutta (2009) presented a theoretical solution to the free convection flow of a viscous incompressible fluid past
an infinite vertical moving plate subject to a ramped surface temperature with simultaneous mass transfer using
the Laplace transform technique.

In Newtonian heating, the rate of heat transfer from the bounding surface with a finite heat capacity
is proportional to the local surface temperature, and it is usually called conjugate convective flow. Merkin
(1994) was the first to consider the free convection boundary layer over a vertical flat plate immersed in a

viscous fluid. Lesnic et al. (1999, 2000) considered free convection boundary layer flow along vertical and
horizontal surfaces in a porous medium generated by Newtonian heating. The steady free convection boundary
layer along a semiinfinite plate, slightly inclined to the horizontal and embedded in a porous medium with the
flow generated by Newtonian heating, was investigated by Lesnic et al. (2004). Chaudhary and Jain (2007)
presented an exact solution for the unsteady free convection boundary layer flow of an incompressible fluid past
an infinite vertical plate with the flow generated by Newtonian heating and the impulsive motion of the plate.
An exact solution of the unsteady free convection flow of a viscous incompressible, optically thin, radiating
fluid past an impulsively started vertical porous plate with Newtonian heating was investigated by Mebine and
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Adigio (2009). A numerical solution to the steady mixed convection boundary layer flow over a horizontal

circular cylinder with Newtonian heating was presented by Salleh et al. (2010). The steady laminar boundary
layer flow and heat transfer over a stretching sheet with Newtonian heating was also considered by Salleh et
al. (2010). A mathematical model for the forced convection boundary layer flow over a circular cylinder with

Newtonian heating in a uniform stream was presented by Salleh et al. (2011). Recently, the influence of thermal
radiation on unsteady free convection flow past a moving vertical plate with Newtonian heating was investigated
by Narahari and Ishak (2011). However, the effects of mass transfer on the flow of a viscous incompressible,
radiating fluid past an impulsively started infinite vertical plate with Newtonian heating have not been studied
in the literature. This indeed was the motivation to study such effects on the flow past an impulsively started
infinite vertical plate. Closed-form solutions were obtained by the Laplace transform method and the solutions
can be used as test cases for numerical solutions of higher order models.

2. Mathematical analysis

Consider the flow of a viscous incompressible fluid past an infinite vertical plate with Newtonian heating in
the presence of thermal radiation and mass diffusion. The x′ -axis is along the plate in the vertically upward
direction and the y′ -axis is taken as normal to the plate. Initially, the plate and the adjacent fluid are at the
same temperature, T ′

∞ , and concentration, C ′
∞ , in a stationary condition. At time t′ > 0, the plate is given an

impulsive motion in the vertical direction against the gravitational field, such that it attains uniform velocity
U0 and the concentration level near the plate is raised to C ′

w(�= C ′
∞), and it is assumed that the heat transfer

from the surface is proportional to the local surface temperature, T ′ . As the plate is infinite in the x′ -direction,
all physical variables are independent of x′ and are functions of y′ and t′ only. Under the usual Boussinesq
approximation, after neglecting the inertia terms, viscous dissipation heat, and Soret and Dufour effects, the
flow can be shown to be governed by the following system of equations:

∂u′

∂t′
= ν

∂2u′

∂y′2
+ gβ(T ′ − T ′

∞) + gβ∗(C ′ − C ′
∞), (1)

ρCp
∂T ′

∂t′
= k

∂2T ′

∂y′2
− ∂qr

∂y′
, (2)

∂C ′

∂t′
= D

∂2C ′

∂y′2
, (3)

with the initial and boundary conditions:

t′ ≤ 0 : u′ = 0, T ′ = T ′
∞, C ′ = C ′

∞ for y′ ≥ 0,

t′ > 0 :

⎧⎨
⎩

u′ = U0,
∂T ′

∂y′ = −h
k
T ′, C ′ = C ′

w at y′ = 0,

u′ → 0, T ′ → T ′
∞, C ′ → C ′

∞ as y′ → ∞.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (4)

The radiative heat flux term is simplified by making use of the Rosseland approximation (Siegel and Howell,

2002) as:

qr = − 4σ

3KR

∂T ′4

∂y′
. (5)
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It should be noted that by using the Rosseland approximation, we limit our analysis to optically thick fluids.

If temperature differences within the flow are sufficiently small, such that T ′4 may be expressed as a linear

function of the temperature, then the Taylor series for T ′4 about T ′
∞ , after neglecting higher order terms, is

given by:

T ′4 ∼= 4T ′3
∞T ′ − 3T ′4

∞. (6)

In view of Eqs. (5) and (6), Eq. (2) reduces to:

ρCp
∂T ′

∂t′
= k

∂2T ′

∂y′2
+

16σT ′3
∞

3KR

∂2T ′

∂y′2
. (7)

All of the physical quantities are defined in the nomenclature. Upon introducing the following nondimensional
equalities:

y = y′U0
ν , t = t′U2

0
ν , u = u′

U0 Gr , θ = T ′−T ′
∞

T ′
∞

, Pr = μCp

k , Gr = νgβT ′
∞

U3
0

,

R = k KR

4σT ′3
∞

, C = C′−C′
∞

C′
w−C′

∞
, Gm = νgβ∗(C′

w−C′
∞)

U3
0

, Sc = ν
D , N = Gm

Gr .

⎫⎪⎬
⎪⎭ , (8)

Eqs. (1), (7), and (3) are reduced to the following nondimensional forms:

∂u

∂t
=

∂2u

∂y2
+ θ + NC, (9)

3R Pr
∂θ

∂t
= (3R + 4)

∂2θ

∂y2
, (10)

Sc
∂C

∂t
=

∂2C

∂y2
. (11)

The corresponding initial and boundary conditions are:

t ≤ 0 : u = 0, θ = 0, C = 0 for y ≥ 0,

t > 0 :

⎧⎨
⎩

u = 1
Gr , ∂θ

∂y = −(1 + θ), C = 1 at y = 0,

u → 0, θ → 0, C → 0 as y → ∞.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (12)

Coupled linear partial differential Eqs. (9-11) are solved subject to the initial and boundary conditions of Eq.

(12) by the usual Laplace transform method (Abramowitz and Stegun, 1972), and the solutions are given as
follows:

C(y, t) = f1(y
√

Sc, t), (13)

θ(y, t) = f4(y
√

A, t) − f1(y
√

A, t). (14)

Case 1: Sc �= 1

u(y, t) = 1
Gr

f1(y, t) + A
(A−1)

[
f1(y

√
A, t) − f1(y, t) − f4(y

√
A, t) + f4(y, t)

]
+

√
A

(A−1)

[
f2(y

√
A, t) − f2(y, t)

]
+ 1

(A−1)

[
f3(y

√
A, t) − f3(y, t)

]
+ N

(Sc−1)

[
f3(y, t) − f3(y

√
Sc, t)

] , (15a)
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Case 2: Sc = 1

u(y, t) = 1
Grf1(y, t) + A

(A−1)

[
f1(y

√
A, t) − f1(y, t) − f4(y

√
A, t) + f4(y, t)

]
+

√
A

(A−1)

[
f2(y

√
A, t) − f2(y, t)

]
+ 1

(A−1)

[
f3(y

√
A, t) − f3(y, t)

]
+N y

2 f2(y, t)

, (15b)

where A = 3RPr
3R+4 ,

f1(z, t) = erfc
(

z

2
√

t

)
,

f2(z, t) = 2
√

t/π exp
(
−z2

4t

)
− z erfc

(
z

2
√

t

)
,

f3(z, t) =
(

z2

2
+ t

)
erfc

(
z

2
√

t

)
− z

√
t/π exp

(
−z2

4t

)
,

f4(z, t) = exp
(

t

A
− z√

A

)
erfc

(
z

2
√

t
−

√
t

A

)
,

z is a dummy variable, and f1, f2, f3, f4 are dummy functions. Moreover, the concentration variable given by
Eq. (13) is well known (Soundalgekar, 1979).

From the velocity field, it is interesting to study the effects of the system parameters on the skin friction.
It is given by:

τ =
τ ′

ρGrU2
0

= − ∂u

∂y

∣∣∣∣
y=0

. (16)

From Eqs. (15) and (16), we have:

τ =
1

Gr
√

πt
+

√
A√

A + 1

[
1 + 2

√
t

Aπ
− exp

(
t

A

) (
1 + erf

(√
t

A

))]
− 2N

√
t

√
π(
√

Sc + 1)
. (17)

From the temperature field, the rate of heat transfer in the form of the Nusselt number can be expressed as:

Nu = − ν

U0(T ′ − T ′
∞)

∂T ′

∂y′

∣∣∣∣
y=0

=
1

θ(0, t)
+ 1 =

1
exp(t/A)(1 + erf(

√
t/A)) − 1

+ 1. (18)

2.1. Solution in the absence of thermal radiation

In the absence of thermal radiation, i.e. in the pure convection case that numerically corresponds to R → ∞ ,
it can be observed that A = Pr, and the solution for the temperature variable given by Eq. (14) is valid for all

values of Pr, but the solution for the velocity variable given by Eq. (15) is valid for all values of Pr except for
Pr = 1. Therefore, the solution for the velocity variable in the absence of thermal radiation when Pr = 1 has
to be rederived, and it can be shown that:

Case 3: Pr = 1, Sc �= 1

u(y, t) = 1
Grf1(y, t) + y

2 [f5(y, t) − f1(y, t) − f2(y, t)]
+ N

(Sc−1)

[
f3(y, t) − f3(y

√
Sc, t)

]
, (19)
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Case 4: Pr = 1, Sc = 1

u(y, t) =
1

Gr
f1(y, t) +

y

2
[f5(y, t) − f1(y, t) − f2(y, t)] +

N y

2
f2(y, t) , (20)

where f5(z, t) = exp(t − z)erfc
(

z
2
√

t
−

√
t
)

is a dummy function.

3. Results and discussion

In order to determine the effect of different parameters, such as R , N , Gr, Pr, Sc, and t on the free convection
flow, the numerical values of the temperature field, velocity field, skin friction, and Nusselt number were
computed and are shown in the Figures and Tables. The temperature profiles are plotted in Figure 1 for
different values of t and Pr when R = 10. It can be observed that the thermal boundary layer thickness
decreases in terms of y at increasing distances from the leading edge. Furthermore, the thermal boundary layer
thickness decreases with an increase in the Prandtl number. This is consistent with the fact that smaller Prandtl
numbers are equivalent to increases in thermal conductivities, and therefore heat is able to diffuse away from
the heated surface more rapidly than for higher values of the Prandtl number. When t = 0.2 and R = 10, the
thermal boundary layer decreases by 87.36% and 96.12% when Pr increases from 0.71 (air) to 7 (water) and 50

(oils), respectively, at the plate (y = 0). It was also observed that the temperature increased with increasing
time. When radiation effects are present in a fluid with Pr = 0.71 and R = 10, the thermal boundary layer
increases by 96.66% and 223.36% when t increases from 0.2 to 0.4 and 0.6, respectively, at the plate.

The temperature profiles are plotted in Figure 2 for different values of R and Pr when t = 0.2. It can be
seen that an increase in the radiation parameter decreases the temperature. Therefore, increases in the value
of R lead to a decrease in the thermal boundary layer thicknesses. When radiation effects are present in a
fluid, the thermal boundary layer is always found to thicken. The reason for this is that radiation provides an
additional means to diffuse energy. From the calculated values of the temperature at the plate when t = 0.2,
and Pr = 0.71 and 7.0, for R = 0.5, 1.0,and 10, the thermal boundary layer is found to thicken by 299.33%,
125.95%, and 11.2%, and by 124.84%, 67.23%, and 7.61%, respectively, of the pure convection case (which

numerically corresponds to R → ∞).

The buoyancy ratio parameter N represents the ratio of the mass and the thermal buoyancy forces,
and there are 3 possible cases: 1) N = 0 (there is no mass transfer and the buoyancy force is due to thermal

diffusion only), 2) N > 0 (the mass buoyancy force acts in the same direction as the thermal buoyancy force),

or 3) N < 0 (the mass buoyancy force acts in the opposite direction of thermal buoyancy force). The velocity
profiles are plotted in Figure 3 for different values of t and Gr when Pr = 0.71, R = 10, and Sc = 0.6 for
the cases of both aiding (N > 0) and opposing (N < 0) flows. It can be seen that the velocity increases with
increased time for both aiding and opposing flows. Moreover, the velocity distribution is monotonic at lower
times, but at a higher time it passes through a maximum in the vicinity of the plate when the buoyancy effect
partly suppresses the inertial effects of the plate velocity. Thus, when radiation effects are present in a fluid with
Pr = 0.71, Sc = 0.6, N = 0.2 (aiding flow), and R = 10, the momentum boundary layer thickness increases

by 36.06% and 75.52% when t increases from 0.2 to 0.4 and 0.6, respectively, at y = 0.3; and for Pr = 0.71,
Sc = 0.6, N = −0.2 (opposing flow), and R = 10, the momentum boundary layer thickness increases by 34.22%

and 72.82% when t increases from 0.2 to 0.4 and 0.6, respectively, at y = 0.3. It was also seen that increasing
values of Gr led to a decrease in the velocity. When Pr = 0.71, Sc = 0.6, R = 10, and t = 0.2, the fluid velocity
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decreases by 44.25% for an aiding flow with N = 0.2 and by 46.72% for an opposing flow with N = −0.2 when
Gr increases from 2 to 4 at y = 0.3.
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Figure 1. Temperature profiles for different t and Pr

when R = 10.

Figure 2. Temperature profiles for different R and Pr

when t = 0.2.
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Figure 3. Velocity profiles for different t and Gr. Figure 4. Velocity profiles for different N .

The velocity profiles are plotted in Figure 4 for different values of N when t = 0.6, Pr = 0.71, Gr =
2, Sc = 0.6, and R = 10. It can be clearly seen that the velocity increases with increasing values of N for
aiding flows. This is the reason for the large buoyancy force caused by the concentration difference. In the
case of opposing flows, the velocity decreases with the increase in the opposing buoyancy force. Thus, when
t = 0.6, Pr = 0.71, Gr = 2, Sc = 0.6, and R = 10, the momentum boundary layer thickness increases by
3.53%, 10.56%, and 17.61% when N increases from 0 to 0.2, 0.4, and 0.6, whereas the momentum boundary
layer decreases by 3.52%, 10.55%, and 17.59% when N decreases from 0 to –0.2, –0.4, and –0.6, respectively,
at y = 0.3.

193



NARAHARI, NAYAN

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

y

V
el

oc
ity

 (
u)

R     
I     0.5   
II    1.0   
III   10 
IV   ∞

I

II 

III

IV 

N = 0.2 

N = - 0.2 

t = 0.6 
Pr = 0.71
Gr = 2 
Sc = 0.6

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

V
el

oc
ity

 (
u)

I, II, III, IV 
Sc      Pr    

I     0.16   0.71 
II    0.6     0.71 
III   1.0     0.71 
IV   2.01   0.71 
V    500    7.0 

V

t = 0.6 
R = 10 
Gr = 2 
N = 0.2 

Figure 5. Velocity profiles for different R and N . Figure 6. Velocity profiles for different Sc and Pr.

The velocity distributions are plotted in Figure 5 for different values of R when t = 0.6, Pr = 0.71, Gr =
2, and Sc = 0.6 for both aiding and opposing flows. It can be observed that an increase in the radiation
parameter decreases the velocity. This result may be explained by the fact that an increase in the radiation

parameter R (= kKR/4σT ′3
∞) for fixed k and T ′

∞ values means an increase in the Rosseland mean attenuation
coefficient KR . Therefore, the rate of radiative heat transferred to the fluid decreases, and consequently the
fluid velocity decreases along with the temperature. Thus, increases in the value of R lead to a decrease in the
momentum boundary layer thickness. From the calculated values of the velocity when t = 0.6, Pr = 0.71, Gr =
2, and Sc = 0.6, the velocity increases by 6.08%, 96.23%, and 349.50% for an aiding flow with N = 0.2, and by
6.53%, 103.70%, and 376.62% for an opposing flow with N = −0.2 when the radiation parameter R decreases
from ∞ to 10, 1.0, and 0.5, respectively, at y = 0.3. The velocity profiles for different values of Sc and Pr are
plotted in Figure 6 when t = 0.6, Gr = 2, R = 10, and N = 0.2. It can be observed that there is a decrease
in the velocity of air and water due to an increase in the value of the Schmidt number. An increasing Schmidt
number implies that viscous forces dominate over the diffusional effects.

The variation of the skin friction at the plate is shown in Table 1 for various values of the governing
parameters. It was observed that the skin friction decreased as the time progressed for both aiding and opposing
flows. However, the skin friction was greater for an opposing flow when compared with an aiding flow at a given
time. The skin friction increased with increasing values of Pr, whereas the friction decreased with the increase
in the value of Gr. An increase in the radiation parameter led to an increase in the skin friction in the presence
of an aiding flow. Thus, when t = 0.2, Pr = 0.71, Gr = 2, Sc = 0.6, and N = 0.2, the skin friction is found
to decrease by 7.62%, 84.96%, and 197.32% when the radiation parameter R decreases from ∞ to 10, 1.0, and
0.5, respectively. The skin friction decreases for aiding flows, whereas it increases for opposing flows. From
the calculated values of the skin friction when t = 0.2, Pr = 0.71, Gr = 2, Sc = 0.6, and R = 10, the skin-
friction decreases by 14.35% and 43.06% for aiding flows when N increases from 0 to 0.2 and 0.6, whereas the
skin friction increases by 14.35% and 43.06% for opposing flows when N decreases from 0 to –0.2 and –0.6,
respectively. It was also observed that the skin friction increased with an increase in the value of Sc for an
aiding flow at a given time. This result may be explained by the fact that an increasing value of Sc implies a
reduced mass buoyancy effect, and hence there is more friction at the moving plate.
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The variation of the Nusselt number at the plate is shown in Table 2 for different values of t , Pr, and R .
It can be observed that the Nusselt number increases with increasing values of Pr. This may be explained by the
fact that frictional forces become dominant with increasing values of Pr and hence yield greater heat transfer

Table 1. Skin friction variation.

t Pr Gr R N Sc τ
0.01 0.71 2 10 0.2 0.6 2.800447
0.1 0.71 2 10 0.2 0.6 0.752771
0.2 0.71 2 10 0.2 0.6 0.339393
0.3 0.71 2 10 0.2 0.6 0.039541
0.4 0.71 2 10 0.2 0.6 –0.251251
0.2 0.71 2 10 0 – 0.396265
0.01 0.71 2 10 –0.2 0.6 2.825881
0.1 0.71 2 10 –0.2 0.6 0.833200
0.2 0.71 2 10 –0.2 0.6 0.453137
0.3 0.71 2 10 –0.2 0.6 0.178849
0.4 0.71 2 10 –0.2 0.6 –0.090392
0.2 0.71 4 10 0.2 0.6 0.024001
0.2 0.71 2 0.5 0.2 0.6 –0.357562
0.2 0.71 2 1.0 0.2 0.6 0.055275
0.2 0.71 2 ∞ 0.2 0.6 0.367400
0.2 0.71 2 10 0.2 0.16 0.324176
0.2 0.71 2 10 0.2 1.0 0.345802
0.2 0.71 2 10 0.2 2.01 0.354521
0.2 7.0 2 10 0.2 500 0.599828
0.2 0.71 2 10 0.6 0.6 0.225648
0.2 0.71 2 10 –0.6 0.6 0.566882

Table 2. Nusselt number variation.

t Pr R Nu
0.01 0.71 10 7.242990
0.1 0.71 10 2.481318
0.2 0.71 10 1.855892
0.3 0.71 10 1.588433
0.4 0.71 10 1.435191
0.2 7.0 10 5.159733
0.4 7.0 10 3.726401
0.2 50 10 13.384291
0.4 50 10 9.532214
0.2 0.71 0.5 1.238377
0.2 0.71 1.0 1.421293
0.2 0.71 ∞ 1.951950
0.2 7.0 0.5 2.990932
0.2 7.0 1.0 3.676759
0.2 7.0 ∞ 5.476492
0.2 50 0.5 7.545690
0.2 50 1.0 9.398446
0.2 50 ∞ 14.233887
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rates. It was also observed that the Nusselt number decreased as the time proceeded, whereas it increased with
an increase in the radiation parameter for all values of Pr at an early time. From the calculated values, when
t = 0.2 the Nusselt number decreases by 4.92%, 27.19%, and 36.56% for Pr = 0.71, by 5.78%, 32.86%, and
45.39% for Pr = 7.0, and by 5.97%, 33.97%, and 46.99% for Pr = 50 when the radiation parameter R decreases
from ∞ to 10, 1.0, and 0.5, respectively. It is interesting to note that the percentage decrease in the Nusselt
number from the pure convection case (R → ∞) increases with an increasing Pr value for any fixed value of
the radiation parameter.

4. Conclusions

The problem of unsteady free convection heat and mass transfer along an impulsively started infinite vertical
plate with Newtonian heating in the presence of thermal radiation was analyzed. The governing system of linear
partial differential equations was solved analytically with the help of the Laplace transform method without any
restrictions. The effects of the system parameters on the velocity and temperature fields, the skin friction, and
the Nusselt number were studied in detail. The results indicate that the radiation parameter (R), buoyancy

ratio (N), and Schmidt number (Sc) had significant influences on the velocity and temperature fields, the skin
friction, and the Nusselt number. It was observed that an increase in the radiation parameter served to thin
the thermal and momentum boundary layers. The velocity of the fluid was enhanced, whereas the skin friction
diminished as the buoyancy ratio increased. Increasing Schmidt numbers led to a decrease in the velocity and an
increase in the skin friction when radiation effects were present. The Nusselt number decreased as the radiation
parameter decreased. It is hoped that these results will have immediate relevance in space technology, transient
energy systems, and industrial thermo-fluid dynamics.

Nomenclature

C ′ species concentration (kg m−3)
C dimensionless concentration
C ′

∞ species concentration away from the plate
Cp specific heat of the fluid at constant pressure

(J kg−1 K−1)
D mass diffusivity (m2 s−1)
g gravitational acceleration (m s−2)
h heat transfer coefficient (W m−2 K−1)
k thermal conductivity (W m−1 K−1)
KR Rosseland mean attenuation coefficient (m−1)
N buoyancy ratio parameter
Nu Nusselt number
Pr Prandtl number
qr radiative flux (W m−2)
R radiation parameter
Sc Schmidt number
t′ time (s)
t dimensionless time

T ′ temperature of the fluid near the plate (K)
T ′
∞ temperature of the fluid away from the plate

u′ velocity in the x′ -direction (m s−1)
u dimensionless velocity
U0 velocity of the plate
y dimensionless coordinate axis normal to the

plate

Greek symbols

β volumetric coefficient of thermal expan-
sion (K−1)

β∗ volumetric coefficient of concentration expansion
(m3 kg−1)

θ dimensionless temperature
μ coefficient of viscosity (kg m−1 s−1)
ν kinematic viscosity (m2 s−1)
ρ fluid density (kg m−3)
σ Stefan-Boltzmann constant (W m−2 K−4)
τ ′ shear stress (kg m−1 s−2)
τ dimensionless skin friction
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