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Abstract

In this research, based on a nonlinear analysis of reinforced concrete moment-resisting frames, the bond-

slip effect between concrete and bars along the lengths of beam, column, and joint elements was applied

to numerical equations. The governing theory in the numerical equations was similar to that of the fiber

model, but the perfect bond assumption between the concrete and bar was removed. The precision of the

proposed method in considering the real nonlinear behavior of reinforced concrete frames was compared to

the precision of other suggested methods for considering the bond-slip effect in fiber model analysis. Among

the capabilities of this method are its ability of modeling the embedded lengths of bars within joints and

nonlinear modeling of bond-slip. The precision of the analytical results were compared with the experimental

results achieved from 2 specimens under cyclic loading. The comparison showed that the proposed method

can model the nonlinear behavior of reinforced concrete frames with very good precision.
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1. Introduction

Many analytical models have been devised for the nonlinear analysis of reinforced concrete (RC) frames.
Although 2-dimensional and 3-dimensional modeling in a finite element method can make for more accurate
analysis, it considerably increases the expense and time of analysis. Therefore, such methods are typically
used for modeling structural parts while easier methods are utilized for the full modeling of structures. The
one-component model of Clough et al. (1965) is one of the simple models used for nonlinear analysis of RC

frames. Various models with concentrated plasticity (Brancaleoni et al., 1983) were presented later and a more
accurate description of the nonlinear behavior of the elements of RC frames became available through models
with distributed plasticity (Soleimani et al., 1979). Other models (Filippou et al., 1992), including multispring
models that use subelements, were devised. One of the most commonly used methods is the fiber model. In
this method, an element is divided into a number of concrete and steel fiber lengths, and the element section
specifications are worked out by adding up the effects of the fibers’ behavior. This method assumes a perfect
bond between concrete and bar (Spacone et al., 1996; Mazars et al, 2006), but this assumption is not very
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appropriate or realistic and causes a considerable difference between analytical and experimental results (Kwak

and Kim, 2006). Belarbi and Hsu (1994), as well as Kwak and Kim (2002), made use of the fiber method,
but in order to modify it and reduce the error of analysis resulting from the perfect bond assumption, they
modified the stress-strain behavior of the bars. In this way, they drew on an equivalent method. Limkatanyu
and Spacone (2002a) used the fiber model but removed the perfect bond assumption. In order to achieve this,
they differentiated between the degrees of freedom of the concrete and of the bars in the beam-column elements.
This modified method was used for beam-column elements in the present study, but for modeling RC frames,
a joint element is also needed. What matters is the compatibility and assimilability of joint elements with
beam-column elements. In initial methods of nonlinear analysis of RC frames, the nonlinear effect of beam-
column joints is considered using calibration of plastic hinges within adjacent beam-column elements (Otani,

1974). In such a situation, the joint element is not modeled separately, but rather its effect on the adjacent
elements is considered. From there, the joints of RC frames are located in critical zones and they are affected
by different effects such as high shear force and the bond-slip effect, so the joints need more precise modeling
(Lee et al., 2009). Based on another approach, the behaviors of each of the elements of joint, beam, and column

are separated. The zero-length rotational spring is one such joint element (Alath and Kunnath, 1995). In
this kind of modeling, the effect of shear deformation is considered using a spring whose governing behavior is
moment-rotation. In another type, as in the previous approach, 2 springs are used in the joint modeling. In
one spring, the effect of shear deformation is taken into account, and in the other, the effect of deformation
resulting from bar slip is taken into account (Biddah and Ghobarah, 1999). In order to calibrate such joint
elements, experimental results or estimated force-deformation relationships at the joints should be used, but
a precise calculation of such relationships is not easy, especially in structures that enjoy a high multiplicity of
joint element types. Moreover, in such cases, various factors affecting the nonlinear behavior of joints are not
separated but are generally applied in the models. In some newer methods, joint elements are modeled as 2-
dimensional planes, but in order to use such elements along with adjacent beam-column elements in assembling
the whole of the RC frame, transient elements are also utilized so that there will be a connection between
the degrees of freedom of joint plane and of adjacent linear elements (Elmorsi et al., 2000). Such elements
typically have 2-dimensional formulations and are capable of separately modeling the behavior of concrete and
bars and the interactions between them. These elements, however, like finite element methods, increase the
modeling time and the amount of calculations. Furthermore, when there is a need for the degrees of freedom
of the concrete and bars in the joint element to be compatible with the corresponding degrees of freedom in
the adjacent linear beam-column elements, this type of modeling has its own limitations. Another type of
joint element is created by assembling a series of one-dimensional components that are used for modeling the
dominant behavior of joint elements and whose calibration is carried out through experimental results (Lowes et

al., 2004). This kind of modeling relies on the behavior of force deformation for each effective component, and
because force-deformation relations are calculated approximately, such modeling will not be completely precise
and will need a strong calibration process. Limkatanyu (2000) introduced an interior joint element based on the
separation of the degrees of freedom of bars going through the joints and concrete. Although this element can
model the interaction between concrete and bars very well, it loses precision because it presupposes identical
degrees of freedom for all 4 sides around the joint element and ignores the shear deformation of joint planes.
Another important point about the existing types of models is that most of them cannot be used for studying
joints in different frame locations. Thus, most of them are useful for only one of various interior, exterior, or
corner locations.
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In the present study, the beam-column element introduced by Limkatanyu and Spacone (2002a) was used
for modeling beam and column elements since it enjoys good precision and includes the interaction between
the concrete and bars (Limkatanyu and Spacone, 2002b). A joint element was also defined and used, which,
in addition to its flexibility in modeling different types of joint elements such as interior, exterior, corner, and
footing, is capable of being assembled with the above beam-column element. Moreover, this modeling takes into
consideration such factors as the bond-slip effect between the bars that pass through joints, the pull-out effect
of bars that are restrained within joints, the nonlinear behavior of materials, and the shear-deformation effect of
different beam-column elements. The introduced modeling is easy to use. In order to model the joint elements,
a pull-out mechanism, an RC subelement, and a concrete subelement were first defined as the composing
parts of the RC joint element. These parts were then assembled to produce 4 types of joint elements to be
used along with beam-column elements in the modeling of RC moment-resisting frames. For simplicity’s sake,
RCF, RCMRF, BCE, JE, RCSE, and CSE are used in the text instead of reinforced concrete frame, reinforced
concrete moment-resisting frame, beam-column element, joint element, reinforced concrete subelement, and
concrete subelement, respectively.

2. Nonlinear analysis of RCF

For the purpose of nonlinear analysis of RCFs and evaluation of the proposed method, 4 kinds of analyses
were examined, as shown in Table 1. In order to carry out the investigations, a computer program created in
MATLAB software was used by the authors (MathWorks, 2008).

Table 1. Details of analyses 1-4.

Nonlinear modeling specifications 

Description Analysis 
Applying 
pull-out 
effect in 

calculations

Applying bond-slip effect 
in calculations

Modeling 
of JE  

Modeling 
of BCE

Directly
Indirectly as an 

equivalent 
method 

NoNoNoNoYes
Nonlinear analysis using fiber model 

with perfect bond assumption
1 

NoNoYesNoYes

Nonlinear analysis using fiber model 
and applying bond-slip effect by 
modifying the yielding point in 
stress-strain behavior of the bars

2

NoNoYesNoYes

Nonlinear analysis using the fiber 
model and applying bond-slip effect 
by modifying the yielding point and 
elasticity modulus in the stress-strain 

behavior of the bars

3

YesYesNoYesYes
Nonlinear analysis using proposed 

method from this study
4 

2.1. Slip effect in reinforced concrete

The bond effect is an important factor in explaining local failures as well as the rates of energy absorption
and of waste of the components of the inner force in RC members. A reduction in bond stress leads to the
redistribution of internal forces. When, under the effect of applied forces, a crack in an RC member is created
(Figure 1), cracks appear along with strainεS2 on both sides of the member. On parts further from the crack
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faces, the axial force of the bar is transferred to the concrete with the help of the bond stress. The value of
the bond stress is zero in the inner parts of the transfer length (lt), and it is maximum on the crack faces.
This means that there is no slip in the middle or central parts, which cover the distance between the 2 transfer
lengths on the 2 sides (L − 2lt) (Kwak and Song, 2006).

Figure 1. Strain distribution in cracked reinforced concrete (Kwak and Song, 2006).

It is assumed that after the occurrence of a crack, the strain values of the concrete and bar are the same
at point x = lt and are both εS1 . Based on the distribution of the strain, we may calculate the local slip by
evaluating the difference between length variations of the bar and concrete at distance x from the crack face

and the middle point of the cracked member (x = L/2), as shown in Eq. (1) (Kwak and Kim, 2006).

s(x) =
∫ L/2

x

(εs(x) − εc(x))dx (1)

In the above equation, L is the length of the distance between neighboring cracks, which is called the crack
space. εS(x)andεC(x) are the bar and concrete strain distributions, respectively. Considering the bond effect
and the free body diagram of a length segment between the 2 cracks, and assuming the linearity of the equation
of bond stress and slip as τb = Eb ∗ s(x), the function of slip distribution s(x)will be obtained in the form of

Eq. (2).

d2s(x)
dx2

− k2s(x) = 0 , k2 = m
∑

0
Eb(1 + nρ)/AsEs , n =

Es

EC
, ρ =

As

AC
(2)

Eb is the slip modulus and is assumed to be 1.826× 104 MN
/
m3 by Kwak and Kim (2006). m is the number

of tensile bars and
∑

0 is the circumference of a bar section. The general answer to differential Eq. (2) will be

in the form of Eq. (3).

s(x) = C1 sinh(x) + C2 cosh(x) (3)

In the above equation, the C1 and C2 constants are calculated from boundary conditions. In the boundary
conditions, the slip at x = lt is zero, and at x = 0 , which is the crack face, it is maximum (S0). It can be

assumed that the crack width is twice as much as the maximum of S0 (S0 = w/2) (Kwak and Kim, 2006).

Researchers have proposed some equations for calculating crack widths (Piyasena, 2002). For calculating the
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transient length, experimental or analytical equations can be used based on the equivalent force of the RC
element between the 2 cracks. After obtaining the specifications of the bond along the length of the member,
we can evaluate the slip and stress distributions of the distance between 2 neighboring cracks.

2.2. Description of analysis 1

In this type of analysis, which is a nonlinear analysis using the fiber model, the JE is not modeled. Formulation
of each RC beam or column element is done based on the Euler-Bernoulli beam theory. The cross-section of the
RC BCE is divided into a suitable number of concrete and steel fibers (bars). As shown in Figure 2, the value
of the length strain corresponding to each concrete or steel fiber is calculated with regard to its position in the
cross-section assuming a linear distribution of strain in the section of the RC element. This means that the
possible slip effect of the longitudinal bar is ignored, since if the bar slips, the value of the longitudinal strain
of the bar will not be the same as the value obtained through the above method. This is the main assumption
in the fiber model and it is referred to as the perfect bond assumption.

Figure 2. Specifications of element section in the theory of fiber model.

2.3. Description of analysis 2

This analysis is very similar to analysis 1 and is in fact a fiber model, but for the purpose of reducing errors
induced by the perfect bond assumption, the analysis is modified into an equivalent yielding point in the bar
stress-strain diagram of a nonlinear solution. If the yielding point stress of the bar obtained from tensile tests
without concrete is σy , the yielding point of the bars will be assumed to be lower than σy and used in numerical

calculations. This is because yielding occurs in an RC member when a bar in the cracked section reaches the
yielding point of the bare bar, whereas the average stress of the bar in the cracked member is elastic and less
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than the yielding point. This happens because the bar is surrounded by concrete, and the concrete between the
2 cracks can bear the pulling forces due to the bond between the concrete and bar. Based on this theory and
research done by Belarbi and Hsu (1994), the bar stress-strain equation is modified into Eq. (4) (Figure 3).

{
σs = Es.εs : εs ≤ εn

σs = σn + (0.02 + 0.25BB)Es(εs − εn) , BB = (ft/σy
)1.5

/
ρ , εn = εy(0.93 − 2BB) :εs ≥ εn

(4)

In the above equations, εs and σs are the bar strain and stress, respectively. εy and σy are the bare bar

yielding point strain and stress, respectively, and ft is the tensile strength of the concrete. ρ is the ratio of the
bar cross-sectional area to the cross-sectional area of the whole RC section, which must be more than 0.005.
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Bare steel bars
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steel (Belarbi and Hsu, 1994 )
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Figure 3. Modification of stress-strain relation of steel bars in analysis 2.

2.4. Description of analysis 3

For the purpose of reducing errors induced from the perfect bond assumption, in this type of analysis, as in
analysis 2, the yield stress of the bar is modified into an equivalent value in the nonlinear solution. Here,
however, not only the yielding point but also the bar elasticity modulus is modified.

In this type of analysis, based on the function of slip distribution between cracks in Eq. (3) and assuming
a linear relationship between slip and bond stress, the axial force balance of a concrete length segment and of
adjacent bars is studied. The axial force (N) is appropriately divided between the bar and the adjacent concrete,
thereby creating a balance. The stress in the concrete and the bar is calculated using their axial force. In a
length equal to half of the distance between the 2 cracks, the function of the bar stress and strain distributions,
εS(x) and σS(x), is similar to that shown in Figure 4a. Assuming a perfect bar-concrete bond and ignoring
slip in the fiber model, the stress in the bar must remain unchanged. This means that the equivalent stress in
the bar (σs

eq) and in the transient length (lt) must be equal to the bar stress outside this area (σs
0). Thus, Eq.

(5) must be satisfied. In this way, the equivalent modulus of elasticity can be calculated using Eq. (6) (Figure

4b). For more information regarding the numerical calculation of the equivalent elasticity modulus and use of

this calculation in fiber model analyses, see the work of Kwak and Kim (2006). In this analysis, the value of the
bar’s yielding point stress is reduced, as in analysis 2. Figure 5 shows a comparison of the method of reducing
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the yielding point in analysis 2 and the method of reducing the elasticity modulus along with the yielding point
in analysis 3.

σs
eq = Eeq εs

eq ≡ σs
0 = Es εs1 (5)

Eeq = Es
εs1

/
εs
eq

, Eeq−h = Eh
εs1

/
εs
eq

(6)

Figure 4. Distribution of slip and stresses between 2 adjacent cracks (Kwak and Kim, 2006).
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Figure 5. Comparison of equivalent stress-strain relation of analyses 2 and 3.

2.5. Description of analysis 4

In this type of analysis, both the BCE and the JE are modeled. As shown in Figure 6, depending on the position
of the joint in the RCF, 4 types of joints can be defined.
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Figure 6. Modeling of RCMRF with BCEs and several types of JEs.

2.5.1. Modeling of BCE

For modeling a BCE based on research carried out by Limkatanyu and Spacone (2002a), in the fiber model, the
slip effect between concrete and bar is implemented without ignoring the compatibility of the strain between
the concrete and bar. In this method, a length segment of an RCF element is considered as a combination
of a length segment of a 2-node concrete element and a number of steel bar elements (i.e., longitudinal bars).
The 2-node concrete elements follow the Euler-Bernoulli theory, and the 2-node bar elements are in fact truss
elements. Contact between concrete and longitudinal bars is provided by a constant bond force around the
bars. Using the internal force balance equations as well as the concrete element axial force equations, steel
bar element equations, shear force balance, and flexural force balance in the length segment, the governing
equations of the length segment of the BCE are obtained. A weak form of the governing equation in the
finite element method is obtained using the shape functions based on displacement and using the principle of
stationary potential energy. In this way, in addition to considering the bond-slip effect, using this element will
become possible in the modeling of RCFs. Since the degrees of freedom attributed to the concrete element and
bars are different, the degrees of freedom of this element, compared to those of other one-dimensional elements
used in the modeling of RCFs, are higher and change according to the number of longitudinal bars. It can be
argued that this element is ultimately made up of a 2-node beam concrete element and n number of 2-node bar
elements (longitudinal bars) along with the bond effect between them. More information on this element can

be found in the work of Limkatanyu and Spacone (2002a) (Figure 7).

8



HASHEMI, VAGHEFI

Figure 7. Reinforced concrete BCE.

2.5.2. Modeling of JEs

As shown in Figure 6, 4 types of elements are needed for modeling a JE. For the sake of simplicity in modeling,
2 subelements and a mechanism are first defined, including an RCSE, a CSE, and a bar pull-out mechanism.
The different types of JE are then made by assembling the subelements and the mechanism.

Referring to Figure 8, in the pull-out mechanism, the slippage of the bars can be defined in the form of Eq.

(7) if the nodal displacement vector related to pull-out behavior is defined asUPO =
[

U1
1 U1

2 U1
3 V 1

1 . . V 1
n

PO =

⎡
⎢⎢⎣

db1

db2

.
dbn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−1 0 y1 1 0 . 0
−1 0 y2 0 1 . 0
. . . . . . .
−1 0 yn 0 0 . 1

⎤
⎥⎥⎦UPO = APOUPO (7)

In this equation, yn is the distance of the n th bar from the reference line. The relationship between the pull-out

force and slip for the embedded n th bar in the section can be defined as fPO n = kPOn ×dbn , in which fPO n is
the pull-out force and kPOn is the slip stiffness of the pull-out behavior. This equation derives from the bond
stress-slip relationship related to the pull-out behavior, embedded length of the bar, condition at the end of the
bar, and circumference of the bar cross-section. The relationship between the pull-out force and slip of all bars
in the section can be written in the following matrix form:

fPO = kPO ×PO, (8)

where k PO is a diagonal matrix that includes k POn and f PO is the pull-out force vector according to the PO
vector.

The nodal force vector can be expressed in the following form:

FPO = AT
POfPO = AT

POkPOPO = AT
POkPOAPOUPO = KPOUPO . (9)

From Eq. (9), the pull-out stiffness matrix related to the section can be written as AT
POkPOAPO . The pull-out

stiffness matrix will be put into the stiffness matrix of the JE. In order to calculate the resisting force vector
related to the pull-out behavior and put it into the resisting force vector of the JE, it can be written in the form

of AT
POfPO .
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Defini�ons:

Pull-out force of nth steel bar 

Diameter of nth steel bar 

Pull-out slip of nth steel bar 

Slope in the bond stress-slip relation 
 of nth steel bar 
Bond stress around the nth steel bar 

Pull-out stiffness of nth steel bar 

Bond stress

Embedded length

Figure 8. Modeling of pull-out mechanism.

The RCSE is shown in Figure 9. This subelement was produced based on a segment length similar to
that of BCE, but it follows the Timoshenko beam theory. This subelement is capable of considering shear
deformation and bond-slip effects in nonlinear behavior. As shown in Figure 9, the subelement is affected by
2 distributed external forces: py1(x) and py2(x). Since the subelement is part of the JE, the external forces

are considered as boundary conditions and obtained in nonlinear solution schemes through the internal forces
of the 2 sides of the element; they are continually updated.

Reference line

Figure 9. Reinforced concrete subelement.
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The CSE is in fact a 2-node concrete element that follows the Timoshenko beam theory and thus considers
shear deformation. The CSE, like the RCSE, has boundary conditions in the form of a distributed external
force. More details on the formulation of RCSEs and CSEs can be found in the work of Hashemi et al. (2009).
Different types of JEs, as shown in Figure 10, are modeled by assembling the subelements and the bar’s pull-out
mechanism.

Figure 10. Types of JEs in a 2-dimensional RCF.

3. Behavior of materials

3.1. Concrete cyclic stress-strain relation

The monotonic envelope curve for confined concrete, introduced by Park et al. (1972) and later extended by

Scott et al. (1982), was adopted for the compression region because of its simplicity and computational efficiency.
It was also assumed that the concrete behavior is linearly elastic in the tension region before the tensile strength,
and beyond that, the tensile stress decreases linearly with increasing tensile strain. The ultimate state of tension
behavior is assumed to occur when the tensile strain exceeds the value given in Eq. (10).

εut = 2 × (Gf/ft
) × ln(3/L)/(3 − L) (10)

Here, L denotes the element length in millimeters and Gf is the fracture energy that is dissipated in the

formation of a crack of unit length per unit thickness; it is considered as a material property. ft is the concrete
tensile strength. For normal-strength concrete, the value of Gf /ft is in the range of 0.005-0.01 (Welch and

Haisman, 1969). In this research, the average value of 0.0075 is assumed for Gf /ft . The rules suggested by

Yassin (1994) were adopted for considering the hysteresis behavior of the concrete stress-strain relation in the
compression and tension regions.
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3.2. Cyclic stress-strain relation of steel bars

The Giuffre-Menegoto-Pinto model was adopted to represent the stress-strain relationship of steel bars. This
model was initially proposed by Giuffre and Pinto (1970) and later used by Menegoto and Pinto (1973). It

was modified by Filippou et al. (1983) to include isotropic strain hardening. The model agrees very well with
experimental results from cyclic tests of reinforcing steel bars.

3.3. Cyclic shear stress-strain relation of joints

The adopted model to represent the shear stress-strain of joints was that proposed by Anderson et al. (2008).

This model replicates cyclic degradation in strength, stiffness (modulus), and energy dissipation for unloading
and reloading behavior.

3.4. Cyclic bond stress-slip relation

In the first 3 analyses, there is no need for defining the bond-slip equation, because they assume a perfect bond
between the bar and concrete. In the fourth analysis, however, the bond stress-slip equation is necessary for
implementation in the calculation of JEs and BCEs. Bond stress refers to the shear stress acting parallel to an
embedded steel bar on the contact surface between reinforcing bars and concrete. Bond slip is defined as the
relative displacement between the steel bar and the concrete. In this study, 2 models were used for the bond
stress-bond slip relationships, the first for the bond-slip behavior through the length of the BCE and the second
for the bond-slip behavior through the length of the RCSE and pull-out behavior of the bars in the JEs. Among
several models proposed by researchers, that proposed by Eligehausen et al. (1983) was adopted for both of the
specified types of behavior. In this model, the effects of many variables, such as spacing and height of lugs on
the steel bar, concrete compressive strength, thickness of concrete cover, steel bar diameter, and end bar hook,
were considered. More details about unloading and reloading branches and bond strength degradation related
to this model are given in the work of Gan (2000).

4. Numerical investigation

As the first specimen, a one-bay, one-story frame was studied under the name of specimen 1, and the analytical
results were compared with the corresponding experimental results. In numerical modeling, beams and columns
are subdivided into a sufficient number of BCEs. Because the formulation is displacement-based and the response
depends on the element size, the length of the BCE needs to be short enough. As a simple suggestion, the
length of the BCE can be selected as equal to or smaller than the average crack spacing in the beam or column.
In these cases, convergence will be achieved in the numerical results. The equation given by CEB-FIP (1978)

was adopted for the calculation of average crack spacing. Specimen 1 was tested by Alin and Altin (2007) and
was modeled as the combination of BCEs, JE type 1, and JE type 2. Some details are shown in Table 2 and
Figure 11. Columns have no constant axial load and the loading is carried out laterally only.

For nonlinear solving of this model, a Newton-Raphson method that involved controlling displacement
was used. In Figure 12, experimental results are compared with analytical ones produced in analyses 1-4 in a
pushover status for specimen 1. In Figure 13, the results are compared in a cyclic status. Results show that in
analysis 1, where the bond-slip effect and nonlinear behavior of the joint are not included, experimental results
are very different from analytical ones. This difference is high for stiffness. By inserting the equivalent bond-slip
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effect in analysis 2, results become more accurate with regard to resistance but do not change much with respect
to stiffness, especially the stiffness of unloading and reloading paths. In analysis 3, the analytical accuracy of
calculated resistance and stiffness improves while no good agreement appears yet between the unloading and
reloading paths, particularly in the final cycles. Analysis 4 makes for a considerable improvement in the results,
and the analytical unloading and reloading paths are estimated with good precision. Thus, it can be said
that this method enjoys a good accuracy in working out the members’ resistance, stiffness, and real nonlinear
behavior.

Table 2. Details of specimen 1.
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Figure 11. Geometry of specimen 1 (Alin and Altin,

2007).

Figure 12. Experimental and analytical pushover load-

displacement responses for specimen 1.
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Figure 13. Experimental and analytical cyclic load-displacement responses for specimen 1.

As specimen 2, a column under lateral cyclic loading was investigated. This specimen had a constant
axial load with a magnitude of 350 kN and was tested by Qiu et al (2002). Some details are shown in Table
3 and Figure 14. In numerical modeling, the specimen is modeled as the combination of 10 BCEs and type 1
of JEs. Figure 15 shows the result of analysis 4 and experimental load-displacement responses with very good
similarity and precision for specimen 2. Thus, analysis 4 enjoys a good accuracy in working out the members’
resistance and stiffness and during cyclic loading.
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Figure 14. Geometry of specimen 2 (Qiu et al., 2002). Figure 15. Experimental and analytical cyclic load-

displacement responses for specimen 2.

Table 3. Details of specimen 2.

In addition, due to the capabilities of nonlinear modeling of the JE, using analysis 4 and directly
implementing the bond-slip effect in calculations, we can study the analytical behavior of elements resulting
from a decreased embedded length or reduction of the bond-slip effect in longitudinal bars. In Figure 16a, the
analytical results of specimen 1 are provided, assuming that the columns’ longitudinal bars are constrained 5
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cm in the foundation. It should be added that, in the tested main model, the columns’ longitudinal bars were
continued 45 cm into the foundation and were not pulled out. Results reveal that by reducing the embedded
length at the foot of a column, bars are increasingly pulled out of the foundation and, consequently, the lateral
capacity of the frame will be lessened. Figure 16b presents a comparison of real experimental results with
analytical ones for specimen 1, assuming that the bar-concrete bond-slip effect around the joint and the BCEs
is weakened. The stress bond-slip relationship has been considered as linear with a slope of 5 MPa/mm. This
slope signals a weak bond. According to the results, due to insufficiency of the bond between the concrete and
bars, the stiffness of the RC elements decreases. This result is also revealed in the unloading and reloading
paths.
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Figure 16. Effect of bar’s pull-out and weak bond strength on load-displacement responses of specimen 1.

5. Conclusion

According to the results, the presence or absence of the bond effect in numerical modeling and analysis will bring
about considerably different results, including results for deformation and forces. When the bond-slip effect is
excluded, the values for the stiffness of the elements and for internal forces appear to be higher than their real
figures. Consequently, the values obtained for deformation and energy waste in the hysteresis circuits tend to
be lower than the real values. All of the studied methods for inserting the bond-slip effect into the fiber model
can relatively improve the accuracy of analytical results compared to experimental ones. The proposed method
of this study has proved to enjoy the highest accuracy with regard to cyclic analysis. Among the features of
the proposed method, we refer to its ability for modeling beam-column and JE nonlinear behavior separately.
In addition, depending on the location of the JE in the RCF and its governing behavior feature, various types
of joints can be utilized. Although compared to other studied methods the suggested method involves more
numeric calculations and higher degrees of freedom in modeling, it enjoys a higher speed of modeling and less
need for calculations compared to methods such as finite element modeling, implementing the bond-slip effect
using contact (or link) elements. Moreover, the proposed method can be used in analyses that require high
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accuracy. In conclusion, the authors of this paper suggest that this method will be useful and remarkably
accurate for the nonlinear cyclic analysis of RCMRF.
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