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Abstract

In this article, electromagnetomechanical responses of a radially polarized rotating shaft made from

functionally graded piezoelectric material (FGPM) and subjected to a uniform magnetic field with mechanical

loads and electric potentials are investigated. All material, electrical, and magnetic properties were assumed

to follow an identical power law in the radial direction. Exact solutions for electric displacement, stresses,

electric potentials, and perturbation of the magnetic field vector are presented using the infinitesimal theory

of electromagnetoelasticity. Numerical results showed that responses were strongly affected by power law

index β . We could optimize the responses by manipulating β , electric potential, and magnetic field intensity.

Key Words: FGPM, electromagnetoelastic, hollow cylinder, radially polarized, perturbation of magnetic

field vector

1. Introduction

In recent years, advances made in material research have greatly supported other engineering disciplines. Com-
posite materials like functionally graded materials (FGMs) offer desirable heat transfer, corrosion, and fracture
resistance properties and are considered advanced materials and good substitutions for alloys. Developments
in the smart-structure technology of FGMs and the characteristics mentioned above have yielded functionally
graded piezoelectric materials (FGPMs) that could be used as sensors and actuators in engineering applications.

As far as FGPM development is concerned, the axial vibration of long piezoelectric homogeneous cylinders
was considered by Adelman et al. (1975). Later, Chen (1999) simplified the governing differential equations
of radially polarized piezoelectric cylinders to ordinary Euler differential equations, using the displacement
function. Wu et al. (2002) presented a high-order theory to examine the electromechanical behavior of

piezoelectric generic shells with FGM properties in the thickness direction. Jabbari et al. (2002) developed
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a general analysis of one-dimensional steady-state thermal stresses in a hollow, thick cylinder made of FGM.
They used a direct method to solve the heat conduction and Navier equations, assuming all material properties
as power functions of the radius except Poisson’s ratio. Kwon and Lee (2004) studied the dynamic response of
a cracked FGPM subjected to transient antiplane shear mechanical load and in-plane electrical load. By using
Laplace and Fourier transforms, they reduced their analysis to the solutions of Fredholm integral equations
of the second kind and presented their numerical results for the stress intensity factor and crack sliding
displacement to show the influences of the elliptic crack parameters, the electric field, FGPM gradation,
crack length, and electromechanical coupling coefficient. Dai and Wang (2004) attempted finite integral and
Laplace transforms, and their inverse transforms, and obtained the exact expression for the dynamic responses
of stress, electric displacement, and electric potentials. Wang et al. (2005) developed the dynamic solution for
a multilayered, spherically isotropic piezoelectric hollow sphere subjected to radial dynamic loads by dividing
the problem into quasi-static and dynamic parts, and they solved the Volterra integral equation using the
interpolation method. Ebrahimi et al. (2008) investigated an analytical solution for the free vibration of a

moderately thick, circular functionally graded (FG) plate integrated with two thin piezoelectric layers. Based
on the Mindlin plate theory, they solved the equations of motion for clamped and simply supported edge
boundary conditions. Wang and Xu (2010) used the Frobenius series method to solve the second-order ordinary
differential equation with variable coefficients, and they obtained the closed-form displacement solution for an
exponentially graded piezoelectric spherical structure subjected to mechanical and electric loads. Dai et al.
(2007) investigated the electromagnetoelastic behavior of a FGPM cylinder and sphere placed in a uniform
magnetic field, which were subjected to external pressure and electric loading. They showed the sensible
influence of being inhomogeneous. They also indicated a specific value, the inhomogeneity parameter or power
law index, β , optimizing the electromagnetoelastic responses. Ghorbanpour Arani et al. (2008) calculated
the response of magnetothermoelastic stress and perturbation of the magnetic field vector for a thick-walled,
spherical FGM vessel, using Henkel and Laplace transform techniques.

Using the infinitesimal theory of piezoelasticity, Dai et al. (2010a, 2010b) presented an analytical solution
for electromechanical stresses and electromagnetothermoelastic behaviors of stationary FGPM hollow cylindrical
and spherical structures. The materials’ properties were assumed as an identical power function in the radial
direction. Li et al. (2010) treated the axisymmetric electroelastic problem of a hollow, radially polarized FGPM

cylinder. They showed that β strongly affected the electric and mechanical outputs. Galic and Horgan (2003)
set an analytical solution to the axisymmetric problem of an infinitely long, radially polarized, and orthotropic
piezoelectric hollow cylinder rotating about its axis at a constant angular velocity. An analogy was investigated
in the case of stress singularities at the origin for piezoelectric solids to those occurring in the purely mechanical
problem for radially orthotropic elastic materials. Babaei and Chen (2008) generalized this problem to a
functionally graded piezoelectric and studied the influence of inhomogeneity on the responses. Ghorbanpour
Arani et al. (2010) considered a hollow circular cylinder made of exponentially graded piezoelectric material

(EGPM), such as PZT-4 under the following conditions: loadings composed of internal and external pressures,
steady-state heat conduction with convective boundary condition, rotation with constant angular velocity, and
a constant electric potential difference between inner and outer surfaces. They also assumed that the material
properties, except for Poisson’s ratio and the thermal conduction coefficient, were exponentially distributed
along radius.

In this study, the shaft is placed in a uniform axial magnetic field, and we examine the effect of the
magnetic field in addition to mechanical and electric loads on the responses. All material, electrical, and
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magnetic properties were assumed to follow an identical power law in the radial direction.

2. Basic formulations and governing equations

Consider an infinitely long FGPM hollow shaft that is placed in a uniform axial magnetic field, �H(0, 0, Hz),

and subjected to pressure and electrical loading (Figure 1). The inner and outer radii of the shaft are a and
b , respectively. The shaft is rotating around its axis with constant angular velocity ω . We assume that all
material, magnetic permeability, and dielectric constants follow an identical power law in the radial direction.
Therefore, in the cylindrical coordinate (r,θ ,z) we have:

cij(r) = c0
ij(

r

b
)β ,

μ(r) = μ0(
r

b
)β ,

eri(r) = e0
ri(

r

b
)β, i = r, θ;j = r, θ, (1)

εrr(r) = ε0
rr(

r

b
)β ,

ρ(r) = ρ0(
r

b
)β,

where cij is the elastic constant, μ stands for permeability, eri is the piezoelectric constant, and εrr and ρ

represent the dielectric constant and density, respectively.

Figure 1. Configuration of a FGPM hollow shaft in axial magnetic field.

The constitutive equations for the plane strain problem of an orthotropic, radially polarized FGPM can
be expressed as (Galic and Horgan, 2003):

σrr = crr
∂u

∂r
+ crθ

u

r
+ err

∂ψ

∂r
, (2a)

σθθ = crθ
∂u

∂r
+ cθθ

u

r
+ erθ

∂ψ

∂r
, (2b)
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Drr = err
∂u

∂r
+ erθ

u

r
− εrr

∂ψ

∂r
, (2c)

where Dr is radial electric displacement and ψ represents electric potential.

The equilibrium equation and Maxwell equation in the absence of body forces and free charge density for
the FGPM shaft is expressed as (Galic and Horgan, 2003; Dai and Wang, 2004):

∂σr

∂r
+

σr − σθ

r
+ ρω2r + fz = 0, (3)

∂Dr

∂r
+

Dr

r
= 0, 0 ≤ r ≤ a, (4)

hz = −Hz(
∂ur

∂r
+

ur

r
), (5)

where hz is the perturbation of the magnetic field vector and fz is defined as Lorentz’s force, which may be
written as:

fz = μ(r)H2
z

∂

∂r
(
∂u

∂r
+

u

r
). (6)

Substituting Eqs. (1), (2), and (6) into Eq. (3), the equilibrium equation will be:

r2 ∂2u
∂r2 + r(1 + βc0

rr

c0
rr+μ0H2

z
)∂u

∂r + (βc0
rθ−c0

θθ−μ0H2
z

c0
rr+μ0H2

z
)u + r2( e0

rr

c0
rr+μ0H2

z
)∂2ψ

∂r2

+r( e0
rr(β+1)−e0

rθ

c0
rr+μ0H2

z
)∂ψ

∂r
+ ρ0ω2r3

c0
rr+μ0H2

z
= 0.

(7)

Substituting Eqs. (1) and (2) into Eq. (4), the charge equation of electrostatics is expressed as:

r2 ∂2u

∂r2
+ r((β + 1) +

e0
rθ

e0
rr

)
∂u

∂r
+ β

e0
rθ

e0
rr

u − r2 ε0
rr

e0
rr

∂2ψ

∂r2
− r(β + 1)

ε0
rr

e0
rr

∂ψ

∂r
= 0. (8)

A new potential function is therefore defined as:

Ψ =
e0
rr

c0
rr

ψ, (9)

For a hollow shaft with a ≤ r ≤ b , the dimensionless parameters are written as follows:

ρ =
r

a
, (10)

η =
b

a
, (11)

Therefore, 1 ≤ ρ ≤ η , and with regard to Eqs. (9), (10), and (11) and using the chain rule for derivatives, we

can rewrite Eqs. (7) and (8) in the following forms:

ρ2 ∂2u

∂ρ2
+ (1 + βξ)ρ

∂u

∂ρ
+ Γu + ξρ2 ∂2Ψ

∂ρ2
+ (β + 1 − α)ξρ

∂Ψ
∂ρ

= − Ωaρ3, (12)

ρ2 ∂2u

∂ρ2
+ (β + 1 + α)ρ

∂u

∂ρ
+ βαu − γρ2 ∂2Ψ

∂ρ2
− γ(β + 1)ρ

∂Ψ
∂ρ

= 0, (13)
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ξ =
c0
rr

c0
rr + μ0H2

z

, (14a)

Γ =
βc0

rθ − c0
θθ − μ0H

2
z

c0
rr + μ0H2

z

, (14b)

α =
e0
rθ

e0
rr

, (14c)

Ω =
ρ0ω

2a2

c0
rr + μ0H2

z

, (14d)

γ =
ε0
rrc

0
rr

e0 2
rr

. (14e)

Assuming ρ = e t , the solutions for Eqs. (12) and (13) are obtained as:

u′′ + βξu′ + Γu + ξΨ′′ + ξ(β − α)Ψ′ = −Ωae3t, (15)

u′′ + (β + α)u′ + βαu − γΨ′′ − γβΨ′ = 0, (16)

where u′ and ψ′ correspond to the differentiation of displacement and electric potential with respect to t . We
can decouple this system by eliminating ψ′′ between Eqs. (15) and (16) and determine the value of ψ′ . We
therefore have:

Ψ′ = A2u
′′ + A1u

′ + A0u + d, (17)

A2 =
γ + ξ

γξα
, (18)

A1 =
β(γ + 1) + α

γα
, (19)

A0 =
γΓ + ξβα

γξα
, (20)

d =
Ωae3t

ξα
. (21)

By substituting Eq. (17) and its derivative into Eq. (15), we have:

B4u
′′′ + B3u

′′ + B2u
′ + B1u + B0e

3t = 0, (22)

where:

B4 =
γ + ξ

γα
, (23a)

B3 =
β(γ(1 + ξ) + 2ξ)

γα
, (23b)

B2 =
Γ
α

+
ξ(βα + β2(γ + 1) − α2)

γα
, (23c)
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B1 =
βΓ
α

+
βξ(β − α)

γ
, (23d)

B0 =
(3 + β)Ωa

α
. (23e)

To determine the solution for Eq. (22), we must first obtain the homogeneous term of the solution. We can
express this term as:

ug = Aem1t + Bem2 t + Cem3t, (24)

where m1 ,m2 , andm3 are the roots of the characteristic equation of Eq. (22) and A , B , and C are obtained

by satisfying the boundary conditions. Assuming up = Ke 3t for a particular term of the solution and by

substituting it into Eq. (22), K can be determined as follows:

K =
−B0

27B4 + 9B3 + 3B2 + B1
. (25)

Therefore, the solution of Eq. (22) can be defined as:

u = ug + up ⇒ u = Aρm1 + Bρm2 + Cρm3 + Kρ3. (26)

We can also obtain ψ by using Eq. (17).

Ψ = H1Aρm1 + H2Bρm2 + H3Cρm3 + H4ρ
3 + D, (27)

where:

Hi = A2mi + A1 +
A0

mi
, i = 1, 2, 3, (28a)

H4 = K(3A2 + A1 +
A0

3
) +

Ωa

3ξα
. (28b)

The nondimensionalized form of stresses is hence obtained from Eqs. (2a) and (2b), which is written as:

σrr

c◦rr

=
1
a
[
crr

c◦rr

du

dρ
+

crθ

c◦rr

u

ρ
+

err

c◦rr

dψ

dρ
], (29)

σθθ

c◦rr

=
1
a
[
crθ

c◦rr

du

dρ
+

cθθ

c◦rr

u

ρ
+

erθ

c◦rr

dψ

dρ
]. (30)

Substituting Eqs. (26) and (27) into Eqs. (29) and (30) yields the dimensionless stresses and the potential Ψ1 ,
as follows:

σrr

c◦rr
= 1

aη−βρβ [Aρm1−1(m1(1 + H1) + δ) + Bρm2−1(m2(1 + H2) + δ) + Cρm3−1(m3(1 + H3) + δ)
+ρ2(K(3 + δ) + 3H4)],

(31)

σθθ

c◦rr
= 1

aη−βρβ[Aρm1−1(m1(δ + αH1) + υ) + Bρm2−1(m2(δ + αH2) + υ) + Cρm3−1(m3(δ + αH3) + υ)
+ρ2(K(3δ + υ) + 3H4α)],

(32)
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δ =
c0
rθ

c0
rr

, (33)

ν =
c0
θθ

c0
rr

. (34)

As for the dimensionless potential Ψ1 , we have:

Ψ1 =
Ψ
a

, (35)

Ψ1 =
1
a
(H1Aρm1 + H2Bρm2 + H3Cρm3 + H4ρ

3 + D), (36)

Now the boundary conditions are applied to determine the integral constants A ,B , C , and D in Eqs. (27),

(31), and (32). We can write the result of each case in matrix form, such as MX = Y where M is a 4 × 4

matrix, X is [A, B, C, D], and Y is a 4 × 1 matrix.

3. Numerical results

In the previous section, we obtained the analytical solutions for a rotating FGPM shaft in a magnetic field. In
this section, we study the numerical results for a typical FGPM shaft. We assume that the exterior surface is
made of piezoelectric PZT-4. The properties of this important piezoelectric material are listed in the Table.

Table. Material constants of PZT-4 (Galic and Horgan, 2003).

PZT-4
c0
rr = 115× 109Pa c0

rθ = 74.3× 109Pa

c0
θθ = 139 × 109Pa e0

rr = 15.1c
/
m2

e0
rθ = −5.2c

/
m2 ε0

rr = 5.62× 10−9c2
/
Nm2

ρ0 = 7.5 × 103kg/m3 μ0 = 4π × 10−7H/m

Example 1. Suppose a rotating FGPM shaft is subjected only to internal pressure with neither electric
potential nor magnetic fields. Thus, in the r = a (ρ = 1) and r = b (ρ = β), we have:

σrr

c◦rr

(1) = −1,
σrr

c◦rr

(η) = 0, Ψ1(1) = 0, Ψ1(η) = 0, Hz = 0. (37)

To demonstrate the effect of β , the internal pressure is normalized to unity. Radial and circumferential stresses
as well as electric potential distributions are shown in Figure 2. The diagram of radial stress satisfies the
boundary conditions. According to the circumferential stress diagram, in ρ ≈ 2.85, for all values of β , the
stress is the same. Furthermore, as β is increased, the dimensionless radial stress is reduced. As for the electric
potential, as β is increased, Ψ1 shifts from negative to positive values. Moreover, it can be concluded from
Figure 2 that the β exponent significantly affects the induced electric potential.
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Figure 2. a) Radial stress, b) circumferential stress, and c) electric potential distributions versus the dimensionless

parameter ρ for example 1: Hz = 0, Ω = 1.

Example 2. Consider a rotating FGPM shaft that is subjected only to an electric potential without any
mechanical load or magnetic field. We thus have:

σrr

c◦rr

(1) = 0,
σrr

c◦rr

(η) = 0, Ψ1(1) = 1, Ψ1(η) = 0, Hz = 0. (38)

Figure 3 also shows radial and circumferential stresses as well as the electric potential for this case. The diagram
of electric potential satisfies the boundary conditions. As in example 1, for ρ ≈ 3.15, for all values of β , the
stress is the same and the dimensionless radial stress is reduced as β increases. As far as the electric potential
is concerned, β increasing shifts Ψ1 from negative to positive values, but compared to the previous example,
the maximum is considerably higher.

Example 3. Here, a rotating FGPM shaft is considered that is subjected to internal pressure and electric
potential, but no magnetic field. Again we have:

σrr

c◦rr

(1) = −1,
σrr

c◦rr

(η) = 0, Ψ1(1) = 1, Ψ1(η) = 0, Hz = 0. (39)

Figure 4 shows the results for example 3. Radial stress and electric potential diagrams satisfy the imposed

boundary conditions. These results coincide with those obtained by Galic and Horgan (2003) (β = 10−7 ≈ 0)

and Babaei and Chen (2008), and this validates the responses obtained in this study.
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Figure 3. a) Radial stress, b) circumferential stress, and c) electric potential distributions versus the dimensionless

parameter ρ for example 2: Hz = 0, Ω = 1.
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Figure 4. a) Radial stress, b) circumferential stress, and c) electric potential distributions versus the dimensionless

parameter ρ for example 3: Hz = 0, Ω = 1.
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Example 4. This case is the superposition of examples 1, 2, and 3 . A rotating FGPM shaft is subjected
to internal pressure and electric potential and is placed in a uniform axial magnetic field. The corresponding
boundary conditions could be expressed as:

σrr

c◦rr

(1) = −1,
σrr

c◦rr

(η) = 0, Ψ1(1) = 1, Ψ1(η) = 0, Hz = 1.796× 109A/m. (40)

Comparing Figure 5 with Figure 4 indicates that the effects of the magnetic field on dimensionless radial and
circumferential stresses are almost double in Figure 5.
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Figure 5. a) Radial stress, b) circumferential stress, c) electric potential, and d) the perturbation of magnetic field

vector distributions versus the dimensionless parameter ρ for example 4: Hz = 1.796 × 109 A/m, Ω = 1.

4. Conclusions

In this paper, the electromagnetomechanical responses of a radially polarized rotating shaft made of FGPM
and subjected to a uniform magnetic field with mechanical and electric potentials were studied. All material,
electrical, and magnetic properties were assumed to follow an identical power law in the radial direction. Using
the infinitesimal theory of electromagnetoelasticity, exact solutions for electric displacement, stresses, electric
potentials, and perturbation of the magnetic field vector were obtained. Dimensionless circumferential stress for
different values of β seemed to be almost constant as ρ increased. However, the dimensionless radial stress was

reduced by increasing β . These results conform to those presented by Galic and Horgan (2003) (β = 10−7 ≈ 0)

and Babaei and Chen (2008), indicating the validation of the responses obtained here. Moreover, in the presence
of the magnetic field, dimensionless radial and circumferential stresses increased almost 2-fold. Results further
indicated that the β exponent significantly affected the radial and circumferential stress distributions and the
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electric potential and magnetic field. This implies that the electromagnetomechanical fields in the rotating shaft
should be optimized for any specific application by selecting the appropriate β exponent.

Nomenclature

ω angular velocity
r radial variable
θ circumferential variable
β inhomogeneity parameter or power law index
cij elastic constant
μ magnetic permeability
eri piezoelectric constant
εrr dielectric constant

Dr radial electric displacement
Ψ electric potential
hz perturbation of magnetic field vector
fz Lorentz’s force
ρ mass density
σrr, σθθ components of stresses
a, b inner and outer radii
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