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Abstract

Boltzmann method. The flow in the porous screen was simulated by the Brinkman-Forchheimer model.

Numerical solutions were obtained for variable porosity models, and the effect of the Darcy number and

porosity were studied in detail. Results showed that the stabilization of the flow field and heat transfer

were dependent on the Darcy number. Distribution of the stream field became more stable when the Darcy

number decreased. Moreover, the temperature distribution was more homogeneous at lower Darcy numbers

and porosity values. Results showed that the effect of variable porosity was significant in the neighborhood of

the solid boundary. In addition, dissimilarity between constant and variable porosity models was decreased

by Darcy number reduction.
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1. Introduction

Channels filled with porous matrices have been widely used in a variety of engineering applications, including
flow stabilizers in burners, torches, and advanced air conditioning systems. Many researchers have investigated
fluid flow and convective heat transfer in channels fully and partially filled with a porous medium (Poulikakos

and Kazmierczak, 1987; Guo et al., 1997; Özdemir and Özgüç, 1997; Hamdan et al., 2000; Alkam et al., 2002;
Jiang et al., 2004; Jen and Yan, 2005; Liou, 2005; Satyamurty and Bhargavi, 2010).

Poulikakos and Kazmierczak (1987) theoretically considered fully developed convection between 2 parallel
plates and in a circular tube partly filled with a porous matrix adhered to the wall. Porosity variation of a porous

medium consisting of screen mesh layers was determined experimentally by Özdemir and Özgüç (1997). The
volume element that gives the same result approximately at each point of the medium, except the wall region,
is considered to be the representative elementary volume (REV) of that medium. Guo et al. (1997) numerically
studied pulsating flow in a pipe partially filled with a porous medium by the finite volume method. In their
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work, they fitted the porous to the pipe wall. Hamdan et al. (2000) studied forced convection by inserting a

porous substrate into the core of a parallel-plate channel numerically. Alkam et al. (2002) considered forced
convection flow in a channel partially filled with porous layers on the top and bottom walls. Their results showed
that the existence of the porous substrate improved the Nusselt number. The effects of variable porosity and the
physical properties of fluid on forced convective heat transfer in sintered porous plate channels were simulated
numerically by Jiang et al. (2004). Jen and Yan (2005) used a vorticity-velocity method to simulate the fluid flow
and heat transfer in a channel partially filled with a porous medium. In their investigation, the friction factor
and Nusselt number were presented as a function of axial position. Liou (2005) proposed a new numerical
technique for simulating flow in porous media in terms of pore-scale analysis. The effect of a wall-mounted
porous layer in the channel over the heat transfer was investigated by Satyamurty and Bhargavi (2010). The
variable porosity model has been used for engineering and technical applications. Chandrasekhars and Radha
(1988) studied the effect of variable porosity on laminar forced convection in a regularly heated vertical porous
channel using an exponential function. They observed that the heat transfer rate was increased by increasing
the porous parameter. The effect of the porosity variation of the gas diffuser layer on the performance of a
proton exchange membrane fuel cell was reported by Chu et al. (2003). This analysis is necessary due to the
presence of liquid water in the gas diffuser layer, which causes the nonuniform porosity distribution. Alazmi
and Vafai (2004) investigated the effect of variable porosity and thermal dispersion on free surface flow through
porous media. They concluded that the effect of variable porosity is not considerable, except near the walls.

The lattice Boltzmann method (LBM) is a useful technique for simulating fluid flow and heat transfer

(Succi et al., 1989; Seta and Kono, 2004; Hamdan et al., 2000; Delavar et al., 2009, 2010). This method has
been successfully applied to flow modeling in porous media. The most common approach to applying the LBM
to porous flow is to model the flow in the REV scale (Nield and Bejan, 2006). This is accomplished by including

an additional term in the standard lattice Boltzmann equation. Spaid and Phelan (1997) proposed a model
based on the Brinkman equation for single-component flow in porous media. Although the Brinkman model
has been used to describe flow in porous media, some limitations still exist in this model (Kim and Vafai, 1989).

In this study, linear and nonlinear matrix drag components were considered as well as the inertial and
viscous forces using the Brinkman-Forchheimer model (Guo et al., 2002; Nield and Bejan, 2006). The main
objective of the present work was to investigate the effect of a porous screen on the stability of flow field and
heat transfer with nonuniform inlet velocity and temperature in a channel using the LBM. The mathematical
formulations for porous media were based on the Brinkman-Forchheimer model (Guo and Zhao, 2002). Results
were obtained for constant and variable porosity models, and the effects of the Darcy number and porosity were
considered.

2. Mathematical model

Flow and heat transfer in a horizontal plane channel with a porous screen were simulated by the LBM. The
channel height and length were H and L = 8H, respectively, and nonuniform velocity and temperature were

considered at the inlet (Figure 1). At the inlet, the velocity ratio was U1
U2

= 15; the dimensionless inlet

temperature was θ1 = 1, θ2 = 0; and the wall dimensionless temperature was θw = 0. The porous sample
was assumed to be saturated with a fluid that was in local thermal equilibrium (LTE) with the solid matrix

(Kaviany, 1985). The porous screen was located at a distance of 0.5H from the entrance of the channel with a
width equal to 0.2H.
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Figure 1. Geometry of the problem.

3. Lattice Boltzmann method in porous media

The LBM for incompressible fluid flow in porous media has been proposed by several researchers (Guo and

Zhao, 2002; Mohammad, 2002; Seta et al., 2006).

In the LBM, the fluid is modeled by a single-particle distribution function. The distribution functions
for porous media are governed by the lattice Boltzmann equation, as follows (Guo and Zhao, 2002):

fi (�x + �eiδt, t + δt) = fi (�x, t) − fi (�x, t) − feq
i (�x, t)

τv
+ δtFi. (1)

gi (�x + �eiδt, t + δt) = gi (�x, t) − gi (�x, t) − geq
i (�x, t)

τc
(2)

For the D2 Q9 model, the discrete velocities are defined below.

�ei =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, 0) for i = 0(
cos[(i − 1)π

4
, sin[(i − 1)π

4

)
for i = 0...4

√
2

(
cos[(i − 1)π

4 , sin[(i − 1)π
4

)
for i = 5...8

(3)

Here, δt is the lattice time step. The equilibrium functions for the density distribution function (feq
i ) for the

D2 Q9 model in the presence of porous media is:

feq
i =

{
ωiρ

[
1 +

�ei.�u

c2
S

+
(�ei.�u)2

2ε c4
S

− |�u|2

2ε c2
S

]}
, (4)

where ε is the porosity of the porous medium and ωi is the weighting factor. cs is the speed of the sound and
is defined by cs = c√

3
. The weighting factors are:

ωi =
{

4
9

for i = 0,
1
9

for i = 1...4,
1
36

for i = 5...8
}

(5)

Similarly, the equilibrium distribution functions for the thermal energy distribution presented by Mohammad,

geq
i , can be written as follows (Mohammad, 2007):

geq
i = ωiT

(
1 +

1
c2
s

�ei.�u

)
. (6)
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The Brinkman-Forchheimer equation is (Seta et al., 2006):

∂�u
∂t + (�u.∇)(�u

ε ) = − 1
ρf
∇(εP ) + υ∇2u + �F . (7)

Here,p = ρ c2

3ε
and viscosity υ = c2 (τυ − 0.5) δt

3
. The body force is expressed below (Ergun, 1952; Guo et al.,

2002a).

�F = −ευ

K
�u − ε.Fε√

K
|u|�u + ε�G (8)

K = DaH2, Fε =
1.75√
150ε3

(9)

Here, K is the permeability, G is the acceleration due to gravity, Da is the Darcy number, and H is the

characteristic length. The total body force ( �F ) encompasses the viscous diffusion, the inertia due to the

presence of a porous medium, and the external force. The suitable choice for the forcing term, Fi from Eq. (1),

to obtain the correct equations of hydrodynamics is as follows (Guo and Zhao, 2002; Seta et al., 2006):

Fi = ωiρ(1 − 1
2τυ

)

[
�ei. �F

c2
s

+
(�u. �F : �ei�ei)

εc4
s

− �u. �F

εc2
s

]
. (10)

The fluid velocity �u is defined as follows (Guo and Zhao, 2002):

ρ�u =
∑

i

�eifi +
δt

2
ρ �F . (11)

As shown in Eq. (8), �F contains velocity �u . Eq. (11) is a nonlinear equation with respect to velocity �u . This

nonlinearity is ignored by the definition of temporal velocity �v (Guo and Zhao, 2002), shown below.

�u =
�v

c0 +
√

c2
0 + c1 |�v|

�v =

∑
i

�eifi

ρ
+

δt

2
ε �G (12)

c0 =
1
2
(1 +

δt

2
ε

υ

K
) c1 =

δt

2
ε

1.75√
150ε3K

(13)

The fluid density and temperature are defined as:

ρ =
∑

i

fi, T =
∑

i

gi. (14)

Through the Chapman-Enskog procedure, in the limit of small Mach numbers, Eq. (1) recovers the continuity

equation (Seta and Kono, 2002):

∇.u = 0. (15)

Eq. (2) describes the evolution of the thermal energy and leads to the following energy equation:

∂T

∂t
+ ∇.(�uT ) = α∇2T (16)
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whereα is the thermal diffusivity, which is defined as α = c2
s(τc − 1

2 ).

Zou and He’s velocity boundary condition (Zou and He, 1997) and the extrapolation boundary scheme

(Guo et al., 2002b) are applied at the inlet and outlet, respectively. The second-order bounce-back boundary

rule for the nonequilibrium distribution function (Zou and He, 1997) is employed for the top and bottom walls.

4. Numerical procedure

4.1. Convergence criterion

The velocity and temperature of the last step is calculated and the convergence criterion is applied to them for
assurance that the convergence happens. If these parameters satisfy this criterion, the program code will go to
the next step and the iterations will continue. Generally, the proper equations define the investigation of the
convergence situation for the numerical methods. In other words, the error functions are used for assurance
that a parameter like velocity or temperature converges. In this paper, an error function based on macroscopic
parameters is applied (Figure 2).

Error =

∑
i,j

√
(un

i − un−1
i )2 + (un

j − un−1
j )2∑

i,j

√
(un−1

i )2 − (un−1
j )2

≤ 10−6 (17)

If the above relationship is satisfied, the procedure of the numerical solution will continue to the next time step.
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Figure 2. Velocity at x,y = H/2 at the porous screen outlet versus the iteration number.

The velocity magnitude on the positions of x = H/2 and y = H/2 of the porous screen outlet is depicted
in respect to the iteration of time steps in Figure 2, which shows that after 25,000 iterations, the fluctuations
disappeared and a steady state situation occurred. This means that the error function was satisfied in this
iteration. The convergence of the numerical solution of the temperature profile follows the same procedure.
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4.2. Boundary conditions

The schematic scheme of the mentioned problem is shown for the n × m computational domain. The solid
walls are assumed to be noslip; thus the bounce-back scheme is applied to them excluding the top wall. Zou
and He’s known velocity condition and the extrapolation boundary condition are used for the inlet and outlet
of the channel. For example for the flow field in the top boundary (see Figure 1) the following conditions are
used:

f4,n= f2,n, f7,n= f7,5, andf8,n= f6. (18)

For the channel inlet (left main wall) Zou and He’s boundary condition is used They introduced the below
method for the calculation of unknown boundary conditions.

⎧⎪⎨
⎪⎩

ρ =
8∑

i=0

fi

ρu =
∑
i

fiei

(19)

On the assumption that the velocity on the inlet wall (uw and vw) is known, the rest of the numerical procedure
is defined as below. In this special case, the inlet flow should be divided into parts and the below relations
should be calculated for both of them separately.

ρw = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8

ρwuw = f1 + f5 + f8 − f3 − f6 − f7 (20)

ρwvw = f2 + f5 + f6 − f4 − f7 − f8

By implementation of the bounce-back rule in the inlet:

f1 − feq
1 = f3 − feq

3 , (21)

f1 = f3 +
2
3
ρwuw. (22)

Finally, with the combination of the above relations, the unknowns at the channel inlet are calculated.

ρw =
1

1 − uw
[f0 + f2 + f4 + 2 (f3 + f6 + f7)]

f5 = f7 −
1
2

(f4 − f2) +
1
6
ρwuw +

1
2
ρwvw (23)

f8 = f6 −
1
2

(f2 − f4) +
1
6
ρwuw +

1
2
ρwvw

For the channel outlet, the extrapolation boundary condition is used, where n is the lattice on the boundary.

fi(n, j) = 2fi(n − 1, j) − fi(n − 2). (24)
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5. Results and discussion

In this study, the effect of a porous screen on nonuniform inlet velocity flow and heat transfer in a horizontal
plane channel was considered using the LBM (Figure 1). The effects of the Darcy number and the variable
porosity model were investigated on the flow field stabilization and convective heat transfer. The present

computation focused on parameters with the following ranges: Da = 10−4 to 10−1 , ε = 0.4, Prandtl number
= 0.7, and Reynolds number (Re) = 50.

To validate the numerical simulation, the flow and forced convection in a channel filled with or without
(i.e. Poiseuille flow) a porous medium were simulated and compared with previous studies (Figures 3 and 4).

Results showed good agreement in comparison with the previous studies of Narang and Hussain (1981) (Figure

3) and of Guo and Zhao (2002) and Alkam et al. (2002) (Figure 4).
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Figure 3. (a) Velocity profile and (b) local Nusselt number distribution in Poiseuille flow for present study and previous

studies.
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Figure 4. (a) Velocity profile and (b) local Nusselt number distribution in Poiseuille flow for present study and previous

studies.
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Some discrepancies exist between the present simulation and the results of Alkam et al. (2002) for local

Nusselt number distribution (Figure 4). These are due to the difference between inlet velocity profiles, as a
parabolic velocity profile was used by Alkam et al. and a uniform inlet velocity profile was used in this study.

To investigate the grid independency, the velocity profile was considered in the fully developed region of
the channel filled by porous medium at 3 different grid points, (640 × 80), (800 × 100), and (960 × 120), at

Re=50, Da = 10−2 , and ε = 0.6. It was observed that the grid point of (800 × 100) was sufficiently fine to
ensure a grid-independent solution.

In a porous bed ?lling a channel or pipe with rigid and impermeable walls, there is a common increase in
porosity as one comes near the walls. This is because the solid particles are not capable of standing or sitting
together in a well-organized manner as elsewhere, because of the existence of the wall. Experiments show that
porosity is a damped oscillatory function with respect to the distance from the wall, varying from a magnitude
near unity at the wall to nearly core value at about 5 diameters from the wall (Nield and Bejan, 2006) (Figure

5). The notion of volume averaging over a REV breaks down near the wall, and most researchers have assumed

a variation of the following form (Nield and Bejan, 2006):

ε = ε∞[1 + C. exp(−N
y

dp
)], (17)

where dP is the particle diameter and C and N are experiential constants. Some experiments have indicated
that appropriate values are C = 1.4 and N = 5 or 6 for a medium with ε∞ = 0.4 (Cheng et al., 1991). Figure

6 shows the distributions of nondimensional velocity in the y direction for different values of x/H (x/H = 0.5,

0.7, 1) at Da = 10−3 and ε = 0.6. It was observed that the nonuniform inlet flow becomes stabilized after a

porous layer and a homogeneous velocity distribution are obtained. For instance, before the porous screen (x/H

= 0.5), the velocity gradient between y/H = 0.25 and y/H = 0.85 was about 65%, but this gradient reduced and

reached nearly 40% after the porous screen (x/H = 0.7). The effect of the Darcy number on nondimensional
velocity at a constant porosity is shown in Figure 7. The steadiness and uniformity of the velocity profiles

are improved at lower values of the Darcy number. By paying attention to the definition of Da = K/H2 , it
can be seen that the Darcy number decreases when the permeability is reduced. By paying attention to the
permeability definition, it can also be seen that if the bubbles of porous media are very small or if they are
poorly connected, the permeability will be low and the fluid will not flow through easily. Therefore, when the
Darcy number and consequently the permeability decrease, the collisions among the fluid flow and the pores of
the porous screen increase. Thus, the velocity profile becomes stable with decreases in the Darcy number. For
constant Darcy numbers, the velocity profile is smoother for the variable porosity model in comparison with
constant porosity. However, the velocity profile is most sensitive to any variation of porosity. The deviations
between the variable and constant porosity models decrease with decreasing Darcy numbers. The instability of
the velocity distribution is reduced and a homogeneous flow field is obtained with decreasing Darcy numbers
(Figure 8). The local and average Nusselt numbers are calculated.

Nu =
DH

θw − θm

∂θ

∂y

∣∣∣∣
wall

, Nuavg =
1
L

L∫
0

Nu dx, (18)
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Here, the nondimensional temperature (θ) is introduced as:

θ =
T − Tw

Tin1 − Tw
, θm =

Tm − Tw

Tin1 − Tw
. (19)

In Eqs. (20) and (21), DH is the hydraulic diameter and is specified as DH = 2H, and θm is the dimensionless

mean temperature. The bulk mean temperature (Tm) and mean velocity are calculated as follows:

Tm =
1

HUm

∫ H

0

uTdy, Um =
1
H

∫ H

0

udy. (20)

The distribution of the temperature profile for variable and constant porosity is shown at different Darcy
numbers in Figure 9. The temperature distribution is not expected to vary markedly, except near the wall.
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Figure 5. Variation of porosity near the wall (Nield and

Bejan, 2006).

Figure 6. Axial velocity along the distance from the

bottom wall at different locations for Da = 10−3 , ε =

0.6.
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Figure 7. Distribution of axial (a) and vertical (b) velocity along the distance from the bottom wall for variable and

constant porosity with respect to Darcy number variations at x/H = 0.7.

53



HASANPOUR, SEDIGHI, FARHADI

x/H
0 0.5 1 1.5 2 2.5 3

y/H

1
PorousScreen

 Da=10-2 

 Da=10-3 

 Da=10-4 

x/H
0 0.5 1 1.5 2 2.5 3

y/H

1

x/H
0 0.5 1 1.5 2 2.5 3

y/H

1

Figure 8. Velocity vector at different Da numbers at ε = 0.4.

The effect of the porous screen over the temperature distribution at different Da numbers is shown in
Figure 10. It was observed that the maximum temperature gradient was decreased faster by the porous screen
at lower Darcy numbers and, subsequently, better homogeneous temperature contours were created at smaller
channel lengths.
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Figure 9. Distribution of temperature contours for variable and constant porosity at x/H = 0.7.

The effect of different Darcy numbers on the local Nusselt number is presented in Figure 11 for the
bottom wall of the channel. The difference between the local Nusselt numbers is not very sensitive at different
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Figure 12. Average Nusselt number over the bottom wall

for different Darcy numbers at ε = 0.4.

55



HASANPOUR, SEDIGHI, FARHADI

Darcy numbers. It can be observed that lower values of the Darcy number lead to higher values of the Nusselt
number in the porous area. This is due to the rising of the temperature gradient near the wall. After the
porous screen, the hottest fluid has the maximum Nusselt number. The average Nusselt number was plotted for
different Darcy numbers at the bottom wall of the channel (Figure 12). The results of the variable and constant
porosity models did not show observable differences in the local and average Nusselt numbers. However, it was
observed that the results of these 2 models were close to each other, although using the variable porosity model
led to a lower Nusselt number.

6. Conclusion

Flow in a horizontal plane channel partially filled with a porous screen with nonuniform inlet velocity and
temperature was considered here. The LBM was employed for the solution of flow and heat transfer. A variable
porosity scheme was used for modeling the actual manner of porosity on the porous region. Distributions of
nondimensional velocity, nondimensional temperature, and local and average Nusselt number variations for the
Darcy number and porosity were presented. The main observations were as follows:

-The flow behavior can be controlled using a porous screen.

-The nonuniformity of the flow and heat transfer is damped with decreasing Darcy numbers and porosity.

-The variable porosity model shows a stable velocity profile in shorter channel lengths in comparison with
the constant porosity model.

-The deviations between constant and variable porosity models decrease at low Darcy numbers.

Nomenclature

x, y Cartesian coordinates
Da Darcy number, K/H2

H channel width
L channel length
c discrete lattice velocity
cs speed of sound in lattice
feq

i equilibrium distribution function
cs speed of sound in lattice
Nu local Nusselt number
Nu avg average Nusselt number
Ks thermal conductivity of solid
Kf thermal conductivity of fluid

Greek symbols

K permeability of porous medium [m2 ]
ε porosity
υ kinematic viscosity [Pa s−1 ]
α thermal diffusivity of porous medium [m2 s−1 ]
θ dimensionless temperature

(θ = T - T in/T in −Tw)
ω i weighting factor

Subscripts

avg average
in inlet
w wall
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Özdemir, M. and Özgüç, A.F., “Porosity Variation and Determination of REV in Porous Medium of Screen Meshes”,

International Communications in Heat and Mass Transfer, 24, 955-964, 1997.

Poulikakos, D. and Kazmierczak, M., “Forced Convection in a Duct Partially Filled with a Porous Material”, Journal

of Heat Transfer, 109, 653-662, 1987.

57



HASANPOUR, SEDIGHI, FARHADI

Satyamurty, V.V. and Bhargavi, D., “Forced Convection in Thermally Developing Region of a Channel Partially Filled

with a Porous Material and Optimal Porous Fraction”, International Journal of Thermal Sciences, 49, 319-332, 2010.

Seta, T. and Kono, K., “Thermal Lattice Boltzmann Method for Liquid-Gas Two-Phase Flows in Two Dimension”,

JSME International Journal Series B, 47, 572-583, 2004.

Seta, T., Takegoshi, E., Kitano, K. and Okui, K., “Thermal Lattice Boltzmann Model for Incompressible Flows through

Porous Media”, Journal of Thermal Science and Technology, 1, 90-101, 2006.

Spaid, M.A.A. and Phelan, F.R., “Lattice Boltzmann Methods for Modeling Microscale Flow in Fibrous Porous Media”,

Physics of Fluids, 9, 2468-2474, 1997.

Succi, S., Foti, E. and Higuera, F., “3-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method”,

Europhysics Letters, 10, 433-438, 1989.

Zou, Q. and He, X., “On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model”, Physics

of Fluids, 9, 1591-1598, 1997.

58


