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Abstract

Vibration analysis of simply supported square laminated plates containing randomly and unidirectionally

aligned short fibers was performed. The effective elastic modulus of composite was expressed by using the

Mori-Tanaka mean field approach. The results were compared with the rule of mixture and Hashin bounds.

The governing equations were obtained by means of Hamilton’s principle and solved by using the Navier type

solution and Ritz method. The effects of the fiber orientation, the degree of orthotropy, the fiber aspect ratio,

the plate span to thickness ratio, and the fiber volume fraction on the vibration behavior of the laminated

plates were studied. The mode frequency results are compared with results of the finite element model. It is

observed that for increasing degree of orthotropy, the difference between the frequency parameters increases

for increasing aspect ratio. The mode frequency results show that for larger aspect ratios, the frequencies

for short fibers approach those of continuous fibers.

Key Words: Free vibration, composite plate, short fibers, effective moduli, Mori-Tanaka theory, mode

shapes

1. Introduction

In recent years short fiber reinforced composite applications have increased in many branches of engineering.
The shape and orientation of short fibers vary depending on structural requirements and loading conditions.
It is difficult to control the orientation of fibers. Therefore, probabilistic studies are used for determining the
orientation of fibers in a composite. The effective elastic constants of short fiber reinforced composites are
predicted by many approaches in the literature. When the fiber volume fraction of the short fiber reinforced
composite is small in the dilute case Eshelby’s method estimates the elastic constants reasonably (Eshelby,

1957). When the volume fraction of the short fiber reinforced composite becomes significant, proposed aggregate

models are used (Halpin et al., 1971; Christensen and Malls, 1972). The geometric aspect ratios of fibers and
∗Corresponding author
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interactions between the fibers and the surrounding material are ignored in these models. The shear lag method
considers the effect of short fiber length but no information can be obtained about the stress and strain fields
of short fibers by this method (Aveston and Kelly, 1973). Another important approach is the Mori-Tanaka

mean field theory based on Eshelby’s solution of an ellipsoidal inclusion (Mori and Tanaka, 1973). It is useful
for the calculation of non-dilute concentrations. Several approaches have been proposed in the literature by
using the Mori-Tanaka method. Weng obtained the elastic moduli of identical shaped multiphase composites by
the Mori-Tanaka method (Weng, 1990). Benveniste (1987) applied the Mori-Tanaka method to find stress and
strain tensors of composites. Huang and coworkers used the Mori-Tanaka mean field theory and elucidated the
effect of the aspect ratio and orientation effects on the elastic moduli (Chao et al., 1999). The elastic moduli
results were used for the vibration and postbuckling analysis of a short fiber reinforced composite for various
boundary conditions (Huang, 2000; Chang et al., 2004; Shukla et al., 2004; Huang and Shukla, 2005).

The dynamic behavior of laminated composite plates has received considerable attention in the past.
On the basis of classical lamination theory, Jones (1973) obtained a closed form solution for the vibration and
buckling analysis of cross-ply laminated plates with simply supported boundary conditions. The first-order
shear deformation plate theory, commonly known as Mindlin plate theory, accounts for layer-wise constants
states of transverse shear stresses (Mindlin, 1951). A Levy type solution was developed by Reddy and Khedir

(1989) on the basis of parabolic shear deformation theory. Approximate methods are developed for the vibration
and buckling analysis of laminated plates for various boundary conditions. Some earlier studies employing the
Ritz method are based on the classical plate theories with displacement components assumed as double series
of trigonometric functions (Leissa and Narita, 1989). Baharlou and Leissa (1987) employed simple algebraic
polynomials in applying the Ritz method for various boundary conditions.

In the present study the vibration behavior of short fiber reinforced cross-ply laminated square plates
for randomly and unidirectional fiber alignments were studied. The effective elastic moduli of the composite
were expressed by using the Mori-Tanaka mean field theory for the unidirectionally aligned case. The governing
equations of the vibration were solved by using a Navier type solution and the Ritz method. The effects of
the fiber orientation, the ratio of orthotropy, the fiber aspect ratio, and the plate span to thickness ratio on
the vibration behavior of the laminated plates were studied. The mode frequency results were determined and
compared with the results of the finite element method.

2. The effective elastic moduli of composite

In this section the evaluation of the effective elastic properties for a composite containing unidirectionally
aligned fibers is presented. To simulate geometrical configurations ranging from short fiber to continuous fiber
spheroidal inclusion is defined by the following equation:

x2

a2
1

+
y2

a2
2

+
z2

a2
3

≤ 1 (1)

For the calculation of the aspect ratio (for a prolate spheroid aspect ratio is defined as a = a3/a1) semi-axes of

the spheroidal inclusions were taken as (a3 > a1 = a2 ) prolate spheroid form (Mura, 1987).

For non-dilute composites the effective elastic modulus of a 2 phase composite are obtained explicitly as
follows (Huang, 2001):
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C = f0C0A0 +
N∑

r=1

frCrAr (2)

where A0 and Ar are strain concentration factors of matrix and rth fiber phases, respectively.

For non-dilute multiphase composites strain concentration factors are defined by

A0 =

[
f0I +

N∑
r=1

frA
dil
r

]−1

(3)

Ar = Adil
r A0 (4)

Adil
r is dilute concentration factor of rth phase and it is given by

Adil
r =

[
I + SrC

−1
0 (Cr − C0)

]−1

,
(5)

where I is the unit tensor and Sr is the Eshelby tensor for spheroidal inclusions in a transversely isotropic
medium (Eshelby, 1957).

Variation of the Eshelby tensor according to the aspect ratio can be found in Sanboh et al. (1999).

This formulation is based on the assumption that principal axes of fibers coincide with the directions of
the composite matrix. The effects of orientation on elastic properties of composites containing oriented fibers
are evaluated in this section. Fiber orientation distribution can be expressed as (Huang, 2001):

Lij =
1

4θ0 sin φ0

θ0∫
−θ0

π∫
0

Cij (θ, φ) sin φdφdθ (6)

For spatially oriented fiber in a generally orthotropic medium, its orientation can be described by 2 Euler
angles:θ, φ (Figure 1).

ρr (θ, φ) = 4θ0 sin φ0 (7)

−θ0 ≤ θ ≤ θ0
π

2
− φ0 ≤ φ ≤ π

2
+ φ0 (8)

ρr (θ, φ) is the probability density function of the rth phase fibers and the matrix is independent of fiber

orientation. sinφ in the integrand is to account for the surface area of a sphere. C(θ, φ) is the effective stiffness

of composite obtained from Eq. (2) by performing tensor transformation.

For the case of the θ0 = π and φ0 = π
2 fibers are uniformly distributed in all directions (Huang, 2001).

The composite behavior is independent of direction. The composite has completely random distribution and is
macroscopically isotropic. In this case, elastic modulus and effective Poisson ratio ν are obtained through the
relations:

E = L11 −
2L2

12

L11 + L12
ν =

L12

L11 + L12
(9)

The elastic modulus is obtained for transversely isotropic composites. In addition, the random distribution is
expressed with the orientation distribution function. The results are compared with the rule of mixture (Jones,

1998; Calister, 2007) and Hashin bounds (Hashin and Shtrikman, 1963) for random distribution.
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Figure 1. Orientation of short fibers.

3. Governing equations

The displacement field for the plate is assumed on the basis of the general shear deformable shell theory presented
in the literature (Soldatos and Timarci, 1993).

U(x, y, z; t) = u(x, y; t)− zw,x + φ1(z)u1(x, y; t),

V (x, y, z; t) = v(x, y; t) − zw,y + φ2(z)v1(x, y; t),

W (x, y, z; t) = w(x, y; t)

(10)

where u, v, w, u1 , and v1 are the 5 unknown displacement functions of the middle surface of the plate, while
φ1 and φ2 represent shape functions determining the distribution of the transverse shear strains and stresses
along the thickness. Upon employing Hamilton’s principle, the 5 variationally consistent governing equations
of the plate are obtained as:

N c
x,x + N c

xy,y =
(
ρ0u − ρ1w,x + ρ̄11

0 u1

)
,tt

N c
y,y + N c

xy,x =
(
ρ0v − ρ1w,y + ρ̄21

0 v1

)
,tt

M c
x,xx + M c

y,yy + 2M c
xy,xy + q + N c

xw,xx + N c
yw,yy + N c

xyw,xy =[
ρ0w − ρ1v,y − ρ2 (w,yy + w) + ρ̄11

1 u1,x + ρ̄21
1 v1,y + ρ1u,x],tt

Ma
x,x + Ma

xy,y − Qa
x =

(
ρ̄11
0 u − ρ̄11

1 w,x + ρ̄12
0 u1

)
,tt

Ma
y,y + Ma

yx,y − Qa
y =

(
ρ̄21
0 v − ρ̄21

1 w,y + ρ̄22
0 v1

)
,tt

(11)

Here q is the transverse load, and N c
x, N c

y and N c
xy are the constant in-plane edge loads. The inertias ρi and

ρ̄lm
i are defined by

ρi =
∫ h/2

−h/2
ρzidz, (i = 0, 1, 2) ,

ρ̄lm
i =

∫ h/2

−h/2 ρziφm
l dz, (i = 0, 1; l = m = 1, 2 )

(12)

where ρ is the mass per unit volume.

Here c and a indices denote classical plate theory (CPT) and first shear deformation theory (FSDT),
respectively. Although different shape functions are applicable, only the one that converts the present theory
to the corresponding FSDT is employed in the present study. This is achieved by choosing the shape functions
as follows:

FSDT : φ1(z) = φ2(z) = z (13)
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and shear correction factor is taken as k =
√

5/6.

By substituting the stress-strain relations into definitions of force and moment resultants the following
constitutive equations are obtained:

⎡
⎢⎢⎣

N c

M c

Ma

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Aij Bij Bijl

Bij Dij Dijl

Bijl Dijl Dijlm

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ec

kc

ka

⎤
⎥⎥⎦ (14)

N c =

⎡
⎢⎢⎣

N c
x

N c
y

N c
xy

⎤
⎥⎥⎦ , M c =

⎡
⎢⎢⎣

M c
x

M c
y

M c
xy

⎤
⎥⎥⎦ , Ma =

⎡
⎢⎢⎢⎢⎢⎣

Ma
x

Ma
y

Ma
xy

Ma
yx

⎤
⎥⎥⎥⎥⎥⎦ (15)

ec =

⎡
⎢⎢⎣

u,x

v,y

u,y + v,x

⎤
⎥⎥⎦ , kc =

⎡
⎢⎢⎣

−w,xx

−w,yy

−2w,xy

⎤
⎥⎥⎦ ka =

⎡
⎢⎢⎢⎢⎢⎣

Ma
x

Ma
y

Ma
xy

Ma
yx

⎤
⎥⎥⎥⎥⎥⎦ (16)

[
Qa

y

Qa
x

]
=

[
A4422 0

0 A5511

][
v1

u1

]
(17)

The extensional, coupling, bending, and transverse rigidities are defined as follows:

Aij =

h/2∫
−h/2

Qk
ijdz, Apqlm =

h/2∫
−h/2

Qk
pqφ

′
lφ

′
mdz

Bij =

h/2∫
−h/2

Qk
ijzdz Bijl =

h/2∫
−h/2

Qk
ijφldz

Dij =

h/2∫
−h/2

Qk
ijz

2dz Dijl =

h/2∫
−h/2

Qk
ijφl(z)zdz

Dijlm =

h/2∫
−h/2

Qk
ijφlφmdz (18)

The governing equations are solved by using the Navier type solution and the Ritz method (Aydogdu and

Timarci, 2003).
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4. Ritz solution for vibration of cross-ply laminated plates

The vibration analysis of cross-ply laminated plates with various boundary conditions is performed by the Ritz
method. It is a variational approach and requires the expansion of the unknown functions of displacement
components in terms of infinite series. Trigonometric functions (Leissa and Narita, 1989), algebraic polynomials

(Baharlou and Leissa, 1987), and orthogonal polynomials have been employed on the basis of different plate

theories in composite plate studies (Bhat, 1985; Messina and Soldatos, 1999). In the present study, after defining

non-dimensional coordinates as ξ = x/L and η = y/L the following simple algebraic polynomials are used:

u(ξ, η; t) =
I−1∑
i=0

J−1∑
j=0

AijXi(ξ) Yj(η) sinωt,

v(ξ, η; t) =
K−1∑
k=0

L−1∑
l=0

BklXk(ξ)Yl(η) sin ωt,

w(ξ, η; t) =
M−1∑
m=0

N−1∑
n=0

CmnXm(ξ)Yn(η) sin ωt

u1(ξ, η; t) =
P−1∑
p=0

Q−1∑
q=0

DpqXp(ξ)Yq(η) sin ωt,

v1(ξ, η; t) =
R−1∑
r=0

S−1∑
s=0

ErsXr(ξ) Ys(η) sin ωt,

(19)

where the polynomials are defined as:

Xf = ξf(ξ + 1)B1 (ξ − 1)B3 , f = i, k, m, p, rYg(η) = ηg(η + 1)B2(η − 1)B4 , g = j, l, n, q, s (20)

and Aij , Bkl, Cmn, Dpq and Ers are unknown undetermined coefficients. Here Bi can take values that are

chosen according to the type of boundary conditions imposed at the edges of the plate; the index i denotes the
subsequent edges of the plate in the counterclockwise direction. The edge numbered 1 is the one at ξ = −1.

The values of B= 0, 1, and 2 correspond to the free, simply supported, and clamped edge, respectively (Narita,

2000). In our work, for simply supported boundary condition B = 1 is taken for numerical analysis.

The dimensionless free vibration frequencies are defined as follows:

λ2 = (ρL4
xω2/E2h

3) (21)

5. Numerical results

The effective elastic moduli of the composite are expressed by using the Mori-Tanaka mean field approach for
unidirectionally aligned inclusions. The effective elastic moduli of composite with randomly oriented fibers are
obtained by orientation distribution function. The elastic moduli are obtained for different aspect ratios namely
a = 1, 4, 40, and 100. The elastic moduli are taken as E0 = 5.35 GPa for matrix and E1 = 73 GPa for
inclusions.

The elastic modulus results are compared with results in the literature (Huang, 2000) for the unidirec-
tionally aligned case and good agreement is observed. For random orientation of fibers the Mori-Tanaka results
are compared with the rule of mixture and Hashin bounds in Figure 2. The elastic modulus results are shown
to be close for lower fiber volume fractions. The elastic modulus results are used for the free vibration analysis
of cross-ply laminated plates with simply supported boundary conditions. The frequency parameter results of
the Navier type solution and the Ritz method for randomly oriented short fiber reinforced cross-ply laminate of
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[0/90/90/0] with a = 1, f = 0.3 are presented in Figure 3 as a function of plate span to thickness ratio (L/h).

It is observed that for larger L/h ratios the Ritz results converge to Navier solutions.

The degree of orthotropy (E1/E2) on the vibration behavior of the laminated plates is shown in Figure

4. The analysis was performed for (0◦) simply supported cross ply laminated composite plates containing

unidirectionally aligned inclusions. It is observed that for increasing (E1 /E2) ratio the difference between the
frequency parameters increases for increasing aspect ratio.
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Figure 2. Variation in elastic modulus with fiber volume

fraction.

Figure 3. Variation in frequency parameter with (L/h)

ratio.

In Figures 5 and 6, effects of the aspect ratio and plate span-to-thickness ratio effect on the free vibration
results of a simply supported composite plate with [0/90/90/0] layup are shown.
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Figure 5. Variation in frequency parameter for

[0/90/90/0] layup with aspect ratio and for (fr = 0.3, L/h

= 10).

This study was performed for the first 9 modes of laminated plates. Figures show that the frequency
parameter is more sensitive for smaller aspect ratios (1-5) and with increasing aspect ratio they asymptotically
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converge to a value. It can be said that for larger aspect ratio frequency of the short fibers, the results approach
those of continuous fibers (Eruslu and Aydogdu, 2009). It is observed that the frequency parameter increase

for larger L/h ratios.

In Figures 7 and 8 the free vibration frequencies of symmetric and anti-symmetric cross-ply plate with a
= 40, L/h = 50 are obtained and presented for different volume fractions (fr). It can be seen that all frequency
parameters increase with increasing fiber volume fraction. The frequency parameter result for symmetric cross-
ply layups comes out to be higher than the results for anti-symmetric cross-ply layups.
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The frequency parameter results of the Navier type exact solution and ANSYS (finite element code) are

compared for a = 1, 40, f = 0.1, L/h = 50 in Tables 1 and 2, respectively. The analysis is performed for simply
supported antisymetric cross-ply laminated plates.

Table 1. Frequency parameter results of composite plate with [0/90/0/90] layup for the first 9 modes (a = 1).

Mode M n Frequency parameter Frequency parameter
(Navier) (ANSYS)

1 1 1 8.5 8.3
2 1 2 20.0 20.3
3 2 1 20.0 20.3
4 2 2 33.9 33.1
5 1 3 38.0 39.9
6 3 1 38.0 39.9
7 2 3 53.8 53.3
8 3 2 53.8 53.3
9 3 3 76.2 67.2

Table 2. Frequency parameter results of composite plate with [0/90/0/90] layup for the first 9 modes (a = 40).

Mode M n Frequency parameter Frequency parameter
(Navier) (ANSYS)

1 1 1 8.8 8.8
2 1 2 21.5 22.0
3 2 1 21.5 22.0
4 2 2 35.3 35.0
5 1 3 42.0 44.0
6 3 1 42.0 44.0
7 2 3 56.7 56.8
8 3 2 56.7 56.8
9 3 3 79.2 74.9
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According to these tables, the largest difference between solutions is obtained as 11% for a = 1 and 5%
for a = 40. The mode frequency results show that both results are close to each other, especially for larger
aspect ratios. This means that for larger aspect ratios the frequencies of the short fibers are close to those of
continuous fibers.

The mode shape results show that the in plane displacements (u,v) are negligible and the displacements

including transverse shear effects (u1, v1) are insignificant in contrast to out-of-plane displacements (w). The

mode shapes of symmetric modes are similar. In Figure 10, the effect of L/h ratio on transverse shear effects

is shown for 2 different modes. It is found that transverse shear effects are effective for small L/h ratios as
expected.

In Figure 9a and b the first 9 mode shapes of plate with [0/90/0/90] layup are presented.
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layup: Mode 7 to 9.
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6. Conclusions

In this work, free vibration characteristics of shear deformable, cross-ply laminated short fiber reinforced
composite square plates are studied. The effective elastic moduli of composites are expressed using the Mori-
Tanaka mean field approach for unidirectionally aligned inclusions. The random orientation is introduced by
using the fiber orientation function. The plate with simply supported boundary conditions is solved by Navier’s
method and the Ritz method. The dimensionless frequency results are given for different aspect ratios, degree
of orthotropy, fiber volume fraction, and the length-to-thickness ratio. The mode shape results are given for
frequency results.

It is found that for increasing (E1 /E2) ratio the difference between the frequency parameters increases
for increasing aspect ratio. The mode frequency results show that the frequency parameter is more sensitive for
smaller aspect ratio (1-5) and with increasing aspect ratio they asymptotically converge to a value. The mode

shape results show that the transverse shear effects (u1, v1) are insignificant for larger L/h ratios in contrast to
out-of-plane displacements. The present study may be extended to higher order shear deformation theories for
various boundary conditions.

Nomenclature

a1, a2, a3 semi-axes of the spheroid
a aspect ratio
C0, Cr elastic moduli of matrix and fiber phases
C effective elastic modulus of 2-phase composite
f0, fr volume fractions of matrix and fiber phases
εa uniform far-field applied load
〈〉 volume averaging
〈εpt

r 〉 ,
〈
εpt
0

〉
average perturbed strains in fiber and matrix phases

〈ε0〉 , 〈εr〉 average strains in matrix and fiber phases
εT transformation strain
Sr Eshelby tensor
Adil

r dilute concentration factor of rth phase
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A0 non-dilute strain concentration factor of matrix phase
Ar non-dilute strain concentration factor of fiber phase
Lx ,Ly plate dimensions in x, y directions
N number of layers in the laminated composite plate
E1 , E2 elastic moduli for a composite layer
G12 , G13 , G23 shear moduli for a composite layer
ν12, ν13 Poisson’s ratios
h plate thickness
U, V, W displacements in x-, y-, and z-directions, respectively
u, v, w displacement components in the mid-plane
u1 , v1 unknown functions representing the effect of transverse shear strains

for the mid-plane
Q ij (i, j = 1, 2, 6) reduced stiffness of composite
εx, εy, γxy, γxz , γyz strain components
x,y,z Cartesian coordinates
t time
N c

x, N c
y , N c

xy, Qa
x, Qa

y force resultants
M c

x, M c
y , M c

xy, Ma
x ,

Ma
y , Ma

xy, Ma
yx moment resultants

A ij , B ij , D ij

(i,j=1,2,6) stiffness matrices
B ijl , D ijl , D ijlm , Apqlm

(i, j, l, m = 1, 2; p, q = 4, 5) shear deformation stiffnesses
q transverse load
Ne

x, Ne
y , Ne

xy external in-plane loads
ρi, ρ̄lm

j (i = 0, 1, 2;
j = 0, 1; l, m = 1, 2) inertias
ρ mass per unit volume
ω circular frequency
[K] stiffness matrix
[M ] mass matrix in free vibration
{Δ} column vector of undetermined coefficients
λ non-dimensional frequency parameter
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