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Abstract

In this research, the effects of embedded length and pull-out force on the seismic behavior of a reinforced

concrete (RC) column were investigated. Separate degrees of freedom were used for the steel and concrete

parts in the nonlinear modeling of the RC elements in order to consider the bond-slip effect. The analytical

method was assessed through the comparison of experimental and analytical results. The effect of the

bar’s slippage on the axial force-bending moment (P-M) interaction curve of the RC column was calculated

by nonlinear modeling of pull-out behavior. The P-M interaction curves for a variety of columns with

different embedded bar lengths in the footing were calculated and compared. In most recommendations and

instructions for the capacity of RC columns, it is assumed that the embedded length of the longitudinal bars

in the joints is sufficient and slippage will not occur. However, in this research, the effect of reduction of the

embedded length on the P-M interaction curve of RC columns was evaluated, and, in the end, a modification

strategy was proposed for the curve suggested by the American Concrete Institute. The results show that

as long as the embedded length is sufficient, responses do not differ significantly. By reducing the embedded

length, much of the effect of the bar’s pull-out on the P-M interaction curve occurs in terms of pure bending

or low axial forces. By increasing the percentage of longitudinal bars, the capacity reduction increases due

to the pull-out effect.

Key Words: Bar’s pull-out, Embedded length, P-M interaction curve, Reinforced concrete column, Seismic
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1. Introduction

The analytical axial force-bending moment (P-M) interaction curve is a common curve in the design process of

reinforced concrete (RC) columns. Using analytical relations and some assumptions, this curve can be simply

calculated and extracted. According to American Concrete Institute (ACI) document ACI 318-08 (2008), these
curves are calculated depending on the following assumptions:
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• the strain distribution in the RC cross-section is linear,

• shear deformation is not considered, and

• a perfect bond is assumed between the bars and the surrounding concrete.

Currently, P-M curves are calculated based on the existence of compatibility between the concrete and bar
deformations in the RC section (Figure 1). In other words, the bond between the concrete and the bars is
assumed to be perfect, and slip is neglected. However, the bond between the concrete and the bars is not
complete, and this may affect the accuracy of the calculations.
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Figure 1. Cross-sectional details of a RC section.

The footing position of the RC column is considered to be one of the critical zones of RC structures.
Therefore, to check and control the seismic behavior and design of many columns, the critical control section is
the column footing section. The embedded length of the longitudinal bars in the footing connection is one of the
influential parameters in determining the capacity of RC columns. Currently, based on ACI 318-08 regulation
criteria, the embedded length of longitudinal bars is assumed to be sufficient and the pull-out effect is ignored.
On the other hand, in the design process, special arrangements are recommended to provide enough embedded
length to prevent the pull-out of the bars. If, however, due to reasons such as executive problems or faults,
a sufficient embedded bar length is not provided, then the ACI 318-08 regulation for P-M interaction curves
cannot be used to evaluate or estimate the RC column capacity. Such a condition is applicable in the case of the
seismic vulnerability of RC columns previously made with inadequate embedded lengths of longitudinal bars.
In this research, we examined the ways by which the curve for conditions affected by reduced embedded length
can be changed. For this purpose, in a nonlinear analysis process with consideration of the bond-slip effect and
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the bar’s strain, necessary analysis was done for several samples with different percentages of longitudinal bars.
In addition, the results were compared with the ACI 318-08 recommended values.

In the present study, for a short concrete column not affected by the effects of slenderness, the effect of
the bar’s pull-out from the footing on the P-M interaction curve was investigated. The layer model was used
for numerical modeling. In this method, an element is divided into a number of concrete and steel fiber lengths,
and the element section specifications are worked out by adding up the effects of the fibers’ behavior. The layer
method assumes a perfect bond between the concrete and the bar (Spacone et al., 2002), but this assumption is
neither appropriate nor realistic, and it causes a considerable difference between the analytical and experimental
results (Kwak and Kim, 2006). Limkatanyu and Spacone (2002) used the layer model, but they removed the
perfect bond assumption. In order to achieve this goal, they separated the degrees of freedom of the concrete
from the bars in the beam-column elements. However, for modeling RC frames, a joint element is also needed.
What matters is the compatibility and assimilability of joint elements with beam-column elements. In this
study, the beam-column element introduced by Limkatanyu and Spacone (2002) was used to model the column
element because it has good precision and includes the interaction between the concrete and the bars. A joint
element that is capable of being assembled with the above column element was also defined and used. Moreover,
this modeling takes into consideration the pull-out effect of the bars that are restrained within joints.

2. Nonlinear modeling of the RC columns with the joint element

For the purpose of nonlinear analysis of RC columns and investigation of the bond-slip effect, 2 types of
columns and joint elements were modeled (Figure 2). A computer program created in MATLAB software was

used (MathWorks, 2008). For modeling a column element based on the research carried out by Limkatanyu

and Spacone (2002), in the fiber model, the slip effect between the concrete and the bar was implemented
without ignoring the compatibility of the strain between them. In this method, a length segment of a RC frame
element is considered as the combination of a length segment of a 2-node concrete element and a number of
steel bar elements. The 2-node concrete elements follow the Euler-Bernoulli beam theory, and the 2-node bar
elements are, in fact, truss elements. The contact between the concrete and the longitudinal bars is provided
by a constant bond force around the bars. The governing equations of the length segment of the RC element
are obtained by using the internal force balance equations as well as the concrete element axial force equations,
steel bar element equations, shear force balance, and flexural force balance in the length segment. A weak
form of the governing equation in a finite element method was obtained using the shape functions based on
displacement and using the principle of stationary potential energy.
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Figure 2. Numerical modeling of a RC column with footing connection.
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A joint element was used as the footing connection of the RC column. In this element, the effect of
pull-out is considered as the relative displacement between the steel bar and the surrounding concrete, and
bond stress is referred to as the shear stress acting parallel to an embedded steel bar on the contact surface
between the reinforcing bar and the concrete (Figure 3). Referring to Figure 3, the slippage of the bars can

be defined in the form of Eq. (1), if the nodal displacement vector related to pull-out behavior is defined as

UPM =
[

U1 U2 U3 V1 . . Vn

]T .

PO =

⎡
⎢⎢⎢⎢⎣

s1
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.
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. . . . . . .
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⎤
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In this equation, yn is the distance of the nth bar from the reference line. The relationship between pull-out
force and slip for the embedded nth bar in the section can be defined as fPO n = kPO n × dbn , where fPO n is
the pull-out force and kPO n is the slip stiffness of the pull-out behavior. This equation derives from the bond
stress-slip relationship related to the pull-out behavior, the embedded length of the bar, and the conditions at
the end of the bar and the perimeter of the bar cross-section. The relationship between the pull-out force and
the slip of all bars in the section can be written in the matrix form below.
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The nodal force vector can be expressed in the following form:

FPM = AT
PM × fPO = AT

PM × kPO ×PO = AT
PM × kPO ×APM ×UPM = KPM × UPM . (3)

From Eq. (3), the pull-out stiffness matrix can be written asAT
PM ×kPO ×APM . The pull-out stiffness matrix

will be imposed onto the stiffness matrix of the joint element. In order to calculate the resisting force vector
related to pull-out behavior and to impose it onto the resisting force vector of the joint element, it can be

written in the form of AT
PM × fPO .

2.1. Concrete and steel materials’ stress-strain relationships

The monotonic envelope curve for confined concrete, introduced by Park et al. (1972) and later extended by

Scott et al. (1982), was adopted for the compression region because of its simplicity and computational efficiency

(Figure 4a). It was assumed that the concrete behavior is linearly elastic in the tension region before the tensile

strength and that, beyond that, the tensile stress decreases linearly with increasing tensile strain (Figure 4b).
In tensile behavior, ultimate failure from cracking is assumed to occur when the tensile strain exceeds the value
given in Eq. (4).

εut = 2 × (Gf/ft
) × ln(3/L)/(3 − L) (4)
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Here, L denotes the element length in millimeters and Gf is the fracture energy, dissipated in the formation

of a crack of unit length per unit thickness and considered as a material property. ft is the concrete tensile
strength. For normal-strength concrete, the value of Gf /ft is in the range of 0.005-0.01 (Welch and Haisman,

1969). In this research, the value of Gf /ft was assumed to be an average value of 0.0075.
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Figure 3. Numerical modeling of the bar’s pull-out.
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Figure 4. Concrete stress-strain relationship: a) compressive behavior, b) tensile behavior.

The Giuffre-Menegoto-Pinto model was adopted to represent the stress-strain relationship of the steel
bars (Figure 5). This model was initially proposed by Giuffre and Pinto (1970) and later used by Menegoto

and Pinto (1973).

113



HASHEMI, VAGHEFI

Figure 5. Stress-strain relationship of the bars.

2.2. Bar and concrete interaction

Bond stress is referred to as the shear stress acting parallel to an embedded steel bar on the contact surface
between the reinforcing bar and the concrete. Bond slip is defined as the relative displacement between the
steel bar and the concrete. In this paper, 2 models were used for the bond stress-bond slip relationship, 1 for
the bond-slip behavior through the length of the beam-column elements, and 1 for the pull-out behavior of the
bars in the joint elements. Among the several models proposed by researchers, that proposed by Eligehausen et
al. (1983) was adopted (Figure 6). In this model, the effect of many variables, such as the spacing and height
of the lugs on the steel bar, the compressive strength of the concrete, the thickness of the concrete cover, the
steel bar diameter, and the end bar hooks, are considered. Moreover, this model was investigated and proposed
as a good and accurate model (Gan, 2000).
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Figure 6. Bond stress-slip relationship (Gan, 2000).

3. Numerical investigation

For numerical investigation, first, for a RC column with the geometric specifications given in Figure 7 and the
characteristics given for specimen 2 in Table 1, numerical validation was done. This specimen is a column under
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uniaxial bending and a constant axial load with a magnitude of 350 kN. Lateral cyclic displacement was imposed
at the free end. It was tested by Qiu et al., who gave more details (2002). In numerical modeling, the column
is subdivided into a sufficient number of shorter elements. Because the formulation is displacement-based and
the response depends on the element size, it is necessary that the length of the elements be short enough. As
a simple suggestion, the length of the column elements can be selected as equal to or smaller than the average
crack spacing in the beam or in the column. In these cases, convergence of the calculated responses will be
achieved in the numerical process. For nonlinear solving of this model, a Newton-Raphson method, which
included the controlling of displacement, was used. According to Figure 8, verification shows that the analytical
and experimental load-displacement history was in good accordance with the strength, stiffness, and changes
during cyclic loading.
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Figure 7. Geometry of the specimens (Qiu et al., 2002). Figure 8. Experimental and analytical cyclic load-

displacement responses for specimen 2.

After ensuring the accuracy and precision of the analytical method, a P-M curve was calculated in relation
to a cross-section with zero distance from the footing connection of a column with geometric specifications
according to Figure 7. The calculation was repeated for a variety of embedded lengths and percentages of
longitudinal bars. Three specimens (specimens 1, 2, and 3), which respectively had 1.57%, 2.26%, and 3.39%
longitudinal bars, were analyzed. More details about these specimens are given in Table 1. The analytical
results for specimen 1 relevant to various embedded lengths are presented in Figure 9. Likewise, the results for
specimens 2 and 3 are given in Figures 10 and 11, respectively. According to the ACI 318-08 requirements, the
required embedded length of the longitudinal bars in the footing is given in Table 2. The minimum required
embedded length is sufficiently conservative considering the computational embedded length based on ACI 318
formulas, and results show that as long as the embedded length is sufficient (equal to or greater than the ACI 318

suggested value), responses do not differ significantly. However, with considerable reduction of the embedded
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Table 1. Details of investigated specimens.

Specimen 1 Specimen 2 Specimen 3
%1. 75=ρ %2. 62=ρ %3. 93=ρ

Section view 

Main bars 
8 × 10 mm 

 bars 
8 × 12 mm 

 bars 
12 × 12 mm 

 bars 

Stirrups 
6 mm bars @ 50 

mm c/c 
6 mm bars @ 50 

mm c/c 
6 mm bars @ 50 

mm c/c 
Cross section (width × depth) 200 × 200 mm2 200 × 200 mm2 200 × 200 mm2

 (MPa) 40  40  40  

yf  of main bars (MPa) 460  460  460  

yf  of stirrups (MPa) 420 420 420 

Concrete cover (mm) 21 21 21
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Figure 9. P-M interaction curve calculated for speci-

men 1.

Figure 10. P-M interaction curve calculated for speci-

men 2.

length, the P-M curves will change and the bending capacity of the RC column will decrease. By evaluating
responses from all 3 specimens, we can say that the greatest effect of the bar’s pull-out on the P-M interaction
curve occurs in terms of pure bending or low axial forces. According to Figure 12, the P-M curve can be divided
into 3 parts. The part in which the bending behavior is predominant receives the highest effect. In the part in
which the axial force in the section of the column is considerable, the reduction of the embedded length does
not significantly affect the capacity of the column. This is because, in the presence of a large axial force, the
longitudinal bars of the section are always under compression and the tensile force that leads to pull-out does
not occur. When the values of both axial force and bending moment are considerable, depending on the tensile
stress created in the bars, the pull-out will affect the column capacity. The results also show that by increasing
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the percentage of longitudinal bars and emphasizing the role of the steel bars more than that of the concrete,
the decreased amount of capacity due to pull-out effect is greater. Where the embedded length is equal to zero,
the ultimate bending capacity is calculated based on the concrete tensile strength for a fully cracked section.
The bending capacity is thus calculated as a section without longitudinal bars for all 3 specimens, and in pure
bending conditions, the ultimate bending capacities are equal. Meanwhile, an embedded length of zero means
that the longitudinal bars of the column have not been continued into the foundation.
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Figure 12. Schematic P-M interaction curve with the

reducing effect of pull-out effect.

Table 2. Required embedded length of the specimens according to ACI 318.

Specimens 2 and 
3 

Specimen 1 

79 66 
Calculated required embedded length 
based on ACI 318 formulas (mm) Without standard 

hook in the end of 
bar 300 300 

Minimum required embedded length 
based on ACI 318 (mm) 

69 58 
Calculated required embedded length 
based on ACI 318 formulas (mm) With standard hook 

in the end of bar 
150 150 

Minimum required embedded length 
based on ACI 318 (mm) 

In addition, the analytical results were compared with the ACI 318-08 recommendations. It should
be remembered that ACI 318-08 stated that the P-M interaction curves depend on assumptions such as the
embedded length being long enough and the bond between the bars and the surrounding concrete being perfect.
In comparison with the analytical results when the embedded length is sufficient, good accordance can be seen in
the pure bending mode. In the presence of axial force and especially with an increase in its value, however, the
amount of difference will be significant. Reviewing the ACI 318-08 assertions, the major cause of dispute is that
the increasing effect of confinement stirrups on the concrete’s compressive strength was not considered in the
ACI 318-08 formulas. In numerical analysis, however, the confinement effect is considered. In the pure bending
mode or in the presence of a very low axial force, the criterion for reaching ultimate bending capacity is the bar’s
yielding without a significant role for the concrete’s compressive strength, so the role of the concrete’s ultimate
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compressive strength in the ultimate capacity of the RC section is small and the yielding of the bars is more
effective. Another cause for divergence between the analytical results and the ACI recommendations is that the
numerical method employed is an analytical approach based on fiber theory and including the bond-slip effect,
whereas the ACI recommendation used the assumption of compression block in the section. Naturally, these
2 methods are not identical. When the embedded length is sufficiently long, the ACI 318-08 P-M interaction
curve does not need modification for the sake of pull-out and the bond-slip effect; moreover, it is assured and
conservative. In reducing the embedded length, however, it is necessary to modify the P-M curve based on
the ACI 318-08 recommendations. The proposed modification is that if Asfs is smaller than fPO , reforms are
not done to the curve, but if this ratio is not established, fPO should be used instead of Asfs in the process
of capacity calculation. Here, As and fs are the area of the cross-section and the tensile stress of each bar,
respectively. The fPO value can be calculated according to the details given in Figure 3. In order to calculate
τb , the relationship proposed by Eligehausen et al. (1983) can be used as in Eq. (5). In this equation, ds is

the bar’s diameter in millimeters, f ′
c is the concrete compressive strength in MPa, and τb will be calculated in

MPa.

τb =
(

20 − ds

4

)(
f ′

c

30

)0.5

(5)

The proposed modified method was validated for all specimens with good precision; as an example, the results
for specimen 2 for an embedded length of 50 mm are presented in Figure 13.
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Figure 13. Inserting the reducing effect of the bar’s pull-out into the P-M interaction for specimen 2.

4. Conclusion

As long as the embedded length is sufficient, responses do not differ significantly. By reducing the embedded
length, the greatest effect of the bar’s pull-out on the P-M interaction curve occurs in terms of pure bending or
low axial forces. The results also showed that by increasing the percentage of longitudinal bars and highlighting
the role of steel bars more than that of concrete, due to the pull-out effect, the amount of capacity reduction
increases. In addition, comparison of the analytical results with ACI 318-08 recommendations showed that when
the embedded length is sufficiently long, the ACI 318-08 P-M interaction curve does not need modification for the
sake of pull-out and bond-slip effect; it is also assured and conservative. When the embedded length is reduced,
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however, it is necessary to modify the P-M curve based on ACI 318-08. The modified method proposed here
can be used for the modification process with good precision.
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