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Abstract

The hydraulic design and analysis of flow conditions in pipe networks are dependent upon estimating

the friction factor, f . The performance of its explicit formulations and those of artificial intelligence (AI)

techniques are studied in this paper. The AI techniques used here include artificial neural networks (ANNs)

and genetic programming (GP); both use the same data generated numerically by systematically changing

the values of Reynolds numbers, Re , and relative roughness, ε/D , and solving the Colebrook-White equation

for the value of f by using the successive substitution method. The tests included the transformation of Re

and ε/D using a logarithmic scale. This study shows that some of the explicit formulations for friction factor

induce undue errors, but a number of them have good accuracy. The ANN formulation for the solving of the

friction factor in the Colebrook-White equation is less successful than that by GP. The implementation of

GP offers another explicit formulation for the friction factor; the performance of GP in terms of R2 (0.997)

and the root-mean-square error (0.013) is good, but its numerically obtained values are slightly perturbed.

Key Words: Pipe friction factor, Darcy-Weisbach equation, implicit/explicit equations, artificial neural

network, genetic programming

1. Introduction

The understanding of flow equations in closed conduits reached its maturity in the early 20th century, whereby
flows in such systems are driven by pressure differences between 2 different locations and the equation is
referred to as the Darcy-Weisbach equation. This hydraulic equation serves as the basis for hydraulic design
and analysis of water distribution systems, and it is expressed in terms of pressure drop, which is a directly
measurable quantity of friction. However, the mathematical formulation of the problem includes an empirical
friction parameter, f , for which the Colebrook-White equation is one well-known implicit formulation, such
that the factor appears on both sides of the equation. This implicit problem is not intractable, as it can be

∗Corresponding author

121



SALMASI, KHATIBI, GHORBANI

treated by iterative techniques, although it is cumbersome. Until the wide application of artificial intelligence
(AI) in the 1990s, the challenge was to develop its explicit formulations, but, since then, the application of AI
techniques is also a focus of research.

The Colebrook-White equation integrates important theoretical work by von Karman and Prandtl by
accounting for both smooth and turbulent flow regimes in terms of 2 parameters, the Reynolds number, Re ,
and the relative roughness as a measure of friction, ε/D . Alternative methods of solving the Colebrook-White
equation include iterative methods, analytical solutions using the Lambert W function, use of an explicit
equation, soft computing techniques that recognize that f -values are not precise, and a host of AI techniques
used in recent years, including the artificial neural network (ANN) technique and genetic programming (GP).
However, ANNs and GP assume that f -values are precise.

ANNs are parallel information processing systems that emulate the working processes in the brain. A
neural network consists of a set of neurons or nodes arranged in layers; in the case that weighted inputs are used,
these nodes provide suitable inputs by conversion functions (Kişi, 2005). Each neuron in a layer is connected
to all of the neurons of the next layer, but without any interconnection among neurons in the same layer.
Applications of ANNs to hydraulics go back to the 1990s and remain in active use today.

The GP methods, first proposed by Koza (1992), are wide-ranging and similar to genetic algorithms

(Goldberg, 1989). GP techniques are robust applications of optimization algorithms and represent one way
of mimicking natural selection. These techniques derive a set of mathematical expressions to describe the
relationship between the independent and dependent variables using such operators as mutation, recombination
(or crossover), and evolution. These are operated in a population evolving over generations through a definition
of fitness and selection criteria. Applications of GP suit a wide range of problems and are particularly applicable
to cases in which the interrelationships among the relevant variables are poorly understood or suspected to be
wrong, or conventional mathematical analyses are constrained by restrictive assumptions but approximate
solutions are acceptable (Banzhaf et al., 1998).

In smooth pipes, friction factor f depends only on Re , and Gulyani (1999) provided a revision and
discussion of the correlations more commonly used to estimate its value. However, the focus of recent research
is largely on the full Colebrook-White equation.

More (2006) applied an analytical solution for the Colebrook-White equation for the friction factor using
the Lambert W function. A close match was then observed by comparing the friction factor obtained from
the Colebrook-White equation (used iteratively) and that obtained from the Lambert W function. Fadare and

Ofidhe (2009) studied the ANN technique for the estimation of the friction factor in pipe flows and reported a
high correlation factor of 0.999.

Yang et al. (2003) used ANNs to predict phase transport characteristics in high-pressure, 2-phase
turbulent bubbly flows. Their investigation aimed to demonstrate the successful use of neural networks in the
real-time determination of 2-phase flow properties at elevated pressures. They established 3 back-propagation
neural networks, trained with the simulation results of a comprehensive theoretical model, to predict the
transport characteristics (specifically the distributions of void-fraction and axial liquid-gas velocities) of upward
turbulent bubbly pipe flows at pressures in the range of 3.5-7.0 MPa. Comparisons of the predictions with the
test target vectors indicated that the root-mean-square error (RMSE) for each of the 3 back-propagation neural

networks was within 5% to 6%.

To date, the application of GP in hydraulic engineering has been limited. Davidson et al. (1999)
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determined empirical relationships for the friction in turbulent pipe flows and the additional resistance to flow
induced by flexible vegetation, respectively. Giustolisi (2004) determined the Chezy resistance coefficient in
corrugated channels. The authors are not aware of the application of GP to the Colebrook-White equation.

This paper is focused on treating the friction factor as having a precise value, but, in reality, this param-
eter is variable over time and data are often insufficient, ambiguous, and/or uncertain for precise treatments.

Therefore, Yıldırım and Özger (2009), Yıldırım (2009), and Özger and Yıldırım (2009) investigated this param-
eter with soft computing techniques using various formulations of the friction factor, allowing them to identify
precise values of friction values using neuro-fuzzy techniques.

The overall objective of the present study was to evaluate the performances of explicit formulations for
estimating the friction factor, f , in the Darcy-Weisbach equation, while using ANNs and GP to avoid the need
for a time-consuming and iterative solution of the Colebrook-White equation. The study involves the generation
of data and comparisons between the various techniques with the numerical solutions of the Colebrook-White
equation.

2. Models and methodology

2.1. Flow equation

The energy loss due to friction in Newtonian liquids flowing in a pipe is usually calculated with the Darcy-
Weisbach equation, as follows.

hf = f
L

D

V 2

2g
(1)

In this equation, f is referred to as the Moody or Darcy friction factor. This may be reformulated as follows.

f =
D

L

g hf

1/2 V 2
=

D

L

ΔP

1/2 ρV 2
(2)

The friction factor depends on the Reynolds number, Re , and on the relative roughness of the pipe, ε/D .

For both smooth and turbulent flows, the friction factor is estimated with the following equation,
developed by Colebrook and White (1937).

1√
f

= −2 log (
ε

3.7D
+

2.523
Re

√
f

) (3)

2.2. Explicit formulations

The Colebrook-White equation is valid for Re values ranging from 2000 to 108 , and for values of relative
roughness ranging from 0.0 to 0.05. The formula is often used in pipe network simulations. Its form is notably
implicit, as the value of f appears on both sides of the equation, and its accurate solution is often very time-
consuming, requiring many iterations. An approximate equation for f that does not require iteration can be
used to improve the speed of simulation software. This was a subject of active research in the past, leading to a
range of explicit formulations that are summarized in Appendix I. A study of the performance of these explicit
equations was one of the aims of this paper.
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2.3. Data specification and implementations of the AI models

The data in this modeling study were generated using a numerical procedure based on Eq. (3). The data

generation included a systematic variation of Re ranging from 2000 to 108 (using 74 values of Re) and the

varying of ε/D , ranging from 10−6 to 0.05 (28 values). Different combinations of Re and ε/D serve for the
generation of data points in terms of f , where the f -value for each set of data is calculated by the numerical
solution of the Colebrook-White equation using the successive substitution method. The dataset consisted of
a total of 2072 points. Input variables were ε/D and Re , and the output was f . A selection of the generated
data is shown in Appendix II and Table II.1.

2.4. Artificial neural networks

Any layer consists of predesignated neurons, and each neural network includes one or more of these intercon-
nected layers. Figure 1 shows a 3-layered structure that consists of 1 input layer, I; 1 hidden layer, H; and 1
output layer, O. All of the neurons within a layer act synchronously. The operation process of these networks is
such that the input layer accepts the data and the intermediate layers processes them, and, finally, the output
layer displays the resulting outputs of the model application. During the modeling stage, the coefficients related
to the present errors in the nodes are corrected by comparing the model outputs with the recorded input data
(Rakhshandehroo et al., 2010).

Input
Layer

I

Hidden
Layer

H

Output
Layer

O

Output Variable
Input Variables

Re

e/D

f

1

2

3

4

5

Figure 1. Neuron layout of artificial neural network (ANN).

The data for training the ANN model were generated using the numerical procedure described above.
The dataset consisted of a total of 2072 points, of which 70% (1450 data points) were selected for the training

process and 30% were selected as test data (622 data points). The optimal ANN configuration was selected
from among various ANN configurations based on their predictive performances. The performance of the various

ANN configurations was studied with 2 error measures: the determination coefficient, R2 , and RMSE.

2.5. Genetic programming

Implementation of GP models involves a number of preliminary decisions, including the selection of a set of basic

operators such as
{
+,−, ∗, /,∧,

√
, log, exp, sin, arcsin, ...

}
to construct a function, such as the reconstruction of
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an explicit equation for f , traditionally expressed by Eq. (3). The GP modeling programs provide operators
like crossover and mutation to the winners, “children,” or “offspring” to emulate natural selection, in which
crossovers are responsible for maintaining identical features from one generation to another but mutations cause
random changes. The evolution starts from an initially selected random population of models, where relationship
f between the independent and dependent variables is often referred to as the “model,” the “program,” or the
“solution.” The population is allowed to evolve from one generation to another by virtue of a selected fitness
criterion, and new models replace the old ones in this evolutionary process by having demonstrably better
performance.

The study was carried out using GeneXpro software (Ferreira, 2001a, 2001b), which uses a gene expression
method. Although this has differences from GP, both are inspired by natural selection in principle. For more
detail on the implementation of GP models, see Ghorbani et al. (2010).

In this study, 4 basic arithmetic operators (+, - ,× , /) and some basic mathematical functions (√ , log,

and ex) were used. Like with ANNs, input variables were ε/D and Re , and the output was f . A large number

of generations (5000) were tested. The performance of GP was studied with 3 error measures: R2 , RMSE, and

relative error (RE), as defined in Section 2.6.

2.6. Performance measures

The study involved comparisons, for which 3 performance measures were used to highlight different aspects of

the problem. These measures were RMSE, R2 and absolute RE which is defined as follows

RE = |fTrue − fEstimated| /fTrue

Here, fTrue is calculated from the Colebrook-White equation by the successive substitution method, and
fEstimated is the output value from the explicit, GP, or ANN models.

3. Results

3.1. Performances of explicit equations

The performances of explicit equations for the Colebrook-White equations (presented in Appendix I) was
investigated by comparing them against the numerical solution of the Colebrook-White equation for f -values
using the data created in this study and presented in Appendix II. The results are presented in Figure 2,
and their performances are summarized in Table 1 by categorizing them into 3 sets, those having inadequate,
adequate, and good performances, with methods falling into the latter categories being very successful.

3.2. Implementation of ANN

The initial identification of the model configurations did not employ any transformation of either data input or
output. Its optimum configuration was selected by trial and error, by testing the set shown in Table 2. The
identified architecture was 2-5-1 (input layer, 2 neurons; 1 hidden layer, 5 neurons; output layer, 1 neuron),

for which the lowest RMSE was 0.0379 and the highest R2 was 0.977. This led to inadequate predictions of
f -values when the model was implemented in its prediction mode; in particular, unacceptably high errors were
obtained for the predicted f -values corresponding to Re values at the lower end of the chosen range. This
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indicated that the ANN model was unable to capture the initial curvature in the f -curves at the specified lower
range of Re .

Table 1. Error measurements in explicit equations, GP, and ANN with respect to numerical calculations.

Study R2 RMSE Precision Equation 

Moody (1947) 0.9792 0.00787 Inadequate I.4 

Wood (1966) 0.9451 0.00735 Inadequate I.5 

Churchill (1977) 0.9669 0.00702 
Inadequate I.8 

Churchill (1973) 0.9996 0.00062 Adequate I.6 

Swamee and Jain (1976) 0.9997 0.00055 Adequate I.7 

Barr (1981) 0.999991 0.0000792 Adequate I.10 

Chen (1979) 0.999996 0.0000617 Good performance I.9 

Zigrang and Sylvester (1982) 1.000000 0.0000213 Good performance I.11 

Manadilli (1997) 1.000000 0.0000102 Good performance I.12 

Romeo et al. (2002) 1.000000 0.0000092 Good performance I.13 

ANN 0.9951 0.0218 Locally inadequate - 

GP 0.9974 0.01324 Adequate 4 

Color code for the performance of explicit equations 
Inadequate performance Adequate performance Good performance 

Table 2. Prediction errors for training and testing dataset of friction factor: different ANN configurations without

transformations of the input parameters.

No. of hidden No. of Training Test
Transfer function layers neurons/layer RMSE R2 RMSE R2

Sigmoid 1 2 0.0384 0.978 0.0422 0.968
Sigmoid 1 3 0.0375 0.978 0.0406 0.974
Sigmoid 1 4 0.0383 0.977 0.0386 0.977
Sigmoid 1 5 0.0379 0.977 0.0396 0.976
Sigmoid 1 6 0.0388 0.977 0.0382 0.976
Sigmoid 1 8 0.0369 0.977 0.038 0.977
Sigmoid 1 10 0.0399 0.976 0.038 0.974

Hyperbolic Tangent 1 5 0.0372 0.978 0.0388 0.976
Gaussian 1 5 0.0404 0.974 0.0374 0.979
Sigmoid 2 2, 2 0.0385 0.977 0.0411 0.973
Sigmoid 2 2, 3 0.0401 0.974 0.0374 0.979
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(a) Performance of explicit equation (Moody, 1947; Equa-

tion I.4).

(b) Performance of explicit equation (Wood, 1966; Equa-

tion I.5).
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(c) Performance of explicit equation (Churchill, 1973;

Equation I.6).

(d) Performance of explicit equation (Swamee and Jain,

1976; Equation I.7).
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(e) Performance of explicit equation (Churchill, 1977;

Equation I.8).

(f) Performance of explicit equation (Chen, 1979; Equation

I.9).

Figure 2. Performance of explicit equation against the numerical solution of the Colebrook-White equation in treating

f -values.
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(g) Performance of explicit equation (Barr, 1981; Equation

I.10).

(h) Performance of explicit equation (Zigrang and

Sylvester, 1982; Equation I.11).
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(i) Performance of explicit equation (Manadilli, 1997;

Equation I.12).

(j) Performance of explicit equation (Romeo, et al. 2002;

Equation I.13).

Figure 2. Continued.

Although ANN models do not require any prior knowledge of the relationships among inputs and outputs,
a “warm start” is helpful to fine-tune the ANN model. For instance, it is clear from Eq. (3) that the parameter

f is a logarithmic function of both input parameters, Re and ε/D . For this reason, another set of test runs were
carried out to improve the performance of the ANN model by transforming both input data parameters. The
Re and ε/D parameters were transformed using a logarithmic function to the base of 10. The results, shown
in Table 3, reveal that the optimum ANN configuration was improved markedly, as its RMSE was reduced to

0.0218 and its R2 was increased to 0.995.
These results demonstrate the importance of choosing the right transformation of input data parameters

and the significant impact that this may have on the overall performance of the ANN model.

3.3. Implementation of GP

The GP model was implemented by using the data in Appendix II. The functional setting and default parameters
used in the GP modeling during this study are listed in Table 4. The GP model resulted in a highly nonlinear
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relationship with high accuracy and relatively low errors. The simplified analytic form of the proposed GP
model may be expressed as follows.

Table 3. Predicted errors for training and testing dataset of friction factor; different ANN configurations with

transformations of input parameters.

No. of hidden No. of Training Test
Transfer function layers neurons/layer RMSE R2 RMSE R2

Sigmoid 1 2 0.0325 0.981 0.0409 0.97
Sigmoid 1 3 0.0262 0.988 0.0266 0.987
Sigmoid 1 4 0.0353 0.989 0.0258 0.988
Sigmoid 1 5 0.0218 0.995 0.0234 0.991
Sigmoid 1 6 0.022 0.992 0.023 0.991

Table 4. Parameters of optimized GP model.

Parameter Description of parameter Setting of parameter
p1 Function set +, –, ×, /, √, ex, log
p2 Population size 250
p3 Mutation frequency (%) 96
p4 Crossover frequency (%) 50
p5 Number of replications 10
p6 Block mutation rate (%) 30
p7 Instruction mutation rate (%) 30
p8 Instruction data mutation rate (%) 40
p9 Homologous crossover (%) 95
p10 Program size Initial 64, maximum 256

f = −0.0575 + ε/D + e−11.764(ε/D)−log(2Rn) + e−2.567+9.065/Rn−ε/D (4)

Figure 3 shows the RE in contour-line scheme by using the GP model from Eq. (4). The whole dataset (2072

points) has a mean RE of 2.52 × 10−5 , a maximum RE of 0.000117, and a minimum RE of 2.64 × 10−12 .
The contour lines in Figure 3 show that the RE in the GP model is greater only in the upper right part of the

graph. This area corresponds to ε/D = 0.03, 0.02, and 0.015, and Re values between 107 and 109 . In other
areas, the RE for the GP model is low and performs satisfactorily enough for the friction factor estimation. The

error statistics of the GP model show that its RMSE and R2 are 0.013 and 0.997, respectively, compared to the

ANN quantitative performance values of RMSE = 0.022 and R2 = 0.995. Therefore, the prediction accuracy
of the GP model is generally better than that of the ANN model.

4. Discussion of the results

Engineering practices for pipe systems require the calculation of head losses and flows, and a common practice is
to embed iterative methods for the calculation of f -values in the computer programs. However, this study shows
that some of the explicit methods perform well and may replace the Colebrook-White equation, particularly in
manual calculations, which can rapidly calculate f -values for given values of ε/D and Re . The investigations
here show a sharp contrast in the performance of the explicit equations when compared with one another, but
the accurate ones are attractive.
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Figure 3. Contour of relative error for the GP model.

The performance of the ANN model in calculating the friction factor, f , was investigated by plotting a
scatter diagram, as shown in Figure 4. Overall, the results were comparatively acceptable for calculating f ,
but the ANN model was less capable than some of the explicit equations, like those used by Chen (1979), Barr

(1981), Zigrang and Sylvester (1982), and Romeo et al. (2002).
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Figure 4. Scatter diagram for performance of ANN and numerical solution of the Colebrook-White equation.

The performance of the GP model in calculating friction factor f was investigated by plotting a scatter
diagram, as shown in Figure 5. Overall, the GP model of the friction factor had some edge over the ANN model,
both visually and quantitatively, but, at the same time, the GP model did not perform as well as some of the
explicit formulations.

Future work will be directed toward improving the Colebrook-White equation for modern commercial
pipes, like spiral and glass-reinforced plastic pipes.
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Figure 5. Scatter diagram for performance of GP and numerical solution of the Colebrook-White equation.

5. Conclusion

The paper focused on different methods used for predicting friction factor f in the Colebrook-White equation
for calculating flows in pipes under pressure; the techniques selected were numerical solutions of the implicit
Colebrook-White equations, various explicit forms of the Colebrook-White equation, and 2 applications of AI
techniques, namely ANNs and GP techniques. The data were generated systematically for different values of the
Re and ε/D parameters using the Colebrook-White equation, and f -values were obtained using the successive
substitution method for the equation’s solution.

Preliminary test runs identified optimum ANN and GP models. The ANN model involved a neural
network with 1 hidden layer and 5 neurons in that layer. Following the logarithmic transformations of the

input data parameters, the trained network was able to perform better, with R2 and RMSE values of 0.995 and
0.022, respectively (Table 3). The performance of the GP model using the testing data points showed a high

generalization capacity, with R2 = 0.997 and RMSE = 0.013. This model allows for an explicit solution of f

without the need to employ a time-consuming iterative or trial-and-error solution scheme, an approach that is
usually associated with the solution of the Colebrook equation in the turbulent flow regime of closed pipes.

Explicit equations remove the need for the iteration required for solving for the friction factor in the
Colebrook-White equation, but this study shows that a number of them induce some undue errors. However,
this study further identified some of the explicit formulations as accurate. The ANN formulation to solve for
the friction factor in the Colebrook-White equation was less successful than the GP approach. Although the

performance of GP in terms of R2 and RMSE was good, its numerically obtained values were slightly perturbed,
and the GP model did not perform as well as some of the explicit equations.

Appendix I

I.1. Explicit methods

The Colebrook-White equation is a formula often used in pipe network simulation software. Many explicit
expressions have been developed to replace it, in which the value of f appears on both sides of the equation.
These explicit formulations are approximations for f that do not require iteration, and they can hence be used
to improve the speed of simulation software.
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Appendix II

Generation of data points for numerical study.

Table II.1. Sample of data with combinations of ε/D , Re , and f .

Row D
ε Re f Row D

ε Re f Row D
ε Re f 

1 0.00002 2000 0.04955 149 0.00006 2000 0.04958 1925 0.08 2000 0.09875 

2 0.00002 3000 0.04361 150 0.00006 3000 0.04364 1926 0.08 3000 0.09600 

3 0.00002 4000 0.03999 151 0.00006 4000 0.04003 1927 0.08 4000 0.09459 

4 0.00002 5000 0.03747 152 0.00006 5000 0.03752 1928 0.08 5000 0.09373 

5 0.00002 6000 0.03558 153 0.00006 6000 0.03563 1929 0.08 6000 0.09315 

6 0.00002 7000 0.03408 154 0.00006 7000 0.03414 1930 0.08 7000 0.09273 

7 0.00002 8000 0.03286 155 0.00006 8000 0.03292 1931 0.08 8000 0.09241 

8 0.00002 9000 0.03184 156 0.00006 9000 0.03189 1932 0.08 9000 0.09217 

9 0.00002 10,000 0.03096 157 0.00006 10,000 0.03102 1933 0.08 10,000 0.09197 

10 0.00002 12,000 0.02952 158 0.00006 12,000 0.02958 1934 0.08 12,000 0.09167 

11 0.00002 13,000 0.02891 159 0.00006 13,000 0.02898 1935 0.08 13,000 0.09156 

12 0.00002 15,000 0.02788 160 0.00006 15,000 0.02796 1936 0.08 15,000 0.09138 

13 0.00002 18,000 0.02664 161 0.00006 18,000 0.02672 1937 0.08 18,000 0.09118 

14 0.00002 20,000 0.02596 162 0.00006 20,000 0.02605 1938 0.08 20,000 0.09108 

15 0.00002 22,000 0.02537 163 0.00006 22,000 0.02546 1939 0.08 22,000 0.09099 

16 0.00002 25,000 0.02460 164 0.00006 25,000 0.02470 1940 0.08 25,000 0.09090 

17 0.00002 27,000 0.02416 165 0.00006 27,000 0.02426 1941 0.08 27,000 0.09084 

18 0.00002 30,000 0.02357 166 0.00006 30,000 0.02367 1942 0.08 30,000 0.09077 

19 0.00002 33,000 0.02305 167 0.00006 33,000 0.02316 1943 0.08 33,000 0.09072 

20 0.00002 35,000 0.02274 168 0.00006 35,000 0.02286 1944 0.08 35,000 0.09069 

21 0.00002 37,000 0.02245 169 0.00006 37,000 0.02257 1945 0.08 37,000 0.09066 

22 0.00002 40,000 0.02206 170 0.00006 40,000 0.02219 1946 0.08 40,000 0.09062 

23 0.00002 42,000 0.02182 171 0.00006 42,000 0.02195 1947 0.08 42,000 0.09060 

24 0.00002 45,000 0.02148 172 0.00006 45,000 0.02162 1948 0.08 45,000 0.09057 

25 0.00002 48,000 0.02118 173 0.00006 48,000 0.02132 1949 0.08 48,000 0.09055 

26 0.00002 50,000 0.02099 174 0.00006 50,000 0.02113 1950 0.08 50,000 0.09053 

27 0.00002 53,000 0.02072 175 0.00006 53,000 0.02087 1951 0.08 53,000 0.09051 

28 0.00002 55,000 0.02055 176 0.00006 55,000 0.02070 1952 0.08 55,000 0.09050 

29 0.00002 58,000 0.02032 177 0.00006 58,000 0.02047 1953 0.08 58,000 0.09048 

30 0.00002 60,000 0.02017 178 0.00006 60,000 0.02033 1954 0.08 60,000 0.09047 

31 0.00002 65,000 0.01982 179 0.00006 65,000 0.01999 1955 0.08 65,000 0.09045 

32 0.00002 70,000 0.01951 180 0.00006 70,000 0.01969 1956 0.08 70,000 0.09043 

33 0.00002 75,000 0.01923 181 0.00006 75,000 0.01941 1957 0.08 75,000 0.09041 

34 0.00002 80,000 0.01897 182 0.00006 80,000 0.01916 1958 0.08 80,000 0.09040 

35 0.00002 85,000 0.01873 183 0.00006 85,000 0.01893 1959 0.08 85,000 0.09038 

36 0.00002 90,000 0.01851 184 0.00006 90,000 0.01871 1960 0.08 90,000 0.09037 

37 0.00002 95,000 0.01831 185 0.00006 95,000 0.01851 1961 0.08 95,000 0.09036 

38 0.00002 100,000 0.01812 186 0.00006 100,000 0.01833 1962 0.08 100,000 0.09035 

39 0.00002 120,000 0.01746 187 0.00006 120,000 0.01769 1963 0.08 120,000 0.09032 
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Table II.1. Continued.

40 0.00002 150,000 0.01671 188 0.00006 150,000 0.01697 1964 0.08 150,000 0.09029 

41 0.00002 180,000 0.01613 189 0.00006 180,000 0.01643 1965 0.08 180,000 0.09027 

42 0.00002 200,000 0.01582 190 0.00006 200,000 0.01613 1966 0.08 200,000 0.09026 

43 0.00002 250,000 0.01518 191 0.00006 250,000 0.01553 1967 0.08 250,000 0.09024 

44 0.00002 300,000 0.01468 192 0.00006 300,000 0.01508 1968 0.08 300,000 0.09023 

45 0.00002 350,000 0.01429 193 0.00006 350,000 0.01472 1969 0.08 350,000 0.09022 

46 0.00002 400,000 0.01397 194 0.00006 400,000 0.01443 1970 0.08 400,000 0.09021 

47 0.00002 450,000 0.01369 195 0.00006 450,000 0.01418 1971 0.08 450,000 0.09021 

48 0.00002 500,000 0.01345 196 0.00006 500,000 0.01397 1972 0.08 500,000 0.09020 

49 0.00002 600,000 0.01306 197 0.00006 600,000 0.01363 1973 0.08 600,000 0.09020 

50 0.00002 700,000 0.01275 198 0.00006 700,000 0.01337 1974 0.08 700,000 0.09019 

51 0.00002 800,000 0.01249 199 0.00006 800,000 0.01315 1975 0.08 800,000 0.09019 

52 0.00002 900,000 0.01228 200 0.00006 900,000 0.01298 1976 0.08 900,000 0.09019 

53 0.00002 1,000,000 0.01209 201 0.00006 1,000,000 0.01283 1977 0.08 1,000,000 0.09019 

54 0.00002 3,000,000 0.01056 202 0.00006 3,000,000 0.01171 1978 0.08 3,000,000 0.09017 

55 0.00002 5,000,000 0.01007 203 0.00006 5,000,000 0.01142 1979 0.08 5,000,000 0.09017 

56 0.00002 8,000,000 0.00974 204 0.00006 8,000,000 0.01124 1980 0.08 8,000,000 0.09017 

57 0.00002 10,000,000 0.00962 205 0.00006 10,000,000 0.01117 1981 0.08 10,000,000 0.09017 

. . . . . . . . . . . . 

. . . . . . . . . . . . 

. . . . . . . . . . . . 

74 0.00002 1,000,000,000 0.00902 209 0.00006 1,000,000,000 0.01090 1998 0.08 1,000,000,000 0.09017 

75 0.00004 2000 0.04956 223 0.00008 2000 0.04960 1999 0.09 2000 0.10416 

76 0.00002 3000 0.04361 224 0.00008 3000 0.04366 2000 0.09 3000 0.10152 

77 0.00004 4000 0.04001 225 0.00008 4000 0.04005 2001 0.09 4000 0.10017 

78 0.00004 5000 0.03749 226 0.00008 5000 0.03754 2002 0.09 5000 0.09935 

79 0.00004 6000 0.03560 227 0.00008 6000 0.03565 2003 0.09 6000 0.09880 

80 0.00004 7000 0.03411 228 0.00008 7000 0.03416 2004 0.09 7000 0.09840 

81 0.00004 8000 0.03289 229 0.00008 8000 0.03295 2005 0.09 8000 0.09810 

82 0.00004 9000 0.03186 230 0.00008 9000 0.03192 2006 0.09 9000 0.09787 

83 0.00004 10,000 0.03099 231 0.00008 10,000 0.03105 2007 0.09 10,000 0.09768 

84 0.00004 12,000 0.02955 232 0.00008 12,000 0.02962 2008 0.09 12,000 0.09740 

85 0.00004 13,000 0.02895 233 0.00008 13,000 0.02902 2009 0.09 13,000 0.09729 

86 0.00004 15,000 0.02792 234 0.00008 15,000 0.02799 2010 0.09 15,000 0.09712 

87 0.00004 18,000 0.02668 235 0.00008 18,000 0.02676 2011 0.09 18,000 0.09693 

88 0.00004 20,000 0.02600 236 0.00008 20,000 0.02609 2012 0.09 20,000 0.09683 

89 0.00004 22,000 0.02541 237 0.00008 22,000 0.02550 2013 0.09 22,000 0.09676 

90 0.00004 25,000 0.02465 238 0.00008 25,000 0.02475 2014 0.09 25,000 0.09666 

91 0.00004 27,000 0.02421 239 0.00008 27,000 0.02431 2015 0.09 27,000 0.09661 

92 0.00004 30,000 0.02362 240 0.00008 30,000 0.02373 2016 0.09 30,000 0.09655 

93 0.00004 33,000 0.02311 241 0.00008 33,000 0.02322 2017 0.09 33,000 0.09650 

94 0.00004 35,000 0.02280 242 0.00008 35,000 0.02292 2018 0.09 35,000 0.09647 

95 0.00004 37,000 0.02251 243 0.00008 37,000 0.02263 2019 0.09 37,000 0.09644 

96 0.00004 40,000 0.02212 244 0.00008 40,000 0.02225 2020 0.09 40,000 0.09641 

97 0.00004 42,000 0.02188 245 0.00008 42,000 0.02201 2021 0.09 42,000 0.09638 

Row D
ε Re f Row D

ε Re f Row D
ε Re f 
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Table II.1. Continued.

102 0.00004 55,000 0.02063 250 0.00008 55,000 0.02078 2026 0.09 55,000 0.09629 

103 0.00004 58,000 0.02040 251 0.00008 58,000 0.02055 2027 0.09 58,000 0.09627 

104 0.00004 60,000 0.02025 252 0.00008 60,000 0.02040 2028 0.09 60,000 0.09626 

105 0.00004 65,000 0.01991 253 0.00008 65,000 0.02007 2029 0.09 65,000 0.09624 

106 0.00004 70,000 0.01960 254 0.00008 70,000 0.01977 2030 0.09 70,000 0.09622 

107 0.00004 75,000 0.01932 255 0.00008 75,000 0.01950 2031 0.09 75,000 0.09620 

108 0.00004 80,000 0.01906 256 0.00008 80,000 0.01925 2032 0.09 80,000 0.09619 

109 0.00004 85,000 0.01883 257 0.00008 85,000 0.01902 2033 0.09 85,000 0.09618 

110 0.00004 90,000 0.01861 258 0.00008 90,000 0.01881 2034 0.09 90,000 0.09617 

111 0.00004 95,000 0.01841 259 0.00008 95,000 0.01861 2035 0.09 95,000 0.09616 

112 0.00004 100,000 0.01822 260 0.00008 100,000 0.01843 2036 0.09 100,000 0.09615 

113 0.00004 120,000 0.01758 261 0.00008 120,000 0.01781 2037 0.09 120,000 0.09612 

114 0.00004 150,000 0.01684 262 0.00008 150,000 0.01710 2038 0.09 150,000 0.09609 

115 0.00004 180,000 0.01628 263 0.00008 180,000 0.01657 2039 0.09 180,000 0.09607 

116 0.00004 200,000 0.01597 264 0.00008 200,000 0.01628 2040 0.09 200,000 0.09606 

117 0.00004 250,000 0.01535 265 0.00008 250,000 0.01570 2041 0.09 250,000 0.09604 

118 0.00004 300,000 0.01488 266 0.00008 300,000 0.01526 2042 0.09 300,000 0.09603 

119 0.00004 350,000 0.01451 267 0.00008 350,000 0.01492 2043 0.09 350,000 0.09602 

120 0.00004 400,000 0.01420 268 0.00008 400,000 0.01464 2044 0.09 400,000 0.09602 

121 0.00004 450,000 0.01394 269 0.00008 450,000 0.01441 2045 0.09 450,000 0.09601 

122 0.00004 500,000 0.01372 270 0.00008 500,000 0.01421 2046 0.09 500,000 0.09601 

123 0.00004 600,000 0.01336 271 0.00008 600,000 0.01389 2047 0.09 600,000 0.09600 

124 0.00004 700,000 0.01307 272 0.00008 700,000 0.01365 2048 0.09 700,000 0.09600 

125 0.00004 800,000 0.01284 273 0.00008 800,000 0.01345 2049 0.09 800,000 0.09600 

126 0.00004 900,000 0.01264 274 0.00008 900,000 0.01329 2050 0.09 900,000 0.09599 

127 0.00004 1,000,000 0.01248 275 0.00008 1,000,000 0.01315 2051 0.09 1,000,000 0.09599 

128 0.00004 3,000,000 0.01119 276 0.00008 3,000,000 0.01216 2052 0.09 3,000,000 0.09598 

129 0.00004 5,000,000 0.01083 277 0.00008 5,000,000 0.01191 2053 0.09 5,000,000 0.09598 

130 0.00004 8,000,000 0.01059 278 0.00008 8,000,000 0.01176 2054 0.09 8,000,000 0.09598 

131 0.00004 10,000,000 0.01051 279 0.00008 10,000,000 0.01171 2055 0.09 10,000,000 0.09598 

. . . . . . . . . . . . 

. . . . . . . . . . . . 

. . . . . . . . . . . . 

148 0.00004 1,000,000,000 0.01014 283 0.00008 1,000,000,000 0.01149 2072 0.09 1,000,000,000 0.09597 

98 0.00004 45,000 0.02155 246 0.00008 45,000 0.02169 2022 0.09 45,000 0.09636 

99 0.00004 48,000 0.02125 247 0.00008 48,000 0.02139 2023 0.09 48,000 0.09633 

100 0.00004 50,000 0.02106 248 0.00008 50,000 0.02120 2024 0.09 50,000 0.09632 

101 0.00004 53,000 0.02079 249 0.00008 53,000 0.02094 2025 0.09 53,000 0.09630 

Row D
ε Re f Row D

ε Re f Row D
ε Re f 
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Kişi, Ö., “Daily River Flow Forecasting Using Artificial Neural Networks and Auto-Regressive Models”, Turkish Journal

of Engineering and Environmental Sciences, 29, 9-20, 2005.

Koza, J.R., Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press,

Cambridge, MA, 1992.

Manadilli, G., “Replace Implicit Equations with Signomial Functions”, Chemical Engineering, 104, 129-132, 1997.

Moody, M.L., “An Approximate Formula for Pipe Friction Factors”, Transactions of the ASME, 69, 1005-1009, 1947.

More, A.A., “Analytical Solutions for the Colebrook and White Equation and for Pressure Drop in Ideal Gas Flow in

Pipes”, Chemical Engineering Science, 61, 5515-5519, 2006.
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