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Abstract

Piezoelectric materials exhibit significant creep effects even at room temperature. History of stresses

and electric potential of thick-walled spheres made of functionally graded piezoelectric material (FGPM)

subjected to an internal pressure and a distributed temperature was investigated. A semi-analytical method

in conjunction with the method of successive approximation was developed. A major redistribution for

electric potential was found to take place throughout the thickness, which changes with time in the same

direction as the compressive radial stress. The results of this investigation can be used to improve the

accuracy and reliability of smart structures used for high-precision applications.
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1. Introduction

The best known among the smart materials are certainly the piezoelectric materials and more precisely the
piezoceramics (PZT). When an electric field is applied to these materials, it results in mechanical stress

or strain. Such bidirectional application makes these materials ideal for use as both sensors (direct effect)

and actuators (converse effects). Applications of functionally graded materials (FGMs) have recently been
attracted researchers’ attention in such fields as nuclear, aircraft, space engineering, sensors, actuators, armor,
photodetectors, and pressure vessels.

Elastic analysis of FGPM spheres and cylinders under mechanical, electrical, thermal, and magnetic
loads has been considered by many investigators. Stress and electric potential fields in piezoelectric smart
spheres were presented by Ghorbanpour Arani et al. (2006). Wang and Xu (2010) studied the effect of material
inhomogeneity on electromechanical behaviors of functionally graded piezoelectric spherical structures. Effect
of material in-homogeneity on electro-thermo-mechanical behaviors of functionally graded piezoelectric rotating
cylinder was considered by Ghorbanpour Arani et al. (2011a). Electro-thermo-mechanical behaviors of FGPM

spheres were studied by Ghorbanpour Arani et al. (2011b) by analytical method and ANSYS software. Dai

and Wang (2005) presented the thermo-electro-elastic transient responses in piezoelectric hollow structures.
∗Corresponding author
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Although the elastic behavior of hollow FGPM structures is well established, few publications about
time-dependent creep behavior of spheres and cylinders can be found in the literature. You et al. (2007)
considered steady state creep deformation and stresses in thick-walled cylindrical vessels of FGM subjected to
internal pressure. Loghman and Shokouhi (2009) evaluated creep damages of thick-walled spheres using a long-
term creep constitutive model. Time-dependent deformation and fracture of multi-material systems at high
temperature were presented by Xuan et al. (2009). They considered a thick-walled sphere of FGM material

subjected to internal pressure. Tejeet and Gupta (2011) investigated the effect of anisotropy on steady-state
creep in functionally graded cylinder. Recently magnetothermoelastic creep analysis of functionally graded
cylinder was presented by Loghman et al. (2010). Semi-analytical solution of time-dependent electro-thermo-
mechanical creep for radially polarized piezoelectric cylinder was investigated by Ghorbanpour Arani et al.
(2011c). Due to time-dependent creep deformation of FGPM structures the accuracy and reliability of smart

structures must be reconsidered. It has been shown by Zhou and Kamlah (2006) that even at room temperature
ferroelectric piezoceramics exhibit significant creep effects. However, the time-dependent creep response of
FGPM components has not yet been investigated. The main objective of the present study was to show the
significant effect of creep on stresses and electric potential redistributions during the life of a smart sphere.

2. Electromechanical coupling

Stresses σ and strains ε from the mechanical point of view, as well as flux density D and field strength E from
the electrostatic point of view, may be arbitrarily combined as follows: (Ghorbanpour Arani et al., 2011a)

{
σ
D

}
=
[

CE −e
eT ∈ε

]{
ε
E

}
, (1)

where CE , ∈ε , e , and eT represent the fourth-order elasticity tensor, the dielectric permittivity tensor, third
order tensor of piezoelectric coefficient, and its transpose, respectively. Electric field tensor E could be written
in terms of electric potential φ (Ghorbanpour Arani et al., 2011b)

E = −grad φ. (2)

3. Formulation for electro-thermo-elastic creep response of FGPM spheres

A hollow FGPM sphere with an inner radiusaand outer radiusb is considered. The radially polarized sphere is
subjected to an internal pressurePa , an electric potential φand a distributed temperature field T (r) (Figure

1). A spherical coordinate system (r, θ, ϕ) or (1, 2, 3) with the origin identical to the center of a hollow sphere

is used. For the spherically symmetric problem, we have uθ = uϕ = 0, ur = ur(r) and electric potential (φ) are

the functions of radial coordinates. It is appropriate to introduce the following dimensionless quantities:

σi =
σii

C22
(i = r, θ) , Ci =

Cri

Cθθ
(i = r, θ) , Cϕ =

Cθϕ

Cθθ
, Ei =

eri

E0
(i = r, θ, ϕ) , E0 =

√
Cθθ ∈rr ,

ξ =
r

a
, Uξ =

ur

a
, η =

b

a
, Φ =

φ

φ0
, φ0 = a

√
Cθθ

∈rr
, Dr =

Drr

E0
. (3)
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Figure 1. Hollow FGPM sphere subjected to an internal pressure, thermal loading, and applied voltage Φ.

Using these dimensionless variables, the equilibrium equation of the FGPM sphere in the absence of body
force, Maxwell’s equation for free electric charge density, the radial and circumferential strains, and the relation
between electric field and electric potential are reduced to

∂σr

∂ξ
+

2 (σr − σθ)
ξ

= 0, (4)

∂Dr

∂ξ
+

2Dr

ξ
= 0. (5)

εr =
∂uξ

∂ξ
, εθ = εζ =

uξ

ξ
, (6)

Er = −∂Φ
∂ξ

. (7)

Appropriate power functions for all properties are assumed as (Ghorbanpour Arani, 2011c):

Ψr = Ψ0 (ξ)γ
, (8)

in which Ψr represents the general properties of the sphere such as the elastic, piezoelectric, and dielectric
coefficients and thermal conductivity, Ψ0 corresponds to the value of the coefficients at the outer surface, and γ

is the material’s in-homogeneity parameter. Using Eqs. (3)-(8), the 2 components of the stress and the radial

electric (Eq. (1)) displacement yield: (Mendelson, 1968; Salehi-Khojin and Jalili, 2008)

{
σr

σθ

}
= ξγ

⎛
⎜⎝[

Cr Cθ Cθ

Cθ 1 Cϕ

] ⎛
⎜⎝
⎧⎪⎨
⎪⎩

∂Uξ

∂ξ
Uξ

ξ
Uξ

ξ

⎫⎪⎬
⎪⎭ − ξγ

⎧⎨
⎩

αr

αθ

αθ

⎫⎬
⎭ T (ξ) −

⎧⎨
⎩

εc
r

εc
θ

εc
θ

⎫⎬
⎭
⎞
⎟⎠ +

[
Er

Eθ

]{
∂Φ
∂ξ

}⎞⎟⎠ , (9)

{Dr} = ξγ

⎛
⎜⎝[

Er Eθ Eθ

] ⎛
⎜⎝
⎧⎪⎨
⎪⎩

∂Uξ

∂ξ
Uξ

ξ
Uξ

ξ

⎫⎪⎬
⎪⎭ − ξγ

⎧⎨
⎩

αr

αθ

αθ

⎫⎬
⎭ T (ξ) −

⎧⎨
⎩

εc
r

εc
θ

εc
θ

⎫⎬
⎭
⎞
⎟⎠ −

{
∂Φ
∂ξ

}⎞⎟⎠ . (10)

The solution of Eq. (5) is:

Dr =
A1

ξ2
, (11)
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where A1 is a constant. Substituting Eq. (11) into Eq. (10) and combining with Eq. (9), we obtain:

{
σr

σθ

}
= ξγ

⎛
⎜⎝[

Cr Cθ Cθ

Cθ 1 Cϕ

] ⎛
⎜⎝
⎧⎪⎨
⎪⎩

∂Uξ

∂ξ
Uξ

ξ
Uξ

ξ

⎫⎪⎬
⎪⎭ − ξγ

⎧⎨
⎩

αr

αθ

αθ

⎫⎬
⎭ T (ξ) −

⎧⎨
⎩

εc
r

εc
θ

εc
θ

⎫⎬
⎭
⎞
⎟⎠

+
[

Er

Eθ

] ⎛⎜⎝[
Er Eθ Eθ

] ⎛
⎜⎝
⎧⎪⎨
⎪⎩

∂Uξ

∂ξ
Uξ

ξ
Uξ

ξ

⎫⎪⎬
⎪⎭ − ξγ

⎧⎨
⎩

αr

αθ

αθ

⎫⎬
⎭ T (ξ) −

⎧⎨
⎩

εc
r

εc
θ

εc
θ

⎫⎬
⎭
⎞
⎟⎠ − A1ξ

−γ−2

⎞
⎟⎠
⎞
⎟⎠ .

(12)

In our study a distributed temperature field due to steady-state heat conduction was considered. Using Eq.
(8) for the thermal conductivity property, the heat conduction equation without any heat source is written in

spherical coordinate as (Ghorbanpour Arani et al., 2011a):

1
ξ2

(
K0 ξγ+2 T ′ (ξ)

)′
= 0, (13)

where () denotes differentiation with respect toξ and K0 is the nominal heat conductivity coefficient. Integrating

Eq. (13) yields:

T (ξ) = − B1

γ + 1
ξ−γ−1 + B2, (14)

constants B1 andB2 are obtained using the thermal boundary condition.

Finally, combination of Eqs. (12) and (14) and substituting into Eq. (4) yield the following non-
homogeneous Cauchy differential equation:

ξ2 ∂2Uξ

∂ξ2
+D1ξ

∂Uξ

∂ξ
+D2Uξ = D4B1 +(D6ε

c
r +D7ε

c
θ)ξ +

(
∂εc

r

∂ξ
+ D8

∂εc
θ

∂ξ

)
ξ2 +D5B2ξ

(1+γ) +D3A1ξ
−(1+γ) (15)

where Dk (k = 1, ...8) are defined in Appendix A.

3.1. Electro-thermo-elastic analysis of FGPM spheres

A semi-analytical method for solution of this differential equation was employed. In this method the solution
domain is divided into some finite divisions as shown in Figure 2. The coefficients of Eq. (15) are evaluated at

ξm , mean radius of mth division and the differential equation with constant coefficients valid only in the m th

sub-domain is rewritten as follows (Kordkheili and Naghdabadi, 2007):

Figure 2. Dividing radial domain into some finite sub-domains.
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(
P m

1

d2

dr2
+ P m

2

d

dr
+ P m

3

)
Um

ξ + P m
4 = 0, (16)

P m
1 = (ξm)2, (17)

P m
2 = D1ξ

m, (18)

P m
3 = D2, (19)

P m
4 = D4B1 +

(
D6 εc

r |ξ=ξm + D7 εc
θ|ξ=ξm

)
ξm +

(
D8

∂εc
r

∂ξ

∣∣∣∣
ξ=ξm

+ D9
∂εc

θ

∂ξ

∣∣∣∣
ξ=ξm

)
(ξm)2

+ D5B2(ξm) (1+γ) + D3A1(ξm)−(1+γ).

(20)

The coefficients of Eq. (16) are evaluated in each division in terms of constants and the radius of the mth

division. The exact solution for Eq. (16) is written as follows:

um
g = Km

1 exp

(
−P m

2 +
√

(P m
2 )2 − 4P m

3 P m
1

2P m
1

ξ

)
+ Km

2 exp

(
−P m

2 −
√

(P m
2 )2 − 4P m

3 P m
1

2P m
1

ξ

)
, (21)

The particular solution of the differential Eq. (16) may be obtained as

um
p = −ξqm

1

∫
ξqm

2 R(ξ) |ξ=ξm

W (qm
1 , qm

2 )|ξ=ξm

+ ξqm
2

∫
ξqm

1 R(ξ) |ξ=ξm

W (qm
1 , qm

2 )|ξ=ξm

, (22)

in which R (ξ)is the expression on the right-hand side of Eq. (16) and W (ξ) is defined as

W (qm
1 , qm

2 ) =

∣∣∣∣∣
um

g1 um
g2

(um
g1)′ (um

g2)′

∣∣∣∣∣ . (23)

Combining Eqs. (20), (22), and (23) one can obtain the particular solution as

um
p

= ξ4

(qm
2
−4) (qm

1
−4)

∂εc
r

∂ξ

∣∣∣
ξ=ξm

+ D8ξ4

(qm
2
−4) (qm

1
−4)

∂εc
θ

∂ξ

∣∣∣
ξ=ξm

+ D6ξ3

(qm
2
−4) (qm

1
−4) εc

r |ξ=ξm

+
D7ξ

3

(qm
2

− 4) (qm
1
− 4)

εc
θ|ξ=ξm +

D3ξ
1−γ

(qm
2

+ γ − 1) (qm
1

+ γ − 1)
Am

1
+

D5ξ
3+γ

(3 − qm
2

+ γ) (3 − qm
1

+ γ)
B2

+
D4ξ

3

(qm
2

− 3) (qm
1
− 3)

B1 .

(24)

The complete solution for Um
ξ in terms of the non-dimensional radial coordinate is written as

Um
ξ = um

g
+ um

p
, ξm − hm

2
≤ ξ ≤ ξm +

hm

2
, (25)

where hm is the thickness of the mth division and Km
1 and Km

2 are unknown constants for the mth division.
The unknowns Km

1 , Km
2 ,Am

1 , Am
2 , Bm

1 , and Bm
2 are determined by applying the necessary boundary conditions

between 2 adjacent sub-domains. For this purpose, the continuity of radial displacement, radial stress, and
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electric potential are imposed at the interfaces of the adjacent sub-domains. These continuity conditions at the
interfaces are

Um
ξ

∣∣∣
ξ=ξm+ hm

2

= Um+1
ξ

∣∣∣
ξ=ξm+1− hm+1

2

,
dUm

ξ

dξ

∣∣∣
ξ=ξm+hm

2

=
dUm+1

ξ

dξ

∣∣∣∣
ξ=ξm+1− hm+1

2

,

σm
r |ξ=ξm+ hm

2
= σm+1

r

∣∣
ξ=ξm+1− hm+1

2
, Φm|ξ=ξm+hm

2
= Φm+1

∣∣
ξ=ξm+1− hm+1

2

Tm
ξ

∣∣
ξ=ξm+ hm

2
= Tm

ξ

∣∣
ξ=ξm+1+hm+1

2
,

∂Tm
ξ

∂ξ

∣∣∣∣
ξ=ξm+ hm

2

=
∂Tm

ξ

∂ξ

∣∣∣∣
ξ=ξm+1+ hm+1

2

,

(26)

and global boundary conditions are written in dimensionless form as

σr (1) = −1 , σr (η) = 0 , φ (1) = 0 , φ (η) = 0. (27)

It must be noted that in this case the FGPM hollow sphere is subjected to an internal uniform pressure and
zero electric potential (the direct piezoelectric effect) for which the sphere acts as a sensor.

The continuity conditions Eq. (26) together with the global boundary conditions Eq. (27) yield a set of
linear algebraic equations in terms of Km

1 , Km
2 ,Am

1 , Am
2 , Bm

1 , and Bm
2 . Solving the resultant linear algebraic

equations the unknown coefficients are calculated. Then the displacement component, the stresses, and the
electric potential are determined in each radial sub-domain. Increasing the number of divisions improves the
accuracy of the results.

3.2. Time-dependent electro-thermo-elastic creep behavior of FGPM spheres

To obtain time-dependent stresses and electric potential, the creep strains must be considered. Creep strain rates
are related to the material uniaxial creep constitutive model and the current stress tensor by the well-known
Prandtl–Reuss relation. In this case the Prandtl-Reuss relation is written as (Mendelson, 1968)

ε̇r =
ε̇e

σe
[σr − σθ] , ε̇θ = ε̇ζ = − ε̇r

2
. (28)

The Norton’s creep constitutive model is considered to be (Penny and Marriott, 1995)

ε̇c
e = Y (ξ)σn(ξ)

e , (29)

where ε̇c
e , σe , Y (ξ), and n(ξ) are the effective creep strain rate, effective stress, and radial-dependent material

creep parameters. In this study Y (ξ) = y0 ξy1 and n(ξ) is considered to be a constantn(ξ) = n0 and the Von
Mises effective stress for spherical symmetry is written as

σe =
1√
2

√
(σθ − σr)

2 + (σθ − σζ)
2 + (σζ − σr)

2 = |σr − σθ| . (30)

To obtain history of stresses and electric potential a numerical procedure based on the method of successive
approximation was tailored.
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4. Numerical procedure to obtain history of stresses and electric potential

We have employed Mendelson’s method of successive elastic solution to obtain history of stresses, displacement,
and electric potential. It was shown that creep strains and their derivatives are involved in the non-homogenous
part of differential Eq. (20)P4 . Immediately after loading the creep strains are zero and the solution is an

elasticity problem. To solve differential Eq. (16) for a long time after loading, the method of successive elastic
solution is used. The step-by-step procedure is explained in details as follows:

1- An appropriate time step is selected. In this solution the first time increment is selected asΔt =

6 month . The total time is the sum of time increments as the creep process progresses in time. For the ith

timing step the total time is ti =
i−1∑
k=1

Δtk + Δti

2- Thickness of the FGPM sphere is divided intoN equal divisions. Initial value of Δεc
r,im = −0.00001

for radial creep strain increments is estimated at all division points throughout the thickness. These are added
to the accumulated creep strains obtained from the previous timing step at all division points throughout the
FGPM sphere as

εc
r,im =

i−1∑
k=1

Δεc
r,km + Δεc

r,im, εc
θ,im =

i−1∑
k=1

Δεc
θ,km + Δεc

θ,im, Δεc
θ,im = Δεc

ζ,im = −
Δεc

r,im

2
,

where the subscripts i and m indicate the timing step and division point, respectively.

3- First and second order derivatives of radial and circumferential creep strains are calculated using finite
difference approximation as follows (Mendelson, 1968):

∂εc
r,im

∂ξm
=

εc
r,im+1 − εc

r,im−1

2 hm
,

∂εc
θ,im

∂ξm
=

εc
θ,im+1 − εc

θ,im−1

2 hm
,

∂2εc
r,im

(∂ξ2
m)

=
εc
r,im+1 − 2εc

r,im + εc
r,im−1

(hm)2
,

∂2εc
θ,im

∂ξ2
m

=
εc
θ,im+1 − 2εc

θ,im + εc
θ,im−1

(hm)2
.

4- The accumulated creep strains and its first order derivatives are substituted in Eq. (16). This differential

equation can be solved for the displacement at the mth layer. Then using second order derivatives stresses and
electric potential are calculated at the same layer. Using local and global boundary conditions the displacements,
stresses, and electric potentials at time ti are determined.

5- Effective stresses are then calculated at all division points asσe,im = |σr,im − σθ,im| .
6- Effective creep strain rates are then calculated at all division points (m) for the ith timing step using

Norton’s creep constitutive model as ε̇e,im = Y (ξm)σe,im

7- From the Prandtl-Reuss relation radial and circumferential creep strain rates are obtained as follows:

ε̇r,im =
ε̇e,im

σe,im
(σr,im − σθ,im) , ε̇θ,im = ε̇ζ,im = − ε̇r,im

2
,

8- New values for radial and circumferential creep strain increments at all division points are then calculated
using the above creep strain rates and the time increment as follows:

Δεc,new
r,im = ε̇c

r,im × Δti, Δεc,new
θ,im = ε̇c

θ,im × Δti.
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9- These newly obtained values for creep strain increments are compared with the initial estimated values at all
division points for the convergence of the procedure. If convergence is obtained, time is advanced one increment
and the procedure is repeated for the new time increment from step 1. If convergence is not satisfied, these
newly obtained values of creep strain increments will be considered as initial values and the procedure will be
repeated from step 2 until convergence is obtained.

5. Numerical results and discussion

The numerical results presented here are based on the mechanical (Cij (i, j = r, θ, ϕ)), electrical (e1i (i = r, θ),

∈11), and thermal properties (αr ,αθ), which are defined for PZT 4 as follows (Jaffe and Berlincourt, 1965):

Crr = 115 (GPa), Cθθ = 139 (GPa), Cθϕ = 77.8 (GPa), Crθ = 74.3 (GPa), err = 15.1 (C/m2),
erθ = −5.2 (C/m2), αr = 2 × 10−5(1/K), αθ = 2 × 10−6(1/K), ∈rr= 3.87× 10−9 (F/m)

The temperatures at the inner and outer surfaces of the FGPM sphere are considered to be Ti = 323K and
To = 298K , respectively, and the aspect ratio isη = 2.

History of stresses and electric potential of the FGPM sphere for 2 different material properties identified
by γ = 2 and γ = −2 are reported in this paper. Radial and circumferential stress histories are illustrated in
Figures 3 and 4 for the case γ = 2 and in Figures 5 and 6 for the caseγ = −2. In both cases radial stresses are
constant with time at the inner and outer surfaces of the sphere satisfying the constant mechanical boundary
conditions. Through-thickness radial stresses for the case γ = −2 are increasing with time at a decreasing rate
so that there is a saturation condition beyond which not much change occurs. Indeed the solution approaches
the steady state condition. For the case γ = 2 through-thickness radial stress redistributions are decreasing
with time and finally approach the steady state condition. Circumferential stresses for the case γ = −2 are
decreasing at the inner surface of the FGPM sphere and increasing at the outer surface with decreasing rates
so that they also approach steady state condition. For the case γ = 2 through-thickness circumferential stress
redistributions are increasing at the inner surface and decreasing at the outer surface of the sphere. Comparing
stresses for the cases γ = 2 and γ = −2 one can find that stresses are changing with time at a decreasing rate
but in the opposite direction. Histories of the induced electric potentials are shown in Figures 7 and 8 for the
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Figure 3. History of radial stress for the FGPM sphere

from initial elastic up to 40 years for the case γ = 2.

Figure 4. History of circumferential stress for the FGPM

sphere from initial elastic up to 40 years for the case γ = 2.
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cases of γ = 2and γ = −2, respectively. For the case of γ = −2 the induced electric potential is increasing with
time and approaches the steady state condition. For the caseγ = 2 electric potential redistribution is in the
opposite direction. In both cases the electric potential redistributions satisfy the electric boundary conditions
at the inner and outer surfaces. However, through-thickness electric potentials are varying with time in the
same direction as the compressive radial stress histories. Indeed, the electric potential histories are induced by
the compressive radial stress histories during the life of the FGPM sphere.
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Figure 5. History of radial stress for the FGPM sphere

from initial elastic up to 40 years for the case γ = −2.

Figure 6. History of circumferential stress for the FGPM

sphere from initial elastic up to 40 years for the case

γ = − 2.
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Figure 7. History of electric potential for the FGPM

sphere from initial elastic up to 40 years for the case γ = 2.

Figure 8. History of electric potential for the FGPM

sphere from initial elastic up to 40 years for the case

γ = − 2.

6. Conclusions

Time-dependent creep behavior of a smart sphere was investigated to show the significant effect of creep on
performance and reliability of smart structures used for high-precision applications. Time-dependent thermo-
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electro-mechanical creep response of radially polarized FGPM hollow sphere is investigated using a semi-
analytical numerical procedure. History of stresses and electric potentials of 2 different combinations of
mechanical and electrical boundary conditions for 2 cases of the material in-homogeneity parameter γ are
studied. It was found that the stress and electric potential redistributions for γ = −2 are higher than those
for γ = 2. In general, a major redistribution for stresses and electric potential take place throughout the
thickness. Electric potentials are increasing with time in the same direction as the compressive radial stress
histories. In fact, the electric potential histories are induced by the compressive radial stress histories during
creep deformation of the FGPM sphere.
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Appendix A

D1 =
γ(Cr+E2

r)+2Cr+2E2
r

Cr+E2
r

, D2 = γ(2Cθ+2ErEθ)+2Cθ+2ErEθ−2−2Cϕ−4E2
θ

Cr+E2
r

, D3 = 2Eθ

Cr+E2
r

,

D4 = (γ+1)(2Cθαθ+Crαr+Er (2Eθαθ+Erαr))+2(2Cθαθ+Crαr)+2(Er−Eθ)(2Eθαθ+Erαr)
(Cr+E2

r )(γ+1) + ((1+Cϕ)αθ+Cθαr)
(Cr+E2

r )(γ+1)

D5 = γ(4Cθαθ−2Crαr−2Er(2Eθαθ+Erαr))−2(2Cθαθ+Crαr)−(2Er−Eθ)(2Eθαθ+Erαr)
(Cr+E2

r ) + (2(1+Cϕ)αθ+2Cθαr)
(Cr+E2

r )

D6 = −γ(Cr+E2
r )+2(Cr+E2

r)+2E2
r−2ErEθ−2Cθ

Cr+E2
r

,

D7 = −2γ(Cθ+ErEθ)+4(Cθ+ErEθ)−4E2
θ−4ErEθ−2Cϕ−2

Cr+E2
r

, D8 = −2(Cθ+ErEθ)
Cr+E2

r
.
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