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Abstract: In this article, electro-thermo-nonlocal axial vibration analysis of single-walled boron nitride nanorods

(SWBNNRs) under electric excitation is investigated. A constitutive equation for the nanorods under electro-thermo-

mechanical loadings is obtained using the small scale effect. The effects of the small scale, aspect ratio, and clamped–

clamped (C–C) and clamped–free (C–F) boundary conditions on the natural frequency are discussed. The effects of the

dielectric constant, piezoelectric coefficient, electric excitation, 2 boundary conditions, and temperature change on the

axial displacement of SWBNNRs are investigated. The results show that the natural frequency decreases with increasing

small scale effect. The axial displacement of SWBNNRs increases with an increase in the temperature change and also,

for the piezoelectric coefficient, it is the same. The results of this research can be used for micro- and nano-electro-

thermo-mechanical devices and nanoelectronics.

Key words: Single-walled boron nitride nanorods, electro-thermo-mechanical loadings, axial vibration, electric excita-
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1. Introduction

Carbon nanotubes (CNTs) were discovered by Iijima (1991). These materials had uniform electronic structures
and high thermal and strength properties so that their electrical properties were not stable. However, in contrast
to CNTs, boron nitride nanotubes (BNNTs) had stable semiconducting behavior with a large band gap (Bansal

et al., 2006).

Several studies (Yoon et al., 2003; He et al., 2005; Fu et al., 2006; Aydoğdu and Ece, 2007) investigated

the buckling or/and vibration of CNTs using the local continuum theory. This theory states that the stress
state at a reference point in the body is only dependent on the strain state at this point.

In other studies, it has been shown that the small scale effect has a significant role in the analysis of CNTs
and BNNTs and should be included in the formulations. The nonlocal elasticity theory was first introduced by
Eringen (1983). He stated that the stress state at a reference point in the body was regarded as dependent not
only on the strain state at this point but also on the strain states at all of the points throughout the body. Salehi-
Khojin and Jalili (2008) presented the buckling of BNNTs reinforced piezoelectric polymeric composites under
combined electro-thermo-mechanical loadings. Their results showed that the piezoelectric matrix increases
the buckling resistance of the composite substantially, and the supporting effect of elastic medium depends
on the direction of applied voltage and thermal flow. Aydogdu (2009) considered the small scale effect on
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axial vibration of nanorods and also explicit formulations derived for natural frequencies for clamped–clamped
(C–C) and clamped–free (C–F) boundary conditions. Ghorbanpour Arani et al. (2010) studied the transverse

vibrations of single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) under
axial loading by applying the Euler–Bernoulli and Timoshenko beam models and the Donnell shell model. They
concluded that the Euler–Bernoulli beam model and the Donnell shell model predictions have the lowest and
highest accuracies, respectively. In order to predict the vibration behavior of the CNT more accurately, the
classical models were modified using the nonlocal theory. Moreover, they obtained the natural frequencies and
amplitude coefficient for the simply supported (S-S) boundary conditions. Mohammadimehr et al. (2010a)
investigated the small scale effect on the torsional buckling of a DWCNT embedded on Winkler and Pasternak
foundations. They considered the effects of the surrounding elastic medium, such as the spring constant of
the Winkler type and the shear constant of the Pasternak type, as well as the van der Waals (vdW) forces
between the inner and outer nanotubes. They showed that the shear constant of the Pasternak type increases
the nonlocal critical torsional buckling load, while the difference between the presence and absence of the shear
constant of the Pasternak type was large. Furthermore, they concluded that the nonlocal critical buckling load
is lower than the local critical buckling load. Using the nonlocal elasticity theory, Ghorbanpour Arani et al.
(2011) presented the thermal effect on the buckling analysis of a DWCNT embedded in an elastic medium
based on Pasternak foundation subjected to a uniform external pressure. They indicated that the effect of
temperature change on the critical buckling pressure is negligible, especially for a stiff elastic medium; however,
this is not the case if the elastic medium is soft. Ghorbanpour Arani et al. (2012a) illustrated the buckling

analysis of double-walled boron-nitride nanotubes (DWBNNTs) surrounded by a bundle of CNTs subjected
to electro-thermo-mechanical loadings, using an energy method based on the Winkler–Pasternak model and
nonlocal piezoelasticity cylindrical shell theory. They considered the effects of electric and thermal fields,
elastic medium, and small scale parameter on the electro-thermo-mechanical buckling behavior of DWBNNTs.

Aydogdu (2012) studied the nonlocal axial vibration of SWCNTs embedded in an elastic medium.
He investigated the effect of various parameters like stiffness of elastic medium, C–C and C–F boundary
conditions, and nonlocal parameters on the axial vibration of nanorods. Ghorbanpour Arani et al. (2012b)
presented the electro-thermo-nonlocal transverse vibration behavior of DWBNNTs embedded in an elastic
medium using nonlocal piezoelasticity cylindrical shell theory. They investigated the effects of the spring
constant of Winkler-type, shear constant of Pasternak-type, electric field, and temperature change on the
dimensionless natural frequency. They concluded that the influence of electric field on the dimensionless natural
frequency is approximately constant, while it decreases with increasing temperature change.

The aim of this research was to study electro-thermo-nonlocal axial vibration analysis of SWBNNRs
under electric excitation. The influences of the dielectric constant, piezoelectric coefficient, electric excitation,
C–C and C–F boundary conditions, and temperature change on the axial displacement of SWBNNRs are
considered.

2. Nonlocal rod model

The nonlocal elasticity model was first presented by Eringen (1983). According to this model, the stress at a
reference point in the body is dependent not only on the strain state at that point, but also on the strain state
at all of the points throughout the body. The constitutive equation of the nonlocal elasticity can be written as
follows (Eringen, 1983):

[1 − (e0a)2∇2]σij = Cijkl εkl − eijkEk, (1)
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where e0 denotes a constant. e0a is the nonlocal parameter showing the small scale effect. This parameter was
determined by matching the dispersion curves based on the atomic models (Eringen, 1983).

Total strain second-order tensor is considered as

εkl = εM
kl + εT

kl, (2)

where εM
kl and εT

kl are the mechanical and thermal strains respectively.

Figure 1 illustrates the nanorods under electro-thermo-mechanical loadings and electric excitation. This
figure shows a SWBNNR of length L , thickness h0 , and diameter d .
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Figure 1. A schematic view of a SWBNNR under electro-thermo-mechanical loadings and electric excitation.

According to Figure 1, for axial vibration of thin nanorods under electro-thermal loadings, Eq. (1) can

be expressed as follows (Aydogdu, 2009):

[1− (e0a)2
d2

dx2
]σx = Eεx − h Ex − αx E T (x) (3)

The axial strain in terms of axial displacement is defined as

εx =
∂u(x, t)

∂x
(4)

3. Heat conduction equation

For the steady state, the heat conduction equation without any heat source is considered as the following form
(Shodja and Ghahremaninejad, 2006):

∇.(k∇T ) = 0 (5)

where k is the constant thermal conduction coefficient.
Using Eq. (5), the heat conduction equation of the nanorods can be written in the following one-

dimensional form:
d2T

dx2
= 0 (6)

The solution of Eq. (6) is obtained as follows:

T (x) = c1x + c2, (7)
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where c1 and c2 are real constants. These constants are obtained by boundary conditions, which are considered
as follows:

T (x = 0) = T1, T (x = L) = T2 (8)

Substituting Eq. (7) into Eq. (8) yields

T (x) =
T2 − T1

L
x + T1 (9)

4. Maxwell’s equation

The electric displacement can be written as

D = hεx + ηEx − pT (x), (10)

where η and p are the dielectric constant and pyroelectric coefficient, respectively.

Maxwell’s equation for the free electric charge density is defined as (Khoshgoftar et al., 2009)

∇ .D = 0 (11)

Eq. (11) is obtained in the following one-dimensional form:

dD

dx
= 0 (12)

Substituting Eq. (10) into Eq. (12) yields

dEx

dx
=

p

η

dT (x)
dx

− h

η

dεx

dx
(13)

Variation in electric field by substituting Eqs. (4) and (9) into Eq. (13) is given by

dEx

dx
=

T2 − T1

L

p

η
− h

η

∂2u(x, t)
∂x2

(14)

5. The free vibration of the nanorods

The axial force per unit length is defined as

Nx =
∫

σx dA (15)

Substituting Eq. (3) into Eq. (15) yields

[1 − (e0a)2
d2

dx2
]Nx = AEεx − Ah Ex − αxAE T (x) (16)

The equation of motion for the electro-thermo-axial vibration of the SWBNNRs can be obtained as

∂Nx

∂x
= m

∂2u(x, t)
∂t2

(17)
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Using Eqs. (4), (9), and (14), substituting Eq. (16) into Eq. (17) yields the following equation of motion for
SWBNNRs:

[1− (e0a)2
d2

dx2
]m

∂2u

∂t2
= A(E +

h2

η
)
∂2u

∂x2
− A

T2 − T1

L
(
hp

η
+ αxE) (18)

Using separation, u(x, t) can be defined as

u(x, t) = F (x) sin(ωt) (19)

To obtain natural frequency, the homogeneous part of Eq. (18) is considered as follows:

[1 − (e0a)2
d2

dx2
]m

∂2u

∂t2
= A(E +

h2

η
)
∂2u

∂x2
(20a)

Substituting Eq. (19) into Eq. (20a) yields

d2F

dx2
+ β2F = 0, (20b)

where

β2 =
Ω2

1 − (e0a)2Ω2
, (21a)

Ω2 =
mω2

EA + h2A
η

(21b)

It is important to note that the effect of temperature change is entered in the nonhomogeneous part of Eq. (18);

thus it has no effect on the natural frequency (according to Eqs. (20a) and (21b))

The solution of above equation can be written as

F (x) = A1 cos(βx) + B1 sin(βx), (22)

where A1 and B1 are real constants. These constants are obtained using 2 different boundary conditions defined
as follows:

u(0, t) = u(L, t) = 0C − C boundary condition

u(0, t) = Nx(L, t) = 0C − F boundary condition
(23)

5.1. The natural frequency of nanorods under the C–C supported case

For the C–C supported case, substituting Eqs. (19) and (22) into Eq. (23) yields

A1 = 0,

sin(βl) = 0 ,
(24)

where

β =
i π

L
, i = 1, 2, ..., n (25)

Using Eqs. (21a), (21b), and (25), the natural frequency of nanorods for the C–C supported case is obtained as

ω2 =
( i π

L )2 (E A + h2

η A)

m
[
1 + (e0a)2( i π

L
)2

] , i = 1, 2, ..., n (26)
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5.2. The natural frequency of nanorods under the C–F supported case

Using Eqs. (19) and (22), β for the C–F supported case is written as

β =
(2i − 1)π

2L
, i = 1, 2, ..., n (27)

For the C–F supported case, the natural frequency of nanorods using Eqs. (21a), (21b), and (27) is
considered as follows:

ω2 =
( (2i−1)π

2L )2 (E A + h2

η A)

m
[
1 + (e0a)2( (2i−1)π

2L )2
] , i = 1, 2, ..., n (28)

6. The forced vibration of the SWBNNRs under electro-thermo-mechanical loadings

The forced vibration of the SWBNNRs under electro-thermo-mechanical loadings for the electric excitation can
be written as

[1 − (e0a)2
d2

dx2
]m

∂2u

∂t2
= A(E +

h2

η
)
∂2u

∂x2
− A

T2 − T1

L
(
hp

η
+ Eαx) + E0 sin(ω′t), (29)

where E0 and ω′ are the amplitude and frequency of electric excitation, respectively.

The axial displacement of the SWBNNRs is obtained using the C–C and C–F boundary conditions.

6.1. The axial displacement of the SWBNNRs for the C–C supported case

Using separation, u(x, t) for the C–C supported case (Eq. (23)) can be obtained as

u(x, t) = [Fi(x)]Tn×1 [Gi(t)]n×1

Fi(x) = sin( iπx
L ), i = 1, 2, ..., n

(30)

Substituting Eq. (30) into Eq. (29), the governing equation of motion for the SWBNNRs is expressed as

n∑
i=1

m(1 + ( iπ
L )2(e0a)2) sin( iπx

L )G̈i(t) +
n∑

i=1

[
( iπ

L )2
(
EA + h2A

η

)
sin( iπx

L )Gi(t)
]

= k′ + E0 sin(ω′t) , i = 1, 2, ..., n,
(31)

where

k′ = −T2 − T1

L
A(

hp

η
+ Eαx) (32)

Multiplying Eq. (31) in sin( jπx
L ), j = 1, 2, ..., n and then integrating in terms of nanorod length, ordinary

differential equations (ODEs) are obtained. These equations have homogeneous and particular solutions that
are considered as the following form:

Gi(t) = Ghi(t) + Gpi(t), (33)

where Ghi(t) and Gpi(t) are the homogeneous and particular solutions, respectively, expressed as

Ghi(t) = Ci1 sin(βit) + Ci2 cos(βit), (34)
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Gpi(t) = Ci3 + Ci4 sin(ω′t), (35)

where

βi =

√√√√
(
EA + h2A

η

)
( iπ

L )2

m
[
1 + (e0a)2( iπ

L )2
]

Using Eqs. (31) and (35), Ci3 and Ci4 constants can be written as

Ci3 =
2k′(1 − (−1)i)

iπ
(
EA + h2A

η

)
( iπ

L )2
, (36)

Ci4 =
2E0(1 − (−1)i)

iπ
[(

EA + h2A
η

)
( iπ

L
)2 − mω′2(1 + (e0a)2( iπ

L
)2)

] , (37)

where Ci1 and Ci2 are real constants. These constants are obtained using the initial conditions, considered as

G(t = 0) = 0,

Ġ(t = 0) = 0
(38)

Substituting Eq. (33) into Eq. (38) yields

Ci2 = −Ci3, (39)

Ci1 = −ω′

βi
Ci4 (40)

Substituting Eqs. (34) and (35) into Eqs. (33) and (30), the axial displacement of the SWBNNRs under
electro-thermo-mechanical loadings for electric excitation and C-C supported case is expressed as follows:

u(x, t) = [Fi(x)]Tn×1 ×

⎛
⎜⎝

[sin(βit)]n×1 [I]n×n [Ci1]n×1

+ [cos(βit)]n×1 [I]n×n [Ci2]n×1 +

[Ci3]n×1 + [sin(ω′t)]n×1 [I]n×n [Ci4]n×1

⎞
⎟⎠

i = 1, 2, ..., n

(41)

6.2. The axial displacement of the SWBNNRs for the C–F supported case

The axial displacement of nanorods for the C–F supported case is written as

u(x, t) = [Fi(x)]Tn×1 [Gi(t)]n×1

Fi(x) = sin( (2i−1)πx
2L ), i = 1, 2, ..., n

(42)

Substituting Eq. (42) into Eq. (29) yields

n∑
i=1

m(1 + ( (2i−1)π
2L

)2(e0a)2) sin( (2i−1)πx
2L

)G̈i(t)+
n∑

i=1

[
( (2i−1)π

2L )2
(
EA + h2A

η

)
sin( (2i−1)πx

2L )Gi(t)
]

= k′ + E0 sin(ω′t)

, i = 1, 2, ..., n

(43)
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Multiplying Eq. (43) in sin( (2j−1)πx
2L

), j = 1, 2, ..., n and then integrating in terms of nanorod length, ODEs are

obtained. The solution of ODEs is defined as

Ghi(t) = Ci5 sin(βit) + Ci6 cos(βit), (44)

Gpi(t) = Ci7 + Ci8 sin(ω′t), (45)

where

βi =

√√√√√
(
EA + h2A

η

)
( (2i−1)π

2L )2

m
[
1 + (e0a)2( (2i−1)π

2L
)2

]

Using Eqs. (43) and (45), Ci7 and Ci8 constants are expressed as follows:

Ci7 =
4k′

(2i − 1)π
(
EA + h2A

η

) (
(2i−1)π

2L

)2 , (46)

Ci8 =
4E0

(2i − 1)π
[(

EA + h2A
η

)
( (2i−1)π

2L
)2 − mω‘2(1 + (e0a)2( (2i−1)π

2L
)2)

] (47)

Using Eqs. (33), (38), and (44), Ci5 and Ci6 constants are written as

Ci6 = −Ci7, (48)

Ci5 = −ω′

βi
Ci8 (49)

The axial displacement of the SWBNNRs for the C–F supported case is obtained as follows:

u(x, t) = [Fi(x)]Tn×1 ×

⎛
⎜⎝

[sin(βit)]n×1 [I]n×n [Ci5]n×1

+ [cos(βit)]n×1 [I]n×n [Ci6]n×1 +

[Ci7]n×1 + [sin(ω′t)]n×1 [I]n×n [Ci8]n×1

⎞
⎟⎠

i = 1, 2, ..., n

(50)

7. Numerical results and discussion

The nanorod’s dimensions and its thermal, electrical, and mechanical properties can be considered as follows
(Salehi-Khojin and Jalili, 2008; Khoshgoftar et al., 2009; Mustapha and Zhong, 2010; Mohammadimehr et al.,

2010a, 2010b):

E=5.5Tpa, r=12.306nm, h0=0.066nm, e0a=0.05538nm,ρ=2.3 g/cm
3
,

L =10r , p=0.0083 e−6C/m2,h=0.95C/m2,αx = − 1.6e− 6 K−1,η=4.2
(51)

The first 10 natural frequencies of nanorods under electrical and mechanical loadings are tabulated in
Tables 1 and 2 for the C–C and C–F boundary conditions, respectively. It is seen from these tables that the
natural frequency for the C–C boundary condition is higher than that for the C–F boundary condition.

8



MOHAMMADIMEHR and RAHMATI/Turkish J Eng Env Sci

Table 1. The first 10 natural frequencies of nanorods for

the C–C boundary condition.

Number of frequency Natural frequency
(rad/s) × 1012

1 1.24839
2 2.49677
3 3.74514
4 4.99348
5 6.24179
6 7.49007
7 8.73830
8 9.98648
9 11.2346
10 12.4827

Table 2. The first 10 natural frequencies of nanorods for

the C–F boundary condition.

Number of frequency Natural frequency
q(rad/s) × 1012

1 0.624195
2 1.87258
3 3.12096
4 4.36931
5 5.61764
6 6.86594
7 8.11419
8 9.36240
9 10.6106
10 11.8586

The effect of aspect ratio (L/r) on the first natural frequency is tabulated in Tables 3 and 4 for the C–C
and C–F boundary conditions, respectively. It is shown that the natural frequency decreases with increasing
aspect ratios.

Table 3. The effect of aspect ratio on the first natural

frequency of nanorods for the C–C boundary condition.

L/r First natural frequency
(rad/s) × 1011

10 12.4839
20 6.24195
30 4.16130
40 3.12098
50 2.49678
60 2.08065
70 1.78341
80 1.56049
90 1.38710
100 1.24839

Table 4. The effect of aspect ratio on the first natural

frequency of nanorods for the C–F boundary condition.

L/r First natural frequency
(rad/s) × 1011

10 6.24195
20 3.12098
30 2.08065
40 1.56049
50 1.24839
60 1.04033
70 0.891707
80 0.780244
90 0.693550
100 0.624195

Figure 2 indicates the first natural frequency of SWBNNRs versus aspect ratio for the C–C and C–F
boundary conditions and different values of nonlocal parameter (e0a). It is seen from the results that the first

natural frequency decreases with an increase in the small scale effect (e0a) for the 2 boundary conditions, but
this effect for the C–C boundary condition is higher than that for the C–F boundary condition. Moreover, the
effect of small scale on the natural frequency is negligible with increasing aspect ratio of nanorods. It is shown
from this figure that the natural frequency for the C–C boundary condition is higher than that for the C–F
boundary condition.

Figures 3 and 4 show the small scale effect of SWBNNRs on the natural frequency with different mode
numbers for the C–C and C–F boundary conditions, respectively. It can be seen from this figure that the
nonlocal natural frequency (e0a �= 0) is lower than the local natural frequency (e0a = 0). The difference
between the local and nonlocal natural frequencies increases for higher natural frequencies. On the other hand,
the nonlocal parameter does not have the same effect on higher mode numbers.
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Figure 4. The effect of small scale on the first 5 natural

frequencies for the C–F boundary condition.

In Figures 5 and 6, the axial displacement of SWBNNRs versus time and length of nanorods is illustrated
for the C–C and C–F supported cases, respectively. It is observed from the results that Figures 5 and 6 satisfy
the C–C and C–F boundary conditions.

If the electric excitation frequency is close to, but not exactly equal to, the natural frequency of SWBN-
NRs, the beating phenomenon occurs for the C–C and C–F boundary conditions in Figures 7 and 8, respectively.

In Figures 9 and 10, the first mode shape for different temperature changes and the 2 boundary conditions
is shown. It is seen that the axial displacement of SWBNNRs increases with an increase in temperature change.

Figures 11 and 12 demonstrate the influence of the piezoelectric coefficient on the axial displacement of
SWBNNRs for the C–C and C–F boundary conditions, respectively. It also can be observed that the axial
displacement of SWBNNRs for both boundary conditions decreases with decreasing piezoelectric coefficient.
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time and length of nanorods for the C–F boundary condi-

tion and ΔT = 50 ◦C , E0 = 5e9 N/nm , ω′ = 3e12 rad/s .
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Figure 7. The axial displacement of SWBNNRs ver-

sus time for the C–C boundary condition and ΔT =

50 ◦C , E0 = 5e9N/nm , ω′ = 1.2e12 rad/s, x = 0.5L .

Figure 8. The axial displacement of SWBNNRs ver-

sus time for the C–F boundary condition and ΔT =

50◦C , E0 = 5e9 N/nm , ω′ = 6e11 rad/s, x = L.
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Figure 9. The influence of the temperature change on the

axial displacement of SWBNNRs for the C–C boundary

condition and E0 = 5e10 N/nm , ω′ = 1.2e12 rad/s, t =

3e − 12 s .

Figure 10. The influence of the temperature change

on the axial displacement of SWBNNRs for the C–

F boundary condition and E0 = 5e10 N/nm , ω′ =

0.6e12 rad/s, t = 3e − 12 s .
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Figure 11. The influence of the piezoelectric co-

efficient on the axial displacement of SWBNNRs for

the C–C boundary condition and ΔT = 50 ◦C , E0 =

5e4 N/nm , ω′ = 1.2e12 rad/s, t = 1 s .

Figure 12. The influence of the piezoelectric co-

efficient on the axial displacement of SWBNNRs for

the C–F boundary condition and ΔT = 50 ◦C , E0 =

5e3 N/nm , ω′ = 1.2e12 rad/s, t = 1 s .

The influence of the dielectric constant on the axial displacement of SWBNNRs for the C–C and C–F
boundary conditions is investigated as in Figures 13 and 14, respectively. It is shown from the results that an
increase in the dielectric constant leads to a decrease in axial displacement.
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Figure 13. The influence of the dielectric constant on

the axial displacement of SWBNNRs for the C–C bound-

ary condition and ΔT = 50 ◦C , E0 = 5e4 N/nm , ω′ =

1.2e12 rad/s, t = 1 s .

Figure 14. The influence of the dielectric constant on

the axial displacement of SWBNNRs for the C–F bound-

ary condition and ΔT = 50 ◦C , E0 = 5e3 N/nm , ω′ =

1.2e12 rad/s, t = 1 s .

Figures 15 and 16 illustrate the mode shapes of SWBNNRs for the C–C and C–F boundary conditions,
respectively. It is clear that different mode shapes are due to varying electric excitation frequency.

Figures 17 and 18 indicate the axial displacement versus the length of nanorods with different values of
nonlocal parameter; these figures show the small scale effect on the first and fifth mode shapes for the C–C
boundary condition, respectively. Comparing Figures 17 and 18 it can be concluded that the effect of small scale
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on the amplitude of the axial displacement for high mode number is higher than that for low mode number. It
is noted that high and low mode numbers are fifth and first mode numbers, respectively.
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Figure 15. The mode shapes of SWBNNRs for the C-

C boundary condition and E0 = 5N/m, δT = 0, t =

1.3e − 11 s .

Figure 16. The mode shapes of SWBNNRs for the C–

F boundary condition and E0 = 5 N/nm, ΔT = 0, t =

1.3e − 11 s .
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Figure 17. The effect of small scale on the axial dis-

placement for low mode number of SWBNNRs for the

C–C boundary condition and ω′ = 1.1e12 rad/s , E0 =

5N/nm , ΔT = 0 ◦C , t = 1 e − 11s .

Figure 18. The effect of small scale on the axial dis-

placement for high mode number of SWBNNRs for the

C–C boundary condition and ω′ = 6.1e12 rad/s , E0 =

5N/nm , ΔT = 0 ◦C , t = 1 e − 11s .

8. Conclusions

In this article, the small scale effect on the electro-thermo-mechanical vibration analysis of SWBNNRs under
electric excitation is studied. The mode shapes of vibration for the C–C and C–F boundary conditions are
illustrated. Moreover, the beating phenomenon is investigated for the 2 boundary conditions. The effects of the
dielectric constant, piezoelectric coefficient, electric excitation, 2 boundary conditions, and temperature change
on the axial displacement of SWBNNRs are presented. The following conclusions can be obtained from the
present work:
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1. The natural frequency decreases with an increase in the small scale effect (e0a) or aspect ratios. On the
other hand, the small scale effect is significant for lower aspect ratios and higher natural frequencies.

2. The difference between the local and nonlocal natural frequencies increases for higher natural frequencies.
Moreover, the nonlocal parameter does not have the same effect on higher mode numbers.

3. The natural frequency for the C–C boundary condition is higher than that for the C–F boundary condition.

4. An increase in the axial displacement of SWBNNRs causes an increase in the temperature changes.

5. The axial displacement of SWBNNRs decreases with decreasing piezoelectric coefficient, while for the
dielectric constant the results are reversed.

6. The influence of small scale on the amplitude of the axial displacement for high mode number is higher
than that for low mode number.

They can be considered for nanodevices, nanoelectronics, and nanocomposites. Moreover, SWBNNRs can be
used for micro- and nano-electro-thermo-mechanical devices.
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Nomenclature
a an internal characteristic length
A cross-sectional area of the nanorods
Cijkl fourth-order elasticity tensor
d diameter of the nanorods
D electric displacement
eijk third-order piezoelectric tensor
e0a nonlocal parameter
E Young’s modulus
Ek electric field
Ex axial electric field
E0 amplitude of electric excitation
Ghi homogeneous solution
Gpi particular solution
h piezoelectric coefficient
h0 thickness of the nanorods
k thermal conduction coefficient
L length of the nanorods
m mass per unit length
Nx axial force per unit length
p pyroelectric coefficient
r radius of the nanorods

t time
T (x) temperature change
u axial displacement
x longitudinal axis

Greek symbols
αx thermal expansion coefficient
εkl total strain second-order tensor
εM
kl mechanical strain

εT
kl thermal strain

εx axial strain
η dielectric constant
ρ density of the nanorods
σij stress second-order tensor
σx axial stress
ω dimensional natural frequency
ω′ frequency of electric excitation
Ω nondimensional natural frequency
∇2 Laplace operator
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