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Abstract: Nonlinear buckling of bonded double-walled boron nitride nanotubes (DWBNNTs) under combined electro-

thermo–mechanical loadings based on the nonlocal piezoelasticity theory and Euler–Bernoulli beam (EBB) model is

presented in this paper. Coupled DWBNNTs are embedded in an elastic medium that is simulated as a Pasternak

foundation. Using the Lennard-Jones model, the van der Waals interaction between 2 layers of DWBNNTs is taken into

account. Considering the von Kármán geometric nonlinearity, Hamilton’s principle, and charge equation, higher order

governing equations are derived and solved by differential quadrature method (DQM). The detailed parametric study is

conducted, focusing on the remarkable effects on the behavior of nonlinear buckling loads. The results indicated that

the small-scale parameter, elastic medium, boundary conditions, electric potential, aspect ratio, and different vibration

phases play an important role in the nonlinear buckling of smart elastically coupled systems. In addition, it is found

that the trend of figures has good agreement with those of previous research. The results of this work could be used in

the design and manufacture of nano/micro-electro–mechanical systems.
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1. Introduction

Theoretical and experimental studies of nanostructures such as nanowires and nanotubes have received much

attention since the identification of carbon nanotubes (CNTs) [1]. Many investigations have focused on modern

nanotechnology involving nanotubes embedded in an elastic matrix because of their great importance in the

development of nanodevices.

Rubio et al. [2] proposed the existence of boron nitride nanotubes (BNNTs) for the first time. BNNTs

are similar in structure to CNTs in which C atoms are substituted by alternating B and N atoms. They have

become the most promising materials for nanoelectronics, nanodevices, and nanocomposites because of their

novel properties [3]. They are different as far as high temperature resistance to oxidation (>900 ◦C) and

possessing strong piezoelectric characteristics are concerned [4]. The electrical properties of CNTs are strongly

affected by the rolling angle of the nanotube lattice molecular structure, known as chirality, which has limited

the applications of CNTs in electrical components, especially in nanoelectrical devices [5]. BNNTs possess

extraordinary properties such as high elastic modulus, high thermal conductivity, low density, constant wide

band gap, superb structural stability, and chemical inertness [6]. Meanwhile, they have more resistance to

∗Correspondence: aghorban@kashanu.ac.ir

231



GHORBANPOUR ARANI et al./Turkish J Eng Env Sci

oxidation at high temperature than other conventional nanotubes such as CNTs and they are used for high

temperature applications [7]. Mechanical and electrical properties of BNNTs have been of interest to researchers

due to their piezoelectric properties.

In recent years, a large number of studies have been carried out on buckling and vibration of nan-

otubes/microtubes. Based on the nonlocal elasticity theory on mechanical behavior, Eringen [8] indicated that

the stress at a point is related to the strain at all points of the body. Wang and Varadan [9] studied vibration of

both single-walled nanotubes and double-walled nanotubes via nonlocal elastic beam theories where they con-

sidered small-scale effects on vibration characteristics of CNTs. Wang et al. [10] investigated the elastic buckling

analysis of micro- and nanorods/tubes based on Eringen’s nonlocal elasticity theory and the Timoshenko beam

theory. Explicit expressions for the critical buckling loads were derived for axially loaded rods/tubes with var-

ious end conditions. They showed that the sensitivity of the small-scale effect on the buckling loads may be

observed. Various available beam theories, including the Euler–Bernoulli, Timoshenko, Reddy, and Levinson

beam theories were reformulated using the nonlocal differential constitutive relations of Eringen by Reddy [11].

Analytical solutions of bending, vibration and buckling were presented using the nonlocal theories to bring

out the effect of the nonlocal behavior on deflections, buckling loads, and natural frequencies. Aydogdu [12]

proposed a generalized nonlocal beam theory to study bending, buckling, and free vibration of nanobeams.

Ghorbanpour Arani et al. [13] investigated the free transverse vibrations of single-walled carbon nanotubes

(SWCNTs) and double-walled carbon nanotubes (DWCNTs) under axial load using EBB, Timoshenko beam,

and Donnell shell models. Their results showed that the natural frequencies predicted by nonlocal theory are

lower than those of classical theory. In another study, Ghorbanpour Arani et al. [14] presented the thermal

effect on the buckling of DWCNTs resting on the Pasternak foundation using Eringen’s partial nonlocal elas-

ticity theory. They concluded that the strength of a DWCNT was related to the Winkler and shear modules.

Akgöz and Civalek [15] discussed the effects of length parameter on the buckling characteristics of micro-sized

beams with hinged–hinged and clamped–free boundary conditions.

Buckling of BNNTs in a PVDF matrix as an elastic medium subjected to combined electro-thermo–

mechanical loadings was investigated by Salehi-Khojin and Jalili [16], who showed that applying direct and

reverse voltages to BNNT changed buckling loads for any axial and circumferential wave numbers. Later, axial

buckling analysis of embedded DWBNNTs under combined electro-thermo–mechanical loadings was presented

by Ghorbanpour Arani et al. [17]. They concluded that the electric field and its direction have significant effects

on the magnitude of the critical buckling load.

On the other hand, Murmu and Adhikari [18] analyzed nonlocal vibration of bonded double-nanoplate

systems. Their study highlighted that the small-scale effects considerably influence the transverse vibration

of a double-nanoplate system. Moreover, they elucidated that increasing stiffness of the coupling springs in a

nonlocal coupled system causes a decrease in the small-scale effects during the asynchronous modes of vibration.

Furthermore, nonlocal buckling behavior of coupled nanoplate systems was reported by Murmu et al. [19], who

showed that the effect of nonlocal parameter values for the case of synchronous buckling modes is higher than for

the asynchronous state. Vibration analysis of the coupled system of double-layered graphene sheets embedded

in a Visco-Pasternak foundation was carried out by Ghorbanpour Arani et al. [20] based on nonlocal elasticity

theory. Their results indicated that the effect of nonlocal parameter decreases for higher values of the Winkler

and Pasternak modulus.

However, to date, no report has been found in the literature on the buckling behavior of coupled

DWBNNT systems embedded in an elastic medium. Motivated by this consideration, this study aims to present
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the investigation of nonlinear buckling analysis of coupled DWBNNT systems under combined electro-thermo–

mechanical loadings. Coupled DWBNNTs are embedded with an elastic medium simulated by Pasternak type as

spring and shear foundations. Using nonlocal piezoelasticity theory the nonlinear buckling response of coupled

DWBNNTs is obtained. In order to obtain the critical buckling load of the coupled system, using Hamilton’s

principle, the higher-order governing equations of motion are derived and solved by DQM. The effects of nonlocal

parameter, aspect ratio, elastic medium coefficients, and different boundary conditions on the buckling behavior

of the coupled system for different states are taken into account. In order to validate this study, the results

obtained by Murmu and Pradhan [21] and Wang et al. [10] are compared with the results of the present work.

2. Nonlocal Piezoelectricity theory

In the classical theory of continuum mechanics, the stress at a point is only dependent on strain at that point,

while according to Eringen nonlocal elasticity theory [8] the stress at a point is related to the strain at all

points of the body. This phenomenon is known as small-scale effect, and is shown in constitutive equations

by the parameter e0a . Recently, the nonlocal elasticity theory has been applied for nano/microstructures in

the literature by Ghorbanpour Arani et al. [22]. The nonlocal constitutive equations for a homogeneous and

piezoelectric nanostructure are written as:

(1− (e0a)
2∇2)σ = τ (1a)

(1− (e0a)
2∇2)D = Γ, (1b)

where σ and τ are nonlocal and local stresses, respectively, and D and Γ are nonlocal and local electric

displacements, respectively. e0a and ∇2 are the small-scale parameter and Laplace operator, respectively,

where e0denotes an appropriate constant for each material and a is an internal characteristic length of the

material (e.g., length of B-N bond, lattice spacing, granular distance), where a = 0.145nm for BNNTs [23].

The local stress relation for piezoelectric materials under electro-thermal loading is [24]:

{τ} = [c]{ε} − [h]T {E} − {λ}T, (2)

where {h} , {E} , and {λ} are strain vector, electric field, and thermal expansion, respectively; [C] , [h] , and

T denote matrices of elastic stiffness, piezoelectric parameter, and temperature change, respectively. Zigzag

structures for BNNTs have been considered in this study due to the favorable axial piezoelectric response

to tension and compression. For the EBB model, the stress-strain relation for piezoelectric materials under

electro-thermal axial loading is:

τxx = C11εx − h11Ex − C11αxT (3)

and local electric displacement relation based on piezoelasticity theory is:

Γx = h11(εx − αxT )+ ∈11 Ex, (4)

where ∈11denotes the dielectric constant for isotropic material and Ex is defined as [24]:

Ex = −∂φ

∂x
, (5)

where φ is the electric potential.
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3. Governing relations

Figure 1 illustrates 2 DWBNNTs coupled by Pasternak medium where the inner and outer radii of the

DWBNNTs are r12 = r22 and r11 = r21 , respectively; L and h are length and thickness, respectively. Based

on EBB theory the general displacement fields are [24]:

Ũ(x, z, t) = U(x, t)− z ∂W (x,t)
∂x

Ṽ (x, z, t) = 0

W̃ (x, z, t) = W (x, t)

(6)

U Band W are the components of the middle surface displacement (i.e. displacement at z = 0), and nonlinear

strain–displacement relations can be demonstrated as:

εxx(x, z) =
∂Ũ
∂x + 1

2 (
∂W̃
∂x )2 = ∂U

∂x − z ∂W
∂x + 1

2 (
∂W
∂x )2

εzz(x, z) = 0
γxz(x, z) = 0

(7)
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Figure 1. Schematic of 2 DWBNNTs coupled by a Pasternak foundation.

3.1. Electrostatic potential energy

Electrostatic potential energy (
∏
) for each layer of DWBNNT is [24]:

∏
=

1

2

L∫
0

∫
A1

(σxxεxx −DxEx)dA1dx (8)
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Substituting Eqs. (3)–(7) into Eq. (8), electrostatic strain energy for each layer is:

∏
ij

=
1

2

∫ L

o

∫
Aij

[σxx{
∂Uij

∂x
+

1

2
(
∂Wij

∂x
)2 − z

∂2Wij

∂x2
} − {h11εx− ∈11

∂φij

∂x
− h11αxT}(

−∂φij

∂x
)]dAijdx, (9)

where i is number of nanotubes and j is the inner or outer layer of nanotubes, where j =1 and 2 represent the

outer and inner layer, respectively. The resultant forces and moments in the middle surface of DWBNNT are:

Nxi =
∫
A
σxdAi

Mxi =
∫
A
σxzdAi

(10)

Thus, total strain energy leads to:∏
ij

= 1
2

∫ L

0
[Nxij

∂Uij

∂x + 1
2Nxij(

∂Wij

∂x )2 −Mxij
∂2Wij

∂x2 + h11Aij
∂Uij

∂x (
∂φij

∂x )+

1

2
h11Aij(

∂Wij

∂x
)2(

∂φij

∂x
)− zh11

∂2Wij

∂x2

∂φij

∂x
− 2 ∈11 Aij(

∂φij

∂x
)2 − h11αxTAij

∂φij

∂x
]dx

(11)

3.2. External work

For the DWBNNT, interaction forces between the inner and outer tubes are equal in magnitude and opposite

in sign and evaluated based on the Lennard-Jones model [16] as:

q11 = 2πr11c(W12 −W11)
q21 = 2πr21c(W22 −W21)

(12)

where c is vdW interaction coefficient and Wij(i, j = 1, 2) corresponds to the transverse displacement of layers.

Therefore, the interaction forces between the inner and outer layer are:

q11r11 = −q12r12
q21r11 = −q22r12

(13)

Two DWBNNTs are coupled by a Pasternak foundation, where the spring foundation and shear layer are

represented by kw and Gp terms, respectively. The effect of elastic medium on a coupled system is presented

as follows [25]:

FElasticmedium = πr12
(
kw(w12 − w22)−Gp∇2(w12 − w22)

)
+ πr12

(
kww12 −Gp∇2w12

)
(14)

Hence, the external work due to the surrounding elastic medium and vdW interactions can be written as:

Ω11 =
1

2

L∫
0

q11W11dx (15a)

Ω12 =
1

2

L∫
0

q12W12dx+
1

2

L∫
0

−
(
πr12

(
kw(w12 − w22)−Gp∇2(w12 − w22)

)
+ πr12

(
kww12 −Gp∇2w12

))
W12dx

(15b)
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Ω21 =
1

2

L∫
0

q21W21dx (15c)

Ω22 =
1

2

L∫
0

q22W22dx+
1

2

L∫
0

(
πr12

(
kw(w12 − w22)−Gp∇2(w12 − w22)

)
+ πr12

(
kww22 −Gp∇2w22

))
W22dx

(15d)

3.3. Hamilton’s principle

The higher order governing equations of motion for embedded DWBNNTs can be derived from a dynamic

version of the virtual work principle well known as Hamilton’s principle:

t1∫
t0

(δ
∏

−δΩ) dt = 0 (16)

Using Eqs. (11) and (15) with Hamilton’s principle and integrating Eq. (16) by parts and setting the coefficient

of mechanical and electrical to zero, the motion equations are obtained as:

δUij :

−∂Nxij

∂x
− h11Aij

∂2φij

∂x2
= 0

(17)

δW11 :

− ∂

∂x
(Nx11

∂W11

∂x
)− ∂2Mx11

∂x2
− h11A11(

∂

∂x
)(
∂W11

∂x

∂φ11‘

∂x
)− q11 = 0

(18)

δW12 :

− ∂

∂x
(Nx12

∂W12

∂x
)− ∂2Mx12

∂x2
− h11A12(

∂

∂x
)(
∂W12

∂x

∂φ12‘

∂x
)− q12+

h
(
kw(W12 −W22)−Gp

∂2

∂x2 (W12 −W22)
)
= 0

(19)

δW21 :

− ∂

∂x
(Nx21

∂W21

∂x
)− ∂2Mx21

∂x2
− h11A21(

∂

∂x
)(
∂W21

∂x

∂φ21

∂x
)− q21 = 0

(20)

δW22 :

− ∂

∂x
(Nx22

∂W22

∂x
)− ∂2Mx22

∂x2
− h11A22(

∂

∂x
)(
∂W22

∂x

∂φ22‘

∂x
)− q22+

h

(
−kw(W12 −W22) +Gp

∂2

∂x2
(W12 −W22)

)
= 0

(21)

δφij :

−hijAij
∂2Uij

∂x2
− hijAij

∂2Wij

∂x2

∂Wij

∂x
+ 2 ∈ij Aij

∂2φij

∂x2
= 0

(22)
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Using Eqs. (1)–(4), Eq. (10) for nonlocal form of force and moment becomes:

Nx − (e0a)
2 ∂

2Nx

∂x2
= C11A

∂Uij

∂x
+

1

2
C11A(

∂Wij

∂x
)2 + h11A

∂φ

∂x
− C11αxAT

Mx − (e0a)
2 ∂

2Mx

∂x2
= −C11I

∂2W

∂x2

(23)

Dimensionless parameters are defined as follows [24]:

ξ =
x

l
wij =

Wij

rij
ηij =

l

rij
en =

e0a

l

Īij =
Iij

Aijr2ij
C̄ij =

2πr12Cl2

EAij
∆T̄ = αx T k̄w =

πr12Kwl
2

EA12

Ḡp =
πr12Gp

EA12
φ̄ =

φh11

El
γ =

∈11 E

h2
11

p̄ij =
Nx

EAij

(24)

Using Eqs. (24) and substituting Eq. (23) into Eqs. (17)–(22), the dimensionless equations of motion are

obtained as follows:

δUij :

− 1

1− v2
1

ηij

∂2uij

∂ξ2
− 1

1− v2
1

η2
ij

∂wij

∂ξ

∂2wij

∂ξ2
− 3

2

∂2φ̄ij

∂ξ2
+

1

2
e2n

∂4φ̄ij

∂ξ4
= 0

(25)

δW11 :

− 1

1− v2
1

η11

∂2u11

∂ξ2
∂w11

∂ξ
− 1

1− v2
1

η11
(
∂w11

∂ξ
)2
∂2w11

∂ξ2
− p̄11

∂2w11

∂ξ2
+ e2np̄11

∂4w11

∂ξ4

+Ī11
1

1− ν2
1

η211

∂4w11

∂ξ4
− ∂φ̄11‘

∂ξ

∂2w11

∂ξ2
− 2

∂2φ̄11‘

∂ξ2
∂w11

∂ξ

+e2n
∂φ̄11‘

∂ξ

∂4w11

∂ξ4
+ e2n

∂4φ̄11‘

∂ξ4
∂w11

∂ξ
− c̄

η11
η12

w12 + c̄w11 + c̄e2n
η11
η12

d2w12

dξ2
− c̄e2n

d2w11

dξ2
= 0

(26)

δW12 :

− 1

1− v2
1

η12

∂2u12

∂ξ2
∂w12

∂ξ
− 1

1− v2
1

η12
(
∂w12

∂ξ
)2
∂2w12

∂ξ2
− A11

A12
(p̄11

∂2w12

∂ξ2
+

e2np̄11
∂4w12

∂ξ4
) + Ī12

1

1− ν2
1

η212

∂4w12

∂ξ4
− ∂φ̄12

∂ξ

∂2w12

∂ξ2
− 2

∂2φ̄12

∂ξ2
∂w12

∂ξ
+

e2n
∂φ̄12

∂ξ

∂4w12

∂ξ4
+ e2n

∂4φ̄12

∂ξ4
∂w12

∂ξ
+ c̄

η12
η11

w12 − c̄
η212
η211

w11 − c̄e2n
η12
η11

d2w12

dξ2
+

c̄e2n
η212
η211

d2w11

dξ2
+ 2k̄ww12 −

η12
η22

k̄ww22 − 2Ḡp
∂2w12

∂ξ2
+ Ḡp

η12
η22

∂2w22

∂ξ2
−

2k̄we
2
n

∂2w12

∂ξ2
+ kwe

2
n

η12
η22

∂2w22

∂ξ2
+ 2Ḡpe

2
n

∂4w12

∂ξ4
− Ḡpe

2
n

η12
η22

∂4w22

∂ξ4
= 0

(27)
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δW21 :

− 1

1− v2
1

η21

∂2u21

∂ξ2
∂w21

∂ξ
− 1

1− v2
1

η21
(
∂w21

∂ξ
)2
∂2w21

∂ξ2
− p̄21

∂2w21

∂ξ2

+e2np̄21
∂4w21

∂ξ4
+ Ī21

1

1− ν2
1

η221

∂4w21

∂ξ4
− ∂φ̄21‘

∂ξ

∂2w21

∂ξ2
− 2

∂2φ̄21‘

∂ξ2
∂w21

∂ξ

+e2n
∂φ̄21‘

∂ξ

∂4w21

∂ξ4
+ e2n

∂4φ̄21‘

∂ξ4
∂w21

∂ξ
− c̄

η21
η22

w22 + c̄w21 + c̄e2n
η21
η22

d2w22

dξ2
− c̄e2n

d2w21

dξ2
= 0

(28)

δW22 :

− 1

1− v2
1

η22

∂2u22

∂ξ2
∂w22

∂ξ
− 1

1− v2
1

η22
(
∂w22

∂ξ
)2
∂2w22

∂ξ2
− A21

A22
(p̄21

∂2w22

∂ξ2
+

e2np̄21
∂4w22

∂ξ4 ) + Ī22
1

1−ν2
1

η2
22

∂4w22

∂ξ4 − ∂φ̄22

∂ξ
∂2w22

∂ξ2 − 2∂2φ̄22

∂ξ2
∂w22

∂ξ +

e2n
∂φ̄22

∂ξ

∂4w22

∂ξ4
+ e2n

∂4φ̄22

∂ξ4
∂w22

∂ξ
+ c̄

η22
η21

w22 − c̄
η222
η221

w21 − c̄e2n
η22
η21

d2w22

dξ2
+

c̄e2n
η222
η221

d2w21

dξ2
− k̄w

η22
η12

w12 + 2k̄ww22 + Ḡp
η22
η12

∂2w12

∂ξ2
− 2Ḡp

∂2w22

∂ξ2
+

k̄we
2
n

η22
η12

∂2w12

∂ξ2
− 2k̄we

2
n

∂2w22

∂ξ2
− Ḡpe

2
n

η22
η12

∂4w12

∂ξ4
+ 2Ḡpe

2
n

∂4w22

∂ξ4
= 0

(29)

δφij :
∂2uij

∂ξ2
− e2n

∂4uij

∂ξ4
+

1

ηij

∂2wij

∂ξ2
∂wij

∂ξ

−e2n
1

ηij

{
3
∂3wij

∂ξ3
∂2wij

∂ξ2
+

∂wij

∂ξ

∂4wij

∂ξ4

}
− 2ηijγ

∂2φ̄ij

∂ξ2
+ 2e2nηijγ

∂4φ̄ij

∂ξ4
= 0

(30)

4. Solution method

In this section, the DQM is introduced to solve nonlinear higher order equations of motion. In this method the

partial derivative of a function with respect to spatial variables at a given discrete point are approximated as

a weighted linear sum of the function values at all discrete points chosen in the solution domain. According to

this method, the functions uij , wij , φij , and their derivatives are [26]:

∂k

∂ξk
{uij , wij , φ̄ij}|ξ=ξn

=
n∑

m=1

C(k)
nm(ξ){uijm(ξm), wijm(ξm), φ̄ijm(ξm)} i, j = 1, 2 (31)

where the weighting coefficients of first-order derivative Ξij are expressed as:

Ξ
(1)
ij =

R(xi)

(xi − xj)R(xj)
; i, j = 1, 2, ..., N ; i ̸= j (32)

The term R(xi) is defined as:

R(xi) =
N∏
j=1

(xi − xj); i ̸= j (33)

and when i ̸= j

Ξ
(1)
ij = Ξ

(1)
ii = −

N∑
k=1

Ξ
(1)
ik ; i = 1, 2, ..., N ; i ̸= k; i = j (34)
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To obtain the weighting coeffcients for the second- to sixth-order derivatives, the matrix multiplication procedure

[21] is:

Ξ
(2)
ij =

N∑
k=1

Ξ
(1)
ik Ξ

(1)
kj

Ξ
(3)
ij =

N∑
k=1

Ξ
(1)
ik Ξ

(2)
kj =

N∑
k=1

Ξ
(2)
ik Ξ

(1)
kj

Ξ
(4)
ij =

N∑
k=1

Ξ
(1)
ik Ξ

(3)
kj =

N∑
k=1

Ξ
(3)
ik Ξ

(1)
kj

Ξ
(5)
ij =

N∑
k=1

Ξ
(1)
ik Ξ

(4)
kj =

N∑
k=1

Ξ
(4)
ik Ξ

(1)
kj

Ξ
(6)
ij =

N∑
k=1

Ξ
(1)
ik Ξ

(5)
kj =

N∑
k=1

Ξ
(5)
ik Ξ

(1)
kj i, j = 1, 2, ..., N

(35)

DQM form of mechanical and electrical boundary conditions at both ends in each layer may be written in

dimensionless form as:

Simple condition:

uij1 = wij1 = 0,

N∑
m=1

Ξ
(2)
2mwijm = 0, at ξ = 0

uijN = wijN = 0,
N∑

m=1

Ξ
(2)
N−1mwijm = 0, at ξ = 1

(36a)

Clamp condition:

uij1 = wij1 = 0,

N∑
m=1

Ξ
(1)
2mwijm = 0, at ξ = 0

uijN = wijN = 0,
N∑

m=1

Ξ
(1)
N−1mwijm = 0, at ξ = 1

(36b)

Electrical condition:
φij1 = 0, at ξ = 0
φijN = 0, at ξ = 1

(36c)

As DQM solutions are dependent on grid points, the well-accepted cosine interpolation points are chosen for

the present analysis. The nonuniform grid points are known as Chebyshev–Gauss–Lobatto points [21,24]:

ξi =
1

2

[
1− cos

(i− 1)

(N − 1)
π

]
i = 1, 2, ..., N (37)

Based on governing equations, the electric potential and axial direction are: {u} = −
[
[k21] [k11]

−1
[k12]− [k22]

]−1 [
[k21] [k11]

−1
[k13]− [k21]

]
{w}

{φ} = −
[
[k22] [k12]

−1
[k11]− [k21]

]−1 [
[k22] [k12]

−1
[k13]− [k23]

]
{w}

(38)

Using above equations, the governing equations in the transverse direction become:

[k] {w} = p [D] {w} (39)
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where [k]and [D]are coefficients of modified stiffness matrix and in-plain load, respectively, defined in the

appendix. Eq. (38) can be written as:

[K] {w} = p {w} , (40)

where

[K] = [D]
−1

[k] (41)

5. Numerical results and discussion

The results presented here are based on the following data used for geometry and material properties of a

DWBNNT [17,24]:

r11 = r21 = 10.27nm r12 = r22 = 11.43nm l/r11 = l/r21 = 10 h = 0.075nm

αx = 1.2× 10−6 αθ = 0.6× 10−6 E = 1.8Tpa ν = 0.34

h11 = 0.95C/m c = 9.91× 1019 N/m3 ρ = 3.4870 gr/cm3

Gp = 2.071273N/m

kw = 8.9995035 ∗ 1017 N/m3

The effects of small-scale, spring and shear foundations, electric potential, and different boundary conditions

on the nonlinear buckling of coupled DWBNNTs are discussed in detail. Figure 2 illustrates the out-of-phase

transverse displacement of coupled DWBNNT layers when the buckling loads are critical. Since the aspect ratio

of the outer layer is lower than that of the inner layer, the displacement magnitude of the outer layer is smaller

than that of the inner layer of the DWBBNT. In the out-of-phase state, the transverse displacement directions

of each DWBNNT are opposite. It is also found that the simply supported boundary conditions are satisfied at

both ends of nanotubes where the displacements and moments are zero. Transverse displacements of in-phase

state are demonstrated in Figure 3. It can be seen that the mode shape of both DWBNNTs have equal quantity

and direction for outer and inner layers, separately. Also similar to Figure 2, the simply supported boundary

conditions are satisfied at both ends of nanotubes. Effects of different phases versus dimensionless nonlocal

parameter are presented in Figure 4. In the out-of-phase state, the coupled system is more stable than the

in-phase state, and so that the magnitude of the buckling load ratio (BLR) is more for the out-of-phase case.

Moreover, it is evident that the difference between in-phase and out-of-phase cases increases with increasing

nonlocal parameter. The effects of spring and shear modulus of elastic medium on the critical buckling load of

coupled DWBNNTs versus dimensionless small-scale parameter for in-phase and out-of-phase states are depicted

in Figures 5–7. The buckling load ratio increases by increasing the elastic medium coefficients. The curves in

Figure 7 illustrate that the existence of both spring and shearing foundations has a significant effect on the

BLR in comparison with spring and shear foundations separately. The BLR versus the aspect ratio ( l/r11)

for in-phase and out-of-phase cases is shown in Figure 8, where this figure demonstrates the effect of nonlocal

parameter on the nonlinear buckling as in previous figures. As can be seen, BLR increases for all values of the

nonlocal parameter when the aspect ratio increases, while for the out-of-phase state the BLR is higher than it

is for the in-phase case. In fact, in the out-of-phase case the coupled system is stiffer and the BLR is more than

it is for the in-phase state. Moreover, by increasing the aspect ratio, the nonlocal results tend to local results.

In order to illustrate the impact of boundary conditions on the BLR parameter, 3 different boundary conditions

are considered in Figure 9, where the in-phase state has a remarkable effect for all boundary conditions. It is

also concluded that for the clamp–clamp boundary condition, the effect of the scale coefficient is greater than
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that of the simply supported one in out-of-phase and in-phase. In other words, as boundary conditions become

stiffer, BLR will be decreased. Figure 10 depicts the distribution of dimensionless electric potential along the

dimensionless DWBNNTs’ length for in-phase and out-of-phase states. It can be seen from this figure that

dimensionless electric potentials are zero at both ends due to the assumed boundary conditions in Eq. (36c).

It is found that the magnitude of dimensionless electric potential for the inner layer is more than that of the

outer layer and the in-phase state is greater than the out-of-phase state.
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Figure 2. Dimensionless transverse displacement versus

ξ = x/L for the out-of-phase state.

Figure 3. Dimensionless transverse displacement versus

ξ = x/L for the in-phase state.
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Figure 5. Buckling load ratio versus dimensionless spring

modulus.
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Figure 7. Buckling load ratio versus small-scale parame-

ter for different magnitudes of elastic medium.
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Figure 9. Buckling load ratio versus dimensionless small-

scale parameter for different boundary conditions.
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In order to validate the present work, a simplified case of the analysis is studied. For e0a = 2 nm, the

buckling load versus aspect ratio of a SWCNT under compression longitudinal load is plotted and compared

with previous ones [10,21]. The results obtained by Murmu and Pradhan [21] and Wang et al. [10] are compared

with the results of this study in Figure 11. This figure demonstrates that there is very good agreement between

them.
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Figure 11. Comparison of the present results with those presented by Murmu and Pradhan (2009) and Wang et al.

(2006).
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6. Conclusion

Nonlinear buckling response of embedded coupled DWBNNTs subjected to electro-thermo–mechanical loadings

was investigated using EBB where 2 DWBNNTs were surrounded by a Pasternak foundation. Nonlinear

governing equations were solved numerically with DQM for in-phase and out-of-phase cases. The results

indicated that BLR for the in-phase case is greater than it is for the out-of-phase state where in the out-

of-phase state the stiffness of the coupled system is more than it is in the in-phase state. Furthermore, the

BLR was sensitive to the small-scale coefficient and aspect ratio, so that increasing aspect ratio and decreasing

small-scale coefficient lead to increases in BLR. In addition, the effect of clamped boundary condition was more

remarkable than the simply supported one for in-phase and out-of-phase states. The results of this study were

validated by Murmu and Pradhan [21] and Wang et al. [10]. The findings of present study can be used in

advanced applications of nano/micro mechanical devices such as nano/micro-electro–mechanical systems.
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Appendix

[A] =

 k11 k12 k13
k21 k22 k23
k31 k32 k33



k11 =


a11 [0] [0] [0]
[0] a12 [0] [0]
[0] [0] a21 [0]
[0] [0] [0] a22

 k12 =


b11 [0] [0] [0]
[0] b12 [0] [0]
[0] [0] b21 [0]
[0] [0] [0] b22

 k13 =


c11 [0] [0] [0]
[0] c12 [0] [0]
[0] [0] c21 [0]
[0] [0] [0] c22



k21 =


d11 [0] [0] [0]
[0] d12 [0] [0]
[0] [0] d21 [0]
[0] [0] [0] d22

 k22 =


e11 [0] [0] [0]
[0] e12 [0] [0]
[0] [0] e21 [0]
[0] [0] [0] e22

 k23 =


f11 [0] [0] [0]
[0] f12 [0] [0]
[0] [0] f21 [0]
[0] [0] [0] f22



k31 =


ϕ11 [0] [0] [0]
[0] φ12 [0] [0]
[0] [0] ϕ21 [0]
[0] [0] [0] ϕ22

 k32 =


u11 [0] [0] [0]
[0] u12 [0] [0]
[0] [0] u21 [0]
[0] [0] [0] u22

 k33 =


m111 m121 [0] [0]
m112 m122 [0] m222

[0] [0] m213 m223

[0] m124 m214 m224



D =


b1 [0] [0] [0]
[0] b2 [0] [0]
[0] [0] d1 [0]
[0] [0] [0] d2


amn = −2ηmnγ[C

(2)
ij ] + 2e2nηmn[C

(4)
ij ]

bmn = [C
(2)
ij ]− e2n[C

(4)
ij ]
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cmn =

 1

ηmn

N∑
j=1

C
(1)
ij wmnj [C

(2)
ij ]− e2n

1

ηmn
(3

N∑
j=1

C
(3)
ij wmnj [C

(2)
ij ] +

N∑
j=1

C
(1)
ij wmnj [C

(4)
ij ])


dmn = −3

2
[C

(2)
ij ] +

1

2
e2n[C

(4)
ij ]

emn = − 1

1− v2
1

ηmn
[C

(2)
ij ]

fmn = − 1

1− v2
1

η2
mn

N∑
j=1

C
(1)
ij wmnj [C

(2)
ij ]

ϕ11 = −
N∑
j=1

C
(2)
ij w11j [C

(1)
ij ]− 2

N∑
j=1

C
(1)
ij w11j [C

(2)
ij ] + e2n

N∑
j=1

C
(4)
ij w11j [C

(1)
ij ] + e2n

N∑
j=1

C
(1)
ij w11j [C

(4)
ij ]

ϕ12 = −
N∑
j=1

C
(2)
ij w12j [C

(1)
ij ]− 2

N∑
j=1

C
(1)
ij w12j [C

(2)
ij ] + e2n

N∑
j=1

C
(4)
ij w12j [C

(1)
ij ] + e2n

N∑
j=1

C
(1)
ij w12j [C

(4)
ij ]

ϕ21 =
N∑
j=1

C
(2)
ij w21j [C

(1)
ij ] + 2

N∑
j=1

C
(1)
ij w21j [C

(2)
ij ]− e2n

N∑
j=1

C
(4)
ij w21j [C

(1)
ij ]− e2n

N∑
j=1

C
(1)
ij w21j [C

(4)
ij ]

ϕ22 =
N∑
j=1

C
(2)
ij w22j [C

(1)
ij ] + 2

N∑
j=1

C
(1)
ij w22j [C

(2)
ij ]− e2n

N∑
j=1

C
(4)
ij w22j [C

(1)
ij ]− e2n

N∑
j=1

C
(1)
ij w22j [C

(4)
ij ]

u11 = − 1

1− ν2
1

η11

N∑
j=1

C
(1)
ij w11j [C

(2)
ij ]

u12 = − 1

1− ν2
1

η12

N∑
j=1

C
(1)
ij w12j [C

(2)
ij ]

u21 =
1

1− ν2
1

η21

N∑
j=1

C
(1)
ij w21j [C

(2)
ij ]

u22 =
1

1− ν2
1

η22

N∑
j=1

C
(1)
ij w22j [C

(2)
ij ]

m111 = − 1

1− v2
1

η211
(

N∑
j=1

C
(1)
ij w11j)

2[C
(2)
ij ] + c̄11I − c̄11e

2
n[C

(2)
ij ] + Ī11

1

1− ν2
1

η211
[C

(4)
ij ]

m121 = −c̄11
η11
η12

I + c̄11e
2
n

η11
η12

[C
(2)
ij ]

m112 = −c̄12
η212
η211

I + c̄12e
2
n

η212
η211

[C
(2)
ij ]
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m122 = − 1

1− ν2
1

η212
(

N∑
j=1

C
(1)
ij w12j)

2[C
(2)
ij ] + Ī12

1

1− ν2
1

η212
[C

(4)
ij ] + c̄12

η12
η11

I − c̄12(e
2
n)

η12
η11

[C
(2)
ij ]

+2(kwI −Gp[C
(2)
ij ]− kw(e

2
n)[C

(2)
ij ] +Gp(e

2
n)[C

(4)
ij ])

m222 = kw
η12
η22

I −Gp
η12
η22

[C
(2)
ij ]− kwe

2
n

η12
η22

[C
(2)
ij ] +Gpe

2
n

η12
η22

[C
(4)
ij ]

m213 = −(− 1

1− ν2
1

η221
(

N∑
j=1

C
(1)
ij w21j)

2[C
(2)
ij ] + c̄21I − c̄21e

2
n[C

(2)
ij ] + Ī21

1

1− ν2
1

η221
[C

(4)
ij ])

m223 = −(−c̄21
η21
η22

I + c̄21e
2
n

η21
η22

[C2
ij ])

m124 = −(kw
η22
η12

I −Gp
η22
η12

[C
(2)
ij ]− kwe

2
n

η22
η12

[C
(2)
ij ] +Gpe

2
n

η22
η12

[C
(4)
ij ])

m214 = −(−c̄22
η222
η221

I + c̄22e
2
n

η222
η221

[C
(2)
ij ])

m224 = −(− 1
1−ν2

1
η2
22
(

N∑
j=1

C
(1)
ij w22j)

2[C
(2)
ij ] + Ī22

1
1−ν2

1
η2
22
[C

(4)
ij ] + c̄22

η22

η21
I−

c̄22e
2
n
η22

η21
[C

(2)
ij ]) + 2(−kwI +Gp[C

(2)
ij ] + kwe

2
n[C

(2)
ij ]−Gpe

2
n[C

(4)
ij ])

b1 = C
(2)
ij − e2n[C

(4)
ij ]

b2 =
a11
a22

([C
(2)
ij ]− e2n[C

(4)
ij ])

d1 = −([C
(2)
ij ]− e2n[C

(4)
ij ])

d2 = −a11
a22

([C
(2)
ij ]− e2n[C

(4)
ij ])

[k] = [−[k32][[k21][k11]
−1[k12]− [k22]]

−1[[k21][k11]
−1[k13]− [k21]] + [k33]− k31[[k22][k12]

−1[k11]− [k21]]
−1

[[k22][k12]
−1[k13]− [k23]]]
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