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doi:10.3906/muh-1209-3

Turkish Journal of Engineering & Environmental Sciences

http :// journa l s . tub i tak .gov . t r/eng ineer ing/

Research Article

Thermal radiation and chemical reaction effects on magnetohydrodynamic free

convection heat and mass transfer in a micropolar fluid

Srinivasacharya DARBHASHAYANAM∗, Upendar MENDU
Department of Mathematics, National Institute of Technology, Warangal, Andhra Pradesh, India

Received: 08.09.2012 • Accepted/Published Online: 27.12.2014 • Printed: 30.06.2015

Abstract: This paper analyzes the flow and heat and mass transfer characteristics of the free convection on a vertical

plate with uniform wall temperature and concentration in a micropolar fluid in the presence of a first-order chemical

reaction and radiation. A uniform magnetic field B0 is applied normal to the plate. The governing nonlinear partial

differential equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity

transformations and then solved numerically using the Keller-box method. The numerical results are compared and found

to be in good agreement with previously published results as special cases of the present investigation. The coefficient

of skin-friction, wall couple stress, the rate of heat transfer in terms of Nusselt number, and the ratio of convective to

diffusive mass transport in terms of Sherwood number at the plate are presented graphically for various values of coupling

number, magnetic parameter, radiation parameter, chemical reaction parameter, Prandtl number, and Schmidt number.

Key words: Similarity solutions, free convection, micropolar fluid, magnetohydrodynamics, radiation, chemical reaction,

heat and mass transfer

1. Introduction

Free convection flows are of great interest because of their various engineering, scientific, and industrial ap-

plications in heat and mass transfer. Free convection of heat and mass transfer occurs simultaneously in the

fields of design of chemical processing equipment, formation and dispersion of fog, distributions of temperature,

moisture over agricultural fields and groves of fruit trees, and damage of crops due to freezing and pollution of

the environment. Extensive studies of free convection heat and mass transfer of a nonisothermal vertical surface
under boundary layer approximation for Newtonian fluids have been undertaken by several authors. In recent

years, several simple boundary layer flow problems have received new attention within the more general context

of magnetohydrodynamic (MHD) studies. Several investigators have extended many of the available boundary

layer solutions to include the effects of magnetic fields for those cases where the fluid is electrically conducting.

The study of MHD flow for an electrically conducting fluid past a heated surface has important applications

in many engineering problems such as plasma studies, petroleum industries, MHD power generators, cooling of

nuclear reactors, the boundary layer control in aerodynamics, and crystal growth. In addition, there has been

a renewed interest in studying MHD flow and heat transfer in porous media due to the effect of magnetic fields

on flow control and on the performance of many systems using electrically conducting fluids. Alam et al. [1]

studied the problem of free convection heat and mass transfer flow past an inclined semiinfinite heated surface

of an electrically conducting viscous incompressible fluid with magnetic field and heat generation. Effect of
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heat and mass transfer on MHD free convection along a moving permeable vertical surface was analyzed by

Abdelkhalek [2].

The study of non-Newtonian fluid flows has gained much attention from researchers because of its

applications in biology, physiology, technology, and industry. In addition, the effects of heat and mass transfer

in non-Newtonian fluid also have great importance in engineering applications: for instance, in the thermal

design of industrial equipment dealing with molten plastics, polymeric liquids, foodstuffs, or slurries. Several

investigators extended many of the available convection heat and mass transfer problems to include the non-

Newtonian effects. The fluid model introduced by Eringen [3] exhibits some microscopic effects arising from

the local structure and micromotion of the fluid elements. Furthermore, they can sustain couple stresses and

include classical Newtonian fluid as a special case. The model of micropolar fluid represents fluids consisting

of rigid, randomly oriented (or spherical) particles suspended in a viscous medium where the deformation of

the particles is ignored. Micropolar fluids have been shown to accurately simulate the flow characteristics

of polymeric additives, geomorphological sediments, colloidal suspensions, hematological suspensions, liquid

crystals, lubricants, etc. The mathematical theory of equations of micropolar fluids and applications of these

fluids in the theory of lubrication and in the theory of porous media were presented by Lukaszewicz [4]. The

heat and mass transfer in micropolar fluids is also important in the context of chemical engineering, aerospace

engineering, and industrial manufacturing processes.

The problem of free convection heat and mass transfer in the boundary layer flow along a vertical surface

submerged in a micropolar fluid has been studied by a number of investigators. The boundary layer flow of a

micropolar fluid over a semiinfinite plate was studied by Ahmadi [5]. Takhar and Soundelgekar [6] considered

the heat transfer on a semiinfinite plate of micropolar fluid. Agarwal and Dhanapal [7] examined the flow and

heat transfer in a micropolar fluid past a flat plate with suction and heat sources. Gorla et al. [8] studied the

nonsimilar problem of the natural convection boundary layer flow of a micropolar fluid over a vertical plate with

uniform heat flux boundary condition. Recently, Srinivasacharya and Ramreddy [9] analyzed the flow and heat

and mass transfer characteristics of the free convection on a vertical plate with uniform and constant heat and

mass fluxes in a doubly stratified micropolar fluid. El-Hakien et al. [10] studied the effects of the viscous and

Joule heating on MHD free convection flows with variable plate temperatures in a micropolar fluid. El-Amin

[11] considered MHD free convection and mass transfer flow in a micropolar fluid over a stationary vertical plate

with constant suction.

Radiation effects on convective heat transfer and MHD flow problems have assumed increasing importance

in electrical power generation, astrophysical flows, solar power technology, space vehicle reentry, and other

industrial areas. Since the solution for convection and radiation equations is quite complicated, there are few

studies about the simultaneous effect of convection and radiation for internal flows. Ghaly [12] discussed the

effect of radiation on heat and mass transfer over a stretching sheet in the presence of a magnetic field. Raptis

et al. [13] studied the effect of radiation on two-dimensional steady MHD optically thin gray gas flow along an

infinite vertical plate taking into account the induced magnetic field. Seddek et al. [14] obtained an analytical

solution for the effect of radiation on flow of a magnetomicropolar fluid past a continuously moving plate with

suction and blowing.

Chemical reaction effects on heat and mass transfer are of considerable importance in hydrometallurgical

industries and chemical technology. In many chemical engineering processes, a chemical reaction occurs between

a foreign mass and the fluid. A chemical reaction can be described as either a heterogeneous or homogeneous

process, which depends on whether it occurs at an interface or as a single-phase volume reaction. Furthermore,
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research on combined heat and mass transfer with chemical reaction and thermophoresis effect can help in food

processing, cooling towers, chemically reactive vapor deposition boundary layers in optical materials processing,

catalytic combustion boundary layers, chemical diffusion in disk electrode modeling, and carbon monoxide

reactions in metallurgical mass transfer and kinetics. Several investigators have examined the effect of chemical

reaction on the flow and heat and mass transfer past a vertical plate. Deka et al. [15] examined the effect of

homogeneous first-order chemical reaction on the flow past an impulsively started infinite vertical plate with

uniform heat flux and mass transfer. Chamkha [16] analyzed the MHD flow of a uniformly stretched vertical

permeable surface in the presence of heat generation/absorption and a chemical reaction. The problem of

chemically reactive species of non-Newtonian fluid in a porous medium over a stretching sheet was investigated

by Akyildiz et al. [17]. Magyari and Chamkha [18] obtained an analytical solution to study the combined effect

of heat generation or absorption and first-order chemical reaction on micropolar fluid flows over a uniformly

stretched permeable surface. Das [19] analyzed the effect of first-order chemical reaction and thermal radiation

on hydromagnetic free convection heat and mass transfer flow of a micropolar fluid via a porous medium bounded

by a semiinfinite porous plate with constant heat source in a rotating frame of reference. Bakr [20] considered

the steady and unsteady MHD micropolar flow and mass transfers flow with constant heat source in a rotating

frame of reference in the presence of chemical reaction of the first order, taking an oscillatory plate velocity and

a constant suction velocity at the plate.

The aim of this investigation is to consider the effects of transverse magnetic field, radiation, and first-

order chemical reaction on the free convection heat and mass transfer along a vertical plate with non-uniform

wall temperature and concentration conditions embedded in a micropolar fluid. The governing system of partial

differential equations is transformed into a system of nonlinear ordinary differential equations using similarity

transformations. This system of nonlinear ordinary differential equations is solved numerically using the Keller-

box method given by Cebeci and Bradshaw [21]. The effects of various parameters on the skin friction coefficient,

wall couple stress, and heat and mass transfer rates are presented graphically.

2. Mathematical formulation

Considering a steady, laminar, incompressible, two-dimensional free convective heat and mass transfer along a

semiinfinite vertical plate embedded in a free stream of electrically conducting micropolar fluid with temperature

T∞ and concentration C∞ , choose the coordinate system such that the x-axis is along the vertical plate and

the y -axis is normal to the plate, as shown in Figure 1. The plate is maintained at non-uniform temperature

Tw(x) and concentration Cw(x). These values are assumed to be greater than the ambient temperature T∞

and concentration C∞ . A uniform magnetic field of magnitude B0 is applied normal to the plate. The magnetic

Reynolds number is assumed to be small so that the induced magnetic field can be neglected in comparison

with the applied magnetic field. The fluid is considered to be a gray medium absorbing emitting radiation, but

nonscattering, and the Rosseland approximation [22] is used to describe the radiative heat flux in the energy

equation. The radiative heat flux in the x-direction is considered negligible in comparison to the y -direction.

The viscous dissipation and the Joule heating effects are assumed to be negligible in the energy equation. It

is also assumed that there exists a homogeneous chemical reaction of the first order with rate constant R∗

between the diffusing species and the fluid.

Using the Boussinesq and boundary layer approximations, the governing equations for the micropolar

fluid are given by:

∂u

∂x
+
∂v

∂y
= 0, (1)
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Figure 1. Physical model and coordinate systems.
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u
∂ω

∂x
+ v

∂ω

∂y
=

(
γ

ρj

)
∂2ω

∂y2
− κ

ρj

(
2ω +

∂u

∂y

)
, (3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
− 1

ρCp

∂qr
∂y

, (4)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
−R∗ (C − C∞) , (5)

where u and v are the components of velocity along the x- and y -directions, respectively; ω is the component

of microrotation whose direction of rotation lies perpendicular the xy-plane; g∗ is the gravitational acceleration;

T is the temperature; C is the concentration; βT is the coefficient of thermal expansion; βC is the coefficient of

solutal expansion; Cp is the specific heat capacity; B0 is the coefficient of the magnetic field; µ is the dynamic

coefficient of viscosity of the fluid; qr is the radiative heat flux; ρ is the density; κ is the vortex viscosity; j is

the microinertia density; γ is the spin-gradient viscosity; σ is the magnetic permeability of the fluid; α is the

thermal diffusivity; and D is the molecular diffusivity.

The boundary conditions are

u = 0; v = 0;ω = 0;T = Tw(x);C = Cw(x) at y = 0, (6a)

u→ 0;ω → 0;T → T∞;C → C∞ as y → ∞, (6b)

where the subscripts w and ∞ indicate the conditions at the wall and the outer edge of the boundary layer,

respectively.

The radiative heat flux qr is described by the Rosseland approximation [22] such that

qr = −4σ∗

3k1

∂T 4

∂y
, (7)

where σ∗ and k1 are the Stefan–Boltzmann constant and the mean absorption coefficient, respectively. We

assume that the differences of the temperature within the flow are sufficiently small such that T 4 may be
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expressed as a linear function of the temperature. This is accomplished by expansion in a Taylor series about

T∞ and neglecting higher-order terms; thus:

T 4 ∼= 4T 3
∞T − 3T 4

∞. (8)

Using Eqs. (7) and (8) in the last term of Eq. (4), we obtain

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

16σ∗T 3
∞

3ρCpk1

∂2T

∂y2
. (9)

The continuity Eq. (1) is satisfied by introducing the stream function ψ such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (10)

In order to explore the possibility of the existence of similarity, we assume

ψ = Axaf(η), η = Bxby, ω = Excg(η),

T − T∞

Tw(x)− T∞
= θ (η) , Tw(x)− T∞ =M1x

l,

C − C∞

Cw(x)− C∞
= φ (η) , Cw(x)− C∞ = N1x

m, (11)

where A,B,E,M1, N1, a, b, c, l, and m are constants. Substituting Eqs. (10) and (11) into Eqs. (2), (3), (4),

and (9), it is found that similarity exists only if a = 1, b = 0, c = 1, l = m = 1.

Hence, the appropriate similarity transformations are

ψ = Axf(η), η = By, ω = Exg(η),

T − T∞

Tw(x)− T∞
= θ (η) , Tw(x)− T∞ =M1x,

C − C∞

Cw(x)− C∞
= φ (η) , Cw(x)− C∞ = N1x. (12)

Making use of the dimensional analysis, the constants A , B , E , M1 , and N1 are, respectively, the dimensions

of velocity, the reciprocal of length, the reciprocal of the product of length and time, the ratio of (tempera-

ture/length), and the ratio of (concentration/length).

Substituting Eq. (12) into Eqs. (2), (3), (5), and (9), we obtain(
1

1−N

)
f ′′′ +

(
N

1−N

)
g′ − (f ′)

2
+ ff ′′ + θ + Lφ− f ′M = 0, (13)

λg′′ −
(

N

1−N

)
ϑ (2g + f ′′)− f ′g + fg′ = 0, (14)

1

3Pr
(3 + 4R)θ′′ + fθ′ − f ′θ = 0, (15)
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1

Sc
φ′′ − δφ+ fφ′ − f ′φ = 0, (16)

where Pr = ν
α is the Prandtl number; Sc = ν

D is the Schmidt number; λ = γ
jρν is the spin-gradient viscosity;

N = κ
κ+µ , (0 ≤ N < 1) is the Coupling number; L = βcN1

βTM1
is the buoyancy parameter; M =

σB2
0

µB2 is the

magnetic field parameter; ϑ = 1
jB2 is the microinertia density; R =

4σ∗T 3
∞

kk1
is the radiation parameter; and

δ = R∗

νB2 is the chemical reaction parameter. The primes denote differentiation with respect to similarity

variable η .

The boundary conditions of Eq. (6) in terms of f , g , θ , and φ become

f(0) = 0, f ′(0) = 0, g(0) = 0, θ(0) = 1, φ(0) = 1 at η = 0, (17a)

f ′(∞) → 0, g(∞) → 0, θ(∞) → 0, φ(∞) → 0 as η → ∞. (17b)

3. Skin friction and wall couple stress

The wall shear stress and wall couple stress are

τw =

[
(µ+ κ)

∂u

∂y
+ κω

]
y=0

,mw = γ

[
∂ω

∂y

]
y=0

. (18)

The dimensionless wall shear stress Cf = 2τw
ρA2 and wall couple stress Mw = Bmw

ρA2 , where A is the characteristic

velocity, are given by

Cf =

(
2

1−N

)
f ′′ (0) x̄ and Mw =

(
λ

ϑ

)
g′ (0) x̄, (19)

where x̄ = Bx .

4. Heat and mass transfer rates

The heat and mass transfers from the plate are respectively given by

qw = −k
(
∂T

∂y

)
y=0

− 4σ∗

3k1

(
∂T 4

∂y

)
y=0

and qm = −D
(
∂C

∂y

)
y=0

. (20)

The nondimensional rate of heat transfer, called the Nusselt number Nu = qw
Bk(Tw−T∞) , and rate of mass

transfer, called the Sherwood number Sh = qm
BD(Cw−C∞) , are given by

Nu = −θ′(0)
(
1 +

4R

3

)
and Sh = −φ′(0). (21)

5. Results and discussion

The flow Eqs. (12) and (13), which are coupled, together with the energy and concentration Eqs. (14) and (15),

constitute nonlinear nonhomogeneous differential equations for which closed-form solutions cannot be obtained.

Hence, the governing Eqs. (12) through (15) have been solved numerically using the Keller-box implicit method

[21]. This method has a second-order accuracy, is unconditionally stable, and is easy to be programmed, thus
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making it highly attractive for production use. A uniform grid was adopted, which is concentrated towards the

wall. The calculations are repeated until some convergent criterion is satisfied and the calculations are stopped

when δf ′′(0) ≤10−8 , δθ′(0) ≤ 10−8 , and δφ′(0) ≤10−8 . In the present study, the boundary conditions for

η at ∞ are replaced by a sufficiently large value where the velocity, temperature, and concentration approach

zero. In order to see the effects of step size (∆η), we ran the code for our model with three different step sizes

of ∆η= 0.001, ∆η = 0.01, and ∆η = 0.05, and in each case we found very good agreement between them for

different profiles. After some trials we imposed a maximal value of η at ∞ of 6 and a grid size of ∆η as 0.01.

In order to study the effects of the coupling number N , magnetic field parameter M , radiation parameter R ,

chemical reaction parameter δ , Prandtl number Pr, and Schmidt number Sc on the physical quantities of the

flow, the remaining parameters are fixed as L = 1, λ = 1, and ϑ = 0.1. The values of micropolar parameters λ

and ϑ are chosen so as to satisfy the thermodynamic restrictions on the material parameters given by Eringen

[3]

In the absence of coupling number N , magnetic parameter M , radiation parameter R , chemical reaction

parameter δ , and buoyancy number L with λ = ϑ = 0, Pr = 1.0, and Sc = 0.24, the results were compared

with the exact values of Pop and Ingham [23] and Merkin [24], and it was found that they are in good agreement,

as shown in Tables 1 and 2.

Table 1. Comparison of skin friction f ′′ (0) calculated by the present method and that of Pop and Ingham [23] and

Merkin [24] for N = M = R = δ = L = 0 and Pr = 1.0 and Sc = 0.24.

Pop and Ingham [23] Merkin [24] Present study
0.7395 (exact) 0.7395 (exact) 0.7395
0.9636 (series) 0.9636 (series)

Table 2. Comparison of θ′ (0) calculated by the present method and that of Pop and Ingham [23] and Merkin [24] for

N = M = R = δ = L = 0 and Pr = 1.0 and Sc = 0.24.

Pop and Ingham [23] Merkin [24] Present study
–0.5951 (exact) –0.5951 (exact) –0.5950
–0.5814 (series) –0.5814 (series)

The coupling number N characterizes the coupling of linear and rotational motion arising from the

micromotion of the fluid molecules. Hence, N signifies the coupling between the Newtonian (µ) and rotational

viscosities (κ) and hence 0 ≤ N < 1. With a large value of N , the effect of microstructure becomes significant,

whereas with a small value of N the individuality of the substructure is much less pronounced. As κ → 0,

i.e. N → 0, the micropolarity is lost and the fluid behaves as a nonpolar fluid. Hence, N → 0 corresponds to

viscous fluid.

Figures 2a and 2b depict the variation of heat and mass transfer rates (Nusselt number Nu and Sherwood

number Sh) with coupling number N for different values of magnetic parameter M . It is observed that both

the Nusselt number and Sherwood number decrease as the coupling number increases from 0 to 1. The coupling

number N characterizes the coupling of linear and rotational motion arising from the micromotion of the

fluid molecules. Hence, N signifies the coupling between the Newtonian and rotational viscosities. AsN →
1, the effect of microstructure becomes significant, whereas with a small value of N the individuality of the

substructure is much less pronounced. As κ → 0, i.e. N → 0, the micropolarity is lost and the fluid behaves

as a nonpolar fluid. Hence, N → 0 corresponds to viscous fluid. It is noticed that the heat and mass transfer
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rates are higher in the case of viscous fluids. Therefore, the presence of microscopic effects arising from the local

structure and micromotion of the fluid elements reduces the heat and mass transfer rates. It is seen that both
the Nusselt number and Sherwood number are decreasing as the magnetic parameter is increasing. The presence

of a magnetic field in an electrically conducting fluid introduces a force called the Lorentz force, similar to the

drag force. This resulting force acts against the flow if the magnetic field is applied in the normal direction.

This type of resistive force tends to slow down the flow. Accordingly, the rates of heat and mass transfer from

the wall will be reduced. The effect of M on the rates of heat and mass transfer in the case of a micropolar

fluid is less compared to that of viscous fluid.
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Figure 2. Effect of magnetic parameter M on (a) heat transfer rate and (b) mass transfer rate versus coupling

number N .

The effect of radiation parameter on heat and mass transfer coefficient is displayed in Figures 3a and 3b.

It is noticed from these figures that both the Nusselt number and Sherwood number increase with the increase

in the radiation parameter. Higher values of radiation parameter R imply higher values of wall temperature.

Consequently, the temperature gradient and hence the Nusselt number and Sherwood number increase. The

effect of R on the heat and mass transfer rates in the case of a micropolar fluid is less compared to that of

viscous fluid.
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Figure 3. Effect of radiation parameter R on (a) heat transfer rate and (b) mass transfer rate versus coupling number N .
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The variation of heat and mass transfer coefficients with coupling number for different values of chemical

reaction parameter δ is depicted in Figures 4a and 4b. It is clear from these figures that an increase in the

chemical reaction parameter δ leads to a decrease in the Nusselt number and an increase in the Sherwood

number. Increase in the values of δ implies more interaction of species concentration with the momentum

boundary layer and less interaction with the thermal boundary layer. Hence, the chemical reaction parameter

has a more significant effect on Sherwood number than it does on Nusselt number.
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Figure 4. Effect of chemical reaction parameter δ on (a) heat transfer rate and (b) mass transfer rate versus coupling

number N .

Figures 5a and 5b show the variation of heat and mass transfer coefficients with Prandtl number Pr. It is

interesting to note that the Nusselt number is increasing but the Sherwood number is decreasing as the Prandtl

number increases. The reason for this is that smaller values of Pr are equivalent to increasing the thermal

conductivities, and therefore heat is able to diffuse away from the heated plate more rapidly than for higher

values of Pr. Hence, in the case of smaller Prandtl numbers, as the boundary layer is thicker the rate of heat

transfer is reduced.
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Figure 5. Effect of Prandtl number Pr on (a) heat transfer rate and (b) mass transfer rate versus coupling number N .

The effect of Schmidt number on the heat and mass transfer coefficients is plotted in Figures 6a and 6b.

It is clear that the Nusselt number is decreasing while the Sherwood number is increasing with increasing values
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of Sc. The Schmidt number embodies the ratio of the momentum to the mass diffusivity. The Schmidt number

therefore quantifies the relative effectiveness of momentum and mass transport by diffusion in the hydrodynamic

(velocity) and concentration (species) boundary layers. Its effect on the species concentration has similarities

to the Prandtl number’s effect on the temperature: increase in the values of Sc cause the velocity and species

concentration and the boundary layer thickness to decrease significantly.
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Figure 6. Effect of Schmidt number Sc on (a) heat transfer rate and (b) mass transfer rate versus coupling number N .

Table 3 shows the effects of coupling number N , Prandtl number Pr, Schmidt number Sc, radiation

parameter R , chemical reaction parameter δ , and magnetic parameter M on skin friction Cf and dimensionless

wall couple stress Mw . It is seen from this table that both the skin friction and the wall couple stress decrease

with increasing coupling number N . For increasing values of N , the effect of the microstructure becomes

significant and hence the wall couple stress decreases. The skin friction coefficient decreases and the wall couple

stress increases with increasing Prandtl number and Schmidt number. The effect of the magnetic parameter is

to decrease the skin friction coefficient and increase the wall couple stress. Furthermore, it is observed that the

skin friction coefficient is increasing and wall couple stress is decreasing with increase in the value of radiation

parameter. The increase in chemical reaction parameter decreases the skin friction coefficient and increases the

wall couple stress.

6. Conclusions

In this paper, a boundary layer analysis for free convection heat and mass transfer in an electrically conducting

micropolar fluid over a vertical plate with variable wall temperature and concentration conditions in the presence

of a magnetic field, first-order chemical reaction, and radiation is considered. Using the similarity variables,

the governing equations are transformed into a set of ordinary differential equations. The effects of different

parameters on Nusselt and Sherwood numbers are presented through graphs. From the present study, we

observe that:

• The Nusselt number, Sherwood number, and the skin friction coefficient decrease and the wall couple

stress increases as magnetic parameter M increases.

• An increase in the value of radiation parameter R implies increase in the Nusselt number, Sherwood

number, and skin friction coefficient and decrease in wall couple stress.
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• An increase in the chemical reaction parameter implies decrease in the Nusselt number and skin friction

coefficient and increase in the Sherwood number and wall couple stress.

Table 3. Effect of skin friction and wall couple stress for various values of N , Pr, Sc,M ,R , and δ .

N Pr Sc M R δ f ′′(0) −g′(0)
0.0 1.0 0.6 1.0 0.02 1.0 1.0108 0.0000
0.3 1.0 0.6 1.0 0.02 1.0 0.7976 0.0079
0.6 1.0 0.6 1.0 0.02 1.0 0.5446 0.0249
0.9 1.0 0.6 1.0 0.02 1.0 0.1947 0.0729
0.5 0.01 0.6 1.0 0.02 1.0 0.7564 0.0263
0.5 0.1 0.6 1.0 0.02 1.0 0.7318 0.0244
0.5 1.0 0.6 1.0 0.02 1.0 0.6352 0.0175
0.5 10 0.6 1.0 0.02 1.0 0.5071 0.0113
0.5 100 0.6 1.0 0.02 1.0 0.4156 0.0094
0.5 1.0 0.2 1.0 0.02 1.0 0.6954 0.0209
0.5 1.0 0.6 1.0 0.02 1.0 0.6352 0.0175
0.5 1.0 0.7 1.0 0.02 1.0 0.6264 0.0170
0.5 1.0 1.0 1.0 0.02 1.0 0.6061 0.0162
0.5 1.0 2.0 1.0 0.02 1.0 0.5676 0.0149
0.5 1.0 0.6 0.0 0.02 1.0 0.7487 0.0235
0.5 1.0 0.6 1.0 0.02 1.0 0.6352 0.0175
0.5 1.0 0.6 2.0 0.02 1.0 0.5651 0.0141
0.5 1.0 0.6 3.0 0.02 1.0 0.5155 0.0114
0.5 1.0 0.6 1.0 0.0 1.0 0.6337 0.0174
0.5 1.0 0.6 1.0 0.5 1.0 0.6617 0.0193
0.5 1.0 0.6 1.0 1.0 1.0 0.6787 0.0205
0.5 1.0 0.6 1.0 1.5 1.0 0.6903 0.0213
0.5 1.0 0.6 1.0 0.0 0.0 0.6960 0.0207
0.5 1.0 0.6 1.0 0.5 1.0 0.6352 0.0175
0.5 1.0 0.6 1.0 1.0 2.0 0.6043 0.0162
0.5 1.0 0.6 1.0 1.5 3.0 0.5840 0.0155
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Nomenclature

A Characteristic velocity
B Reciprocal of length
B0 Magnetic field coefficient
C Concentration
Cp Specific heat at constant pressure
C∞ Free stream concentration
Cf Skin-friction coefficient
D Mass diffusivity
E Reciprocal of the product of length and time
f Dimensionless stream function
g Dimensionless microrotation

g∗ Acceleration due to gravity
j Dimensional microinertia density
ϑ Dimensionless microinertia density( 1

jB2 )

k1 Mean absorption coefficient

L Buoyancy parameter
(
= βcN1

βTM1

)
mw Wall couple stress

M Magnetic parameter
(
=

σB2
0

µB2

)
M1 The ratio (temperature/length)
Mw Nondimensional couple stress on the wall

N Coupling number
(
= κ

µ+κ

)
N1 Ratio (concentration/length)
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Nu Nusselt number
Pr Prandtl number (= ν/α)
qr Radiative heat flux

R Thermal radiation parameter
(
=

4σ∗T 3
∞

kk1

)
R∗ Rate of chemical reaction
qw Heat flux
qm Mass flux
Sc Schmidt number (= ν/D)
Sh Sherwood number
T Temperature
T∞ Free stream temperature
u; v Velocity components in the x- and y -directions,

respectively
x, y Cartesian coordinates along the plate and

normal to it

Greek symbols

α Thermal diffusivity
βT Coefficient of thermal expansion
βc Coefficient of concentration expansion
γ Spin-gradient viscosity

δ Chemical reaction parameter
(
= R∗

νB2

)
η Similarity variable
θ Dimensionless temperature
κ Vortex viscosity

λ Dimensionless spin-gradient viscosity
(
= γ

jρν

)
µ Viscosity of the fluid
ρ Density of the fluid
σ Electrical conductivity
σ∗ Stefan–Boltzmann constant
τw Wall shear stress
ϕ Dimensionless concentration
ψ Stream function
ω Microrotation component

Subscripts

w Condition at wall
∞ Condition at infinity

Superscripts

′ Differentiation with respect to η
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