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Abstract: Time-dependent creep behavior of hollow rotating cylinders made from functionally graded piezoelectric

material has been investigated using Mendelson’s method of successive approximation. All the mechanical, thermal,

and piezoelectric properties are modeled as the power-law distribution of volume fraction. Based on equilibrium,

strain displacement, stress-strain, and electric displacement relations, a differential equation containing creep strains

for displacement is derived. Creep strains are time-, temperature-, and stress-dependent, and the closed-form solution

cannot be found for this constitutive differential equation. A semianalytical method in conjunction with the method

of successive approximation has therefore been proposed for this analysis. Similar to the radial stress histories, electric

potentials increase with time, because the latter is induced by the former during creep deformation of the cylinder,

justifying industrial application of such a material as efficient actuators and sensors.
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1. Introduction

Piezoelectric effect has important uses in modern engineering because it expresses the connection between the

electrical and mechanical fields, which has wide applications in electromechanical devices such as actuators,

sensors, and transducers. Recently, a new class of composite materials known as functionally graded materials

(FGMs) has drawn considerable attention. A typical FGM, with a high bending–stretching coupling effect, is

an inhomogeneous composite made from different phases of material constituents (usually ceramic and metal).

The first idea for producing FGMs was their application in high-temperature environments and improving

their mechanical properties. These materials, which are mainly constructed to operate in high-temperature

environments, find applications in nuclear reactors, chemical laboratories, aerospace engineering, turbine rotors,

flywheels, and pressure vessels. As the use of FGMs increases, new methodologies need to be developed to

characterize, analyze, and design structural components made of these materials.

Thermoelectroelastic analysis of functionally graded piezoelectric material (FGPM) components has been

investigated by many researchers. Mechanical and thermal stresses in a functionally graded hollow cylinder were

investigated by Jabbari et al. [1]. Analysis of the thermal stress behavior of functionally graded hollow circular

cylinders was presented by Liew et al. [2]. You et al. [3] presented elastic analysis of internally pressurized

thick-walled spherical pressure vessels of functionally graded materials. Dai et al. [4] studied exact solutions

∗Correspondence: aghorban@kashanu.ac.ir

309



GHORBANPOUR ARANI and KOLAHCHI/Turkish J Eng Env Sci

for functionally graded pressure vessels in a uniform magnetic field. Coupled thermoelasticity of functionally

graded cylindrical shells was developed by Bahtui and Eslami [5]. Recently, Ghorbanpour Arani et al. [6]

investigated the effect of material inhomogeneity on electrothermomechanical behaviors of a functionally graded

piezoelectric rotating shaft. They also studied electrothermomechanical behaviors of FGPM spheres using an

analytical method and ANSYS software [7].

None of the above studies considered creep deformation of FGPM cylinders. Pai [8] investigated steady-

state creep analysis of thick-walled orthotropic cylinders. Sim and Penny [9] analyzed plane strain creep behavior

of thick-walled cylinders. Bhatnagar and Arya [10] investigated large strain creep deformation of a thick-walled

cylinder of an anisotropic material subjected to internal pressure. Simonian [11] calculated the thermal stresses

in thick-walled cylinders, taking account of nonlinear creep. Yang [12] presented a solution for time-dependent

creep behavior of FGM cylinders using Norton’s law for a material creep constitutive model. Steady-state creep

of a pressurized thick cylinder in both the linear and the power law ranges was investigated by Altenbach

et al. [13]. Loghman et al. [14] studied the magnetothermoelastic creep analysis of functionally graded

cylinders. They found that radial stress redistributions are not significant for different material properties;

however, major redistributions occur for circumferential and effective stresses. Later, Loghman et al. [15]

studied magnetothermoelastic creep behavior of thick-walled FGM spheres placed in uniform magnetic and

distributed temperature fields and subjected to an internal pressure. They showed that stresses, strains, and

effective creep strain rate are changing in time with a decreasing rate so that after almost 50 years the time-

dependent solution approaches the steady-state condition. However, the cylinder and sphere materials used in

[14,15] are not smart. Additionally, mechanical properties, except Poisson’s ratio, through the radial graded

direction are assumed to obey simple power law variation. The semianalytical solution of time-dependent

electrothermomechanical creep for a radially polarized piezoelectric cylinder was investigated by Ghorbanpour

Arani et al. [16] using the method of successive elastic solution. They found that, similar to the radial stress

histories, electric potentials increase with time. However, they did not consider FGM for the cylinder. Recently,

time-dependent behaviors of a FGPM hollow sphere under the coupling of multifields were presented by Dai et

al. [17]. They assumed that material properties, electric parameters, permeability, thermal conductivity, and

creep parameters varied smoothly through the radial direction of the FGPM spherical structure according to

a simple power law. Recently, electrothermomechanical creep and time-dependent behaviors of FGPM spheres

were investigated by Ghorbanpour Arani et al. [18].

Apart from a couple of studies, prepared by a few authors here, little or no reference has been made so far

in the literature to the time-dependent creep analysis of FGPM cylinders. It was shown by Zhou and Kamlah

[19] that even at room temperature ferroelectric piezoceramics exhibit significant creep effects. This creep

is of a primary type and can be expressed by a power law constitutive model. To improve the performance

and reliability of piezoactuators used for high-precision applications, time-dependent creep analysis must be

considered when these devices are used, even at room temperatures.

To date, no report has been found in the literature on the time-dependent creep behavior of hollow

rotating FGPM cylinders based on the power-law distribution of volume fraction for mechanical, thermal,

and piezoelectric properties. Motivated by these considerations, we aim to investigate the history of stresses,

strains, deformation, and electric potential of a thick hollow FGPM rotating cylinder made of radially polarized

anisotropic piezoelectric material using a semianalytical method based on Mendelson’s method of successive

elastic solution.
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2. Property gradation

In this study, all mechanical, thermal, and electrical properties except Poisson’s ratio are assumed to be in the

following form:

Q(r) = (Qo −Qi)(
r − a

b− a
)n +Qi, a < r < b, (1)

where Qi , Qo are the properties at the inner and outer surfaces of the cylinder and a and b are the inner and

outer radii of the cylinder, respectively. Here the function Q(r) is abbreviated as Qr . In this study n ≥ 0

(grading index) is the volume fraction exponent that indicates the material variation profile along the radius.

3. Basic formulation

A hollow axisymmetric FGPM cylinder rotating about its axis at constant angular velocity ω with inner and

outer radius of a and b subjected to an inner pressure, thermal gradient, and electric potential is considered

(Figure 1). The dimensionless constitutive relations of cylindrically orthotropic radially polarized piezoelectric

media and the component of radial electric displacement vector can be written as [7, 20]:

Figure 1. Hollow FGPM rotating circular shaft subject to uniform temperature field, uniform internal pressure, uniform

external pressure, and applied voltage (V).

σr =

(
c1

∂u

∂ξ
+ c2

u

ξ
− c1ε

c
ξ − c2ε

c
θ − (c1αξ + c2αθ)T (ξ) + E1

∂Φ

∂ξ

)
, (2)

σθ =

(
c2

∂u

∂ξ
+

u

ξ
− c2ε

c
ξ − εcθ − (c2αξ + αθ)T (ξ) + E2

∂Φ

∂ξ

)
, (3)

Dr =

(
E1

∂u

∂ξ
+ E2

u

ξ
− E1ε

c
ξ − E2ε

c
θ − (E1αξ + E2αθ)T (ξ)−

∂Φ

∂ξ

)
, (4)

where dimensionless parameters are

σi =
σii

c22
(i = r, θ), ci =

C1i

C22
(i = 1, 2), Ei =

e1i√
C22 ∈11

(i = 1, 2), Dr =
Drr√
C22 ∈11

,

u =
ur

a
, ξ =

r

a
, η =

b

a
, Ω =

a2ρ0ω
2

C22
, Φ =

φ

a

√
C22

∈11

,
(5)
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where σii (i = r, θ), Drr, cij (i, j = 1, 2), e1i(i = 1, 2),∈11, αi (i = r, θ), and T (ξ) are stress tensor, electric

displacement, elastic constants, piezoelectric constants, dielectric constants, thermal expansion coefficients, and

temperature gradient, respectively.

Using the above dimensionless variables, the equation of equilibrium considering the inertia body force

and Maxwell’s equation for free electric charge density are expressed in dimensionless form as [18]:

∂σr

∂ξ
+

σr − σθ

ξ
+Ωξ = 0, (6)

∂Dr

∂ξ
+

Dr

ξ
= 0. (7)

The solution of Eq. (7) is

Dr =
F1

ξ
, (8)

where F1 is a constant. Substituting Eq. (8) into Eq. (4), we obtain

∂Φ

∂ξ
= −F1

ξ
ξ−γ + E1

∂u

∂ξ
+ E2

u

ξ
− E1ε

c
ξ − E2ε

c
θ − (E1αξ + E2αθ)T (ξ). (9)

Substituting Eq. (9) into Eqs. (3) and (2) leads to

σr =

((
C1 + E2

1

) (∂u

∂ξ
− εcξ − αξT (ξ)

)
+ (C2 + E1E2)

(
u

ξ
− εcθ − αθT (ξ)

)
− E1F1

ξ
ξ−γ

)
, (10)

σθ =

(
(C2 + E1E2)

(
∂u

∂ξ
− εcξ − αξT (ξ)

)
+
(
1 + E2

2

) (u

ξ
− εcθ − αθT (ξ)

)
− E2F1

ξ
ξ−γ

)
. (11)

Electric potential Φ is obtained by integrating Eq. (9):

Φ =

∫ (
E1

∂u

∂ξ
+ E2

u

ξ
− E1ε

c
ξ − E2ε

c
θ − (E1αξ + E2αθ)T (ξ)−

F1

ξ
ξ−γ

)
dξ. (12)

To obtain the equilibrium equation in terms of the displacement for the functionally graded rotating cylinder,

the functional relationships of the material properties have to be known. The variation of property along the

radius, as explained in Section 2, is a power-law distribution of volume fraction as follows:

cξ = c(ξ) = (co − ci)(
ξ − 1

η − 1
)m + ci,

αξ = α(ξ) = (αo − αi)(
ξ − 1

η − 1
)m + αi,

ρξ = ρ(ξ) = (ρo − ρi)(
ξ − 1

η − 1
)m + ρi,

Eξ = E(ξ) = (Eo − Ei)(
ξ − 1

η − 1
)m + Ei.

(13)

Finally, substituting Eqs. (10) and (11) into Eq. (6) yields a nonhomogeneous second-order ordinary differential

equation containing time-dependent creep strains for displacement field in the FGPM hollow rotating cylinder,

which is discussed in next section.
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4. Semianalytical solution

A semianalytical method for solution of the differential equation has been applied. The solution domain is

first divided into some finite divisions, as shown in Figure 2. The coefficients of the differential equation

are evaluated at ξm , the mean radius of mth division, and therefore the differential equation with constant

coefficients becomes valid only for the mth subdomain, which can be rewritten as [21, 22]:(
Pm
1

d2

dr2
+ Pm

2

d

dr
+ Pm

3

)
um + Pm

4 = 0, (14)

Pm
1 = (ξm)2, (15)

Pm
2 =

(
d c1(ξ

m)

dξm

∣∣∣∣
ξ=ξm

+
c1(ξ

m) + E1(ξ
m)2

ξm
+2E1(ξ

m)
dE1(ξ

m)

dξm

∣∣∣∣
ξ=ξm

)
/
(
c1(ξ

m) + E1(ξ
m)2

))
ξm, (16)

Pm
3 =

(
ξm

(
d c1(ξ

m)

dξm

∣∣∣∣
ξ=ξm

+
d

dξm
(E1(ξ

m)E2(ξ
m))

∣∣∣∣
ξ=ξm

)
−
(
1 + E2(ξ

m)2
))

/
(
c1(ξ

m) + E1(ξ
m)2

)
, (17)

Pm
4 = (ξm)2

((
d c1(ξ

m)
dξm

∣∣∣
ξ=ξm

+ 2E1(ξ
m) dE1(ξ

m)
dξm

∣∣∣
ξ=ξm

) (
εcξ+αξ(ξ

m)Tξ

c1(ξm)+E1(ξm)2

)
+

(
d
dξ (αθ(ξ

m)Tξ)
∣∣∣
ξ=ξm

+
dεcξ
dξ

∣∣∣
ξ=ξm

+
εcθ+αθ(ξ

m)T−εcξ−αξ(ξ
m)Tξ

ξm

)(
c2(ξ

m)+E1(ξ
m)E2(ξ

m)
c1(ξm)+E1(ξm)2

)
+

(
d
dξ (αξ(ξ

m)Tξ)
∣∣∣
ξ=ξm

+
dεcθ
dξ

∣∣∣
ξ=ξm

+
εcξ+αξ(ξ

m)Tξ

ξm

)(
c1(ξ

m)+E1(ξ
m)2

c1(ξm)+E1(ξm)2

)
+

(
d c2(ξ

m)
dξm

∣∣∣
ξ=ξm

+ d
dξm (E1(ξ

m)E2(ξ
m))
∣∣∣
ξ=ξm

)(
εcθ+αθ(ξ

m)T
c1(ξm)+E1(ξm)2

)
− ξmΩ(ξm)

c1(ξm)+E1(ξm)2

+ 1
ξm(c1(ξm)+E1(ξm)2)

(
F1

dE1(ξ
m)

dξm

∣∣∣
ξ=ξm

− E2(ξ
m)F1

ξm −
(
1 + E2(ξ

m)2
)
(εcθ + αθ(ξ

m)T )

))
.

(18)

Hence, the differential equation can now be solved since the terms corresponding to the creep strain functions

on the R.H.S have become known. The general solution for Eq. (14) could be written as follows:

um
g = Km

1 eq
m
1 ξ︸ ︷︷ ︸

um
g1

+Km
2 eq

m
2 ξ︸ ︷︷ ︸

um
g2

, (19)

where

qm1 , qm2 =
−Pm

2 ±
√
(Pm

2 )2 − 4Pm
3 Pm

1

2Pm
1

. (20)

The particular solution of differential Eq. (14) may be obtained according to the Lagrangian method as

um
p = ξq

m
1 um

1 + ξq
m
2 um

2 , (21)

where

um
1 = −

∫
ξq

m
2 R(ξ)|ξ=ξm

W (qm1 , qm2 )|ξ=ξm
, um

2 =

∫
ξq

m
1 R(ξ)|ξ=ξm

W (qm1 , qm2 )|ξ=ξm
, (22)
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in which R(ξ) is the expression on the R.H.S. of Eq. (14) and W (ξ) is defined as

W (qm1 , qm2 ) =

∣∣∣∣∣ um
g1 um

g2

(um
g1)

′ (um
g2)

′

∣∣∣∣∣ . (23)

The complete solution for um in terms of the nondimensional radial coordinate is therefore written as

ξm − hm

2
≤ ξ ≤ ξm +

hm

2
, um = um

g
+ um

p
(24)

where hm is the thickness of the mth division. Substituting the displacement from Eq. (24) into Eqs. (10),

(11), and (12), the radial and circumferential stresses and electric potential are evaluated.

Figure 2. Dividing radial domain into some finite subdomains.

4.1. Heat conduction problem

A distributed temperature field due to steady-state heat conduction without energy generation based on the

first law of thermodynamics for the energy equation is given by [6]:

1

ξ
(k(ξ) ξ T ′(ξ) )

′
= 0, (25)

where ( ′ ) denotes differentiation with respect toξ , and k = k(ξ)is the thermal conductivity. It is assumed that

the nonhomogeneous thermal conductivity is also a power-law function of volume fraction, which can be defined

in dimensionless form as follows:

kξ = (1− k̄)(
ξ − 1

η − 1
)m + k̄, k̄ =

ka
kb

. (26)

The nondimensional temperature gradient is defined as

Tξ =
T − Ta

Tb − Ta
, (27)

where Ta and Tb are temperatures at the inner and the outer surfaces of the functionally graded cylinder,

respectively. Substituting nondimensional variables of Eqs. (26) and (27) into heat conduction Eq. (25) yields

d2Tξ

dξ2
+ (

1

ξ
+

1

K(ξ)

dK(ξ)

dξ
)
dTξ

dζ
= 0. (28)
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Eq. (28) is a second-order ordinary differential equation (ODE) with variable coefficients. Due to complication

of coefficients, a semianalytical method for solution has been used. For this purpose, the solution domain is

divided into several divisions (as shown in Figure 2) and the coefficients of Eq. (28) are evaluated at ξ(k) , the

mean radius of mth division, and the ODE with constant coefficients valid only in mth subdomain turns out

to be

(
d2

dξ2
+ c(m) d

dξ
)Tξ(m) = 0, (29)

where

c(m) =
1

ξ(m)
+

1

Kξm

dKξ

dξ

∣∣∣∣
ξ=ξm

, k = 1, 2, ...,m. (30)

Now the second-order ODE with variable coefficients is converted into a second-order ODE with constant
coefficients for each division. The exact solution for these types of ODEs can be written as

Tξ(m) = X
m

1 +X
m

2 exp(−ξmc(m)), (31)

where X
m

1 and X
m

2 are unknown constants for the mth division. These unknowns are determined by applying

the necessary boundary conditions between each two adjacent subdomains.

4.2. Boundary condition

The unknowns Km
1 ,Km

2 , Xm
1 , Xm

2 , Fm
1 , and Fm

2 (the constant of integrating of Eq. (12)) are determined by

applying the necessary boundary conditions between two adjacent subdomains. For this purpose, the continuity

of radial displacement, radial stress, temperature, and electric potential are imposed at the interfaces of the

adjacent subdomains. These continuity conditions at the interfaces are

um|
ξ=ξm+

hm

2

= um+1
∣∣
ξ=ξm+1−

hm+1

2

,

dum

dξ

∣∣∣∣
ξ=ξm+

hm

2

=
dum+1

dξ

∣∣∣∣
ξ=ξm+1−

hm+1

2

,

σm
r |

ξ=ξm+
hm

2

= σm+1
r

∣∣
ξ=ξm+1−

hm+1

2

,

Φm|
ξ=ξm+

hm

2

= Φm+1
∣∣
ξ=ξm+1−

hm+1

2

,

Tm
ξ

∣∣∣
ξ=ξm+

hm

2

= Tm
ξ

∣∣∣
ξ=ξm+1+

hm+1

2

,

∂Tm
ξ

∂ξ

∣∣∣∣
ξ=ξm+

hm

2

=
∂Tm

ξ

∂ξ

∣∣∣∣
ξ=ξm+1+

hm+1

2

,

(32)

and global boundary conditions are written in dimensionless form as

σξ(η) = 0σξ(1) = −1, Φ(1) = 1, Φ(η) = 0, Tξ(1) = 1, Tξ(η) = 0. (33)

The continuity conditions of Eq. (32) together with the global boundary conditions of Eq. (33) yield a set of

linear algebraic equations in terms of Km
1 ,Km

2 , Xm
1 , Xm

2 , Bm
1 , and Bm

2 . By solving the resultant linear algebraic
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equations, the unknown coefficients can be calculated. Then the displacement component, the stresses, and the

electric potential are determined in each radial subdomain. Increasing the number of divisions improves the

accuracy of the results.

5. Time-dependent thermoelectroelastic creep behavior of the cylinder

To obtain time-dependent stresses and electric potential, the creep strains in Eqs. (10), (11), and (12) must be

considered. Creep strain rates are related to the material creep constitutive model and the current stress tensor

by the well-known Prandtl–Reuss relation. In this case, the Prandtl–Reuss relation is written as [23]:

ε̇r =
ε̇e
σe

[σr − 0.5 (σθ + σz)] , (34)

ε̇θ =
ε̇e
σe

[σθ − 0.5 (σr + σz)] , (35)

ε̇z =
ε̇e
σe

[σz − 0.5 (σθ + σr)] . (36)

For plane strain condition the axial strain rate disappears, i.e. ε̇z = 0.

σz = 0.5 (σθ + σr) . (37)

Substituting Eq. (37) into the first two of Eqs. (34) and (35), the radial and circumferential strain rates are

found to be

ε̇r =
3ε̇e
4σe

(σr − σθ) , (38)

ε̇θ =
3ε̇e
4σe

(σθ − σr) . (39)

The Bailey–Norton creep constitutive model for FGPM is considered to be [24]

ε̇e = Btnσn(r)
e , (40)

where B and m are the Norton coefficient and n is the Bailey coefficient, for which
1

2
< n <

1

3
.

In this case, the Von Mises equivalent stress is reduced to

σe =
1√
2

√
(σθ − σr)

2
+ (σθ − σz)

2
+ (σz − σr)

2
=

√
3

2
(σθ − σr) . (41)

To obtain a history of stresses, deformation, and electric potential, a numerical procedure based on the method

of successive approximation has been tailored.

6. Successive approximation method

As can be seen from the above, to obtain the history of stresses, strains, deformation, and electric potential, a

numerical procedure based on the method of successive approximation has been adopted, for which a procedure

based on Mendelson’s method is described below.
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1. An appropriate time increment step of say ∆t = 6 months is selected. The total time is therefore the

sum of time increments throughout the progress of the creep process. For the ith timing step, the total

time is

ti =
i−1∑
k=1

∆tk +∆ti.

2. Thickness of the cylinder is divided into N equal divisions. Initial estimates are ∆εcr,ij = −0.00001 and

∆εcθ,ij = 0.00001 for radial and circumferential creep strain increments to be considered for all division

points throughout the thickness. Creep strain at any point throughout the thickness of the cylinder is the

cumulative sum of all previous creep strains. Hence,

εcr,ij =
i−1∑
k=1

∆εcr,kj +∆εcr,ij , ε
c
θ,ij =

i−1∑
k=1

∆εcθ,kj +∆εcθ,ij ,

where the subscripts i and j indicate the timing step and division point, respectively.

3. First- and second-order derivatives of radial and circumferential creep strains are calculated using finite

difference approximation as follows:

∂εcr,im
∂ξm

=
εcr,im+1 − εcr,im−1

2 hm
,

∂εcθ,im
∂ξm

=
εcθ,im+1 − εcθ,im−1

2 hm
,

∂2εcr,im
(∂ξ2m)

=
εcr,im+1 − 2εcr,im + εcr,im−1

(hm)
2 ,

∂2εcθ,im
∂ξ2m

=
εcθ,im+1 − 2εcθ,im + εcθ,im−1

(hm)
2 .

4. The cumulative creep strains and its first-order derivatives are substituted in Eq. (14). This differential

equation can be solved for the displacement at the mth layer. Then using second-order derivatives stresses

and electric potential are calculated at the same layer. Using local and global boundary conditions, the

displacements, stresses, and electric potentials at time ti are determined.

5. Effective stresses are calculated for all division points using σe,ij =

√
3

2
|σθ,ij − σr,ij | .

6. Effective creep strain rates are then calculated at all division points (j) for the ith timing step using the

Bailey–Norton creep constitutive model using ε̇e,ij = B tni σ
m
e,ij .

7. From the Prandtl–Reuss relation, radial and circumferential creep strain rates are obtained:

ε̇r,ij =
3ε̇e,ij
4σe,ij

(σr,ij − σθ,ij) ,

ε̇θ,ij =
3ε̇e,ij
4σe,ij

(σθ,ij − σr,ij) .
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8. New values for radial and circumferential creep strain increments at all division points are recalculated

using the above creep strain rates (stage 6) and the time increment

∆εc,newr,ij = ε̇cr,ij ×∆ti,

∆εc,newθ,ij = ε̇cθ,ij ×∆ti.

9. These new obtained values for creep strain increments are compared with the first estimate and if needed

replace it, and the procedure is repeated until the required convergence is achieved. When considering the

next time step, the first estimate of creep strain should be the converged value obtained from the previous

step time, and again the procedure is repeated from stage 2 above.

7. Numerical results and discussion

The numerical results presented here are based on the material properties defined in Table 1 for PZT 4 as the

inner surface and PZT 5 as the outer surface [25]. The temperature at the inner and outer surfaces of the FGPM

cylinder are considered to be Ta = 50 ◦C and Tb = 25 ◦C, respectively, and the aspect ratio is η = 1.3. The

final converged solutions using the numerical procedure outlined in Section 6 above are illustrated as histories

of stresses, displacement, and electric potential in Figures 3–10.

Table 1. Mechanical, electrical, and thermal properties for PZT 5 and PZT 4.

Property PZT 5 PZT 4
c11 131 Gpa 115 Gpa
c12 81.3 Gpa 74.3 Gpa
c22 148 Gpa 139 Gpa
e11 9.50 C/m2 77.8 Gpa
e12 –2.10 C/m2 15.1 C/m2

e11 9.4× 10−9 C2/Nm2 -5.2 C/m2

1 × 10−6 1/k 3.87× 10−9 F/m
αr0 2× 10−6 1/k 2 × 10−5 1/K
ρ 7600 kg/m3 2× 10−6 1/K
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Figure 3. History of radial stress for the FGPM cylinder

from initial elastic up to 30 years for the case n = 2.

Figure 4. History of circumferential stress for the FGPM

cylinder from initial elastic up to 30 years for the case

n = 2.
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Table 2 illustrates the effects of grading index and time-dependent creep on dimensionless effective stress

versus dimensionless radius. As can be seen, the maximum effective stress belongs to n = 0 (PZT 5) and

the minimum values belong to n = Infinity (PZT 4), and for the FGPM cylinder these values are located

between these two extremes. Furthermore, the change in the rate of effective stress become less significant

after 10, begins to converge after 20, and reaches the steady state after 30 years. The results of this paper

for a homogeneous piezoelectric cylinder (n = 0) are the same as those reported by Ghorbanpour et al. [6],

indicating the validation of present work.

Table 2. Effects of grading index and time-dependent creep on dimensionless effective stress versus dimensionless

radius.

Time
Grading AfterDimensionless

index
Initial After After After

30 yearsradius (ξ)

(n)
elastic 5 years 10 years 20 years

(steady state)
1.06 0[1] 2.4384 2.4302 2.4246 2.4217 2.4204

0.5 1.9698 1.9622 1.9572 1.9541 1.9534
2 1.5624 1.5563 1.5528 1.5487 2.5477
5 1.5561 1.5488 1.5419 1.5389 1.5381
Infinity 1.5452 1.5377 1.5309 1.5284 1.5278

1.12 0[1] 2.1357 2.1807 2.2107 2.2257 2.2316
0.5 1.6529 1.6991 1.7109 1.7257 1.7219
2 1.2462 1.2808 1.3115 1.3248 1.3241
5 1.2398 1.2712 1.2986 1.3070 1.3037
Infinity 1.2287 1.2734 1.2854 1.2949 1.2906

1.24 0[1] 1.6534 1.7308 1.7824 1.8082 1.8185
0.5 1.1187 1.1889 1.2348 1.2601 1.2711
2 0.7782 0.8481 0.8990 0.9128 0.9212
5 0.6298 1.7422 1.7920 1.8122 1.8021
Infinity 0.6221 1.7392 1.7827 1.8078 1.7952

Figure 3 demonstrates histories of dimensionless radial stress (σr) against a dimensionless radius (ξ)

for the case n = 2. This figure shows that throughout the cylinder thickness, the absolute value of radial

stress decreases with time. Maximum change in σr occurs in the midrange of ξ . The change in the rate of

radial stress becomes less significant after 10, begins to converge after 20, and reaches steady state after 30

years. Furthermore, radial stresses are constant with respect to time at the interior and exterior surfaces of the

cylinder, satisfying the constant mechanical boundary conditions set out originally in Eq. (33).

Figures 4–6 illustrate the plots of circumferential, longitudinal, and effective stresses across the cylinder

thickness for the case n = 2. As can be seen, all these stresses are positive, i.e. they remain tensile throughout

the thickness. As far as the effect of time on these stresses is concerned, they are decreasing at the inner surface of

the FGPM cylinder and increasing at the outer surface with decreasing rates so that they also approach steady-

state condition after 30 years. Reference stresses are also identified for these stresses, which are independent

of time. The maximum longitudinal stress occurs at the outer surface, while the maximum circumferential and

effective stresses occur at the inner surface of the cylinder.

Despite different (but satisfied) boundary conditions at the inner and outer surfaces (see Eq. (33)), the

histories of the imposed electric potential through-thickness, as shown in Figure 7 for the case n = 2, are fairly

similar to that of the compressive radial stress as far as the rate change is concerned. That is perhaps because
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the electric potential histories are induced by the compressive radial stress histories during creep deformation

of the cylinder. This is expected from the piezoelectric characteristic point of view.
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Figure 5. History of longitudinal stress for the FGPM

cylinder from initial elastic up to 30 years for the case

n = 2.

Figure 6. History of effective stress for the FGPM cylin-

der from initial elastic up to 30 years for the case n = 2.

History of radial displacements, u , is shown in Figure 8 for the case n = 2. It is clear that u increases

with time at a decreasing rate during the creep process of the cylinder and finally reaches a steady state at

30 years, the same as σi (i = r, θ, z) ,Φ. Minimum u occurs at the interior surface and it increases smoothly

towards the exterior.
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Figure 7. History of electric displacement for the FGPM

cylinder from initial elastic up to 30 years for the case

n = 2.

Figure 8. History of radial displacement for the FGPM

cylinder from initial elastic up to 30 years for the case

n = 2.

As for the histories of radial and circumferential creep strains, these are presented in Figures 9 and 10

for the case n = 2. The radial and tangential strains are equal in magnitude but opposite in nature (sign) due

to the incompressibility condition ( ε̇r + ε̇θ + ε̇z = 0) and the assumption of plain strain condition ( ε̇z = 0).
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The absolute value of both creep strains with time is much higher at the interior surface as compared with the

exterior. As far as the rate of change is concerned, this seems to increase to a maximum between 5 and 10

years, and then decreases until it reaches steady state around 30 years of operation.
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Figure 9. History of radial creep strain stress for the

FGPM cylinder from initial elastic up to 30 years for the

case n = 2.

Figure 10. History of circumferential creep strain stress

for the FGPM cylinder from initial elastic up to 30 years

for the case n = 2.

8. Conclusions

Time-dependent creep analysis has been carried out to improve the performance and reliability of piezoactuators

used for high-precision applications, when these devices are used even at room temperatures. Time-dependent

thermoelectromechanical creep behavior of radially polarized FGPM hollow rotating cylinder was investigated

using a successive approximation method based on the Bailey–Norton law. History of stresses, strains, electric

potentials, and displacements were studied and presented graphically. Creep behavior of these is fairly similar

as changes in the rates for these become less significant after 10, begin to converge after 20, and reach

steady state after 30 years of operation. The results show that the grading index has a significant effect

on the thermoelectromechanical creep stresses, electric potential, and radial displacement. In general, a major

redistribution for electric potential takes place throughout the thickness. Electric potentials are increasing with

time in the same direction as the compressive radial stress histories. The histories of the imposed electric

potential through-thickness are fairly similar to that of the compressive radial stress as far as the rate change

is concerned, which is expected, as the electric potential histories of piezoelectric material are induced by the

compressive radial stress histories during creep deformation of the cylinder, justifying its industrial application

for efficient actuators and sensors.
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