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Abstract: An analytical study on unsteady hydromagnetic free convective flow of a viscous incompressible electrically

conducting fluid in the presence of an inclined magnetic field taking Hall currents into account has been presented. The

governing equations are solved analytically using the Laplace transform technique. The variations of the fluid velocity

components and the fluid temperature are shown graphically and are discussed. The shear stresses and the rate of

heat transfer at the channel plates are derived. The results are shown in figures and tables followed by a quantitative

discussion.
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1. Introduction

Hydromagnetic fluid dynamics continue to attract the attention of the applied mathematics and engineering

sciences communities owing to considerable practical applications of such flows in plasma aerodynamics [1],

magnetohydrodynamic (MHD) energy systems [2], nuclear engineering control [3], astrophysical fluid dynamics

[4], and mechanical engineering manufacturing processes [5,6]. Often such flows may occur from very low

Reynolds numbers to high-speed supersonic flows and also simultaneously with electromagnetofluid dynamic

effects (Hall currents, ion slip, Alfven waves, etc.) and thermophysical phenomena, which can exert a substantial

influence on velocity evolution and in the case of induction problems and magnetic field distributions. MHD

convection flow has many important engineering applications in the design of power generators, heat exchangers,

pumps, and flow meters; in solving space vehicle propulsion, control, and reentry problems; in designing

communications and radar systems; in creating novel power-generating systems; in developing confinement

schemes for controlled fusion; and in the design of nuclear cooling reactors and MHD accelerators.

Due to the varied range of applications in engineering and the universe, MHD free convection flow has

become significant. A fluid flow in which the motion is a result of body force acting on the fluid in which there

are density gradients is called a free convection flow. Temperature or concentration gradients existing in the

fluid yield density gradients while the gravitational force yields the body force. Thus, the action of the body

force on the fluid amounts to a buoyancy force that eventually induces free convection current. The radiative

convective flows are frequently encountered in many scientific and environmental processes such as astrophysical

flows, water evaporation from open reservoirs, heating and cooling of chambers, and solar power technology.

Heat transfer by simultaneous radiation and convection has applications in numerous technological problems
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including combustion, furnace design, nuclear reactor safety, fluidized bed heat exchanger, fire spreads, solar

fans, solar collectors, natural convection in cavities, turbid water bodies, photochemical reactors, and many

others. The free convection in channels formed by vertical plates has received attention among researchers

in the last few decades due to its widespread importance in engineering applications like cooling of electronic

equipment, design of passive solar systems for energy conversion, design of heat exchangers, human comfort in

buildings, thermal regulation processes, and many more.

Hall effects are important when the magnetic field is high or when the collision frequency is low (see

[7]). The current induced in a fluid is usually carried predominantly by electrons, which are considerably more

mobile than ions. The electron drift velocity in most cases leads to a second component of the flow velocity,

which in turn leads to a secondary force and causes anisotropic electrical conductivity in the flow. The current

component created by this anisotropic conductivity is known as the Hall current. The dimensionless product

ωeτe , usually called the Hall parameter, is an important characteristic number in the MHD design, where ωe is

the electron cyclotron frequency and τe is the electron collision mean free time. On the microscopic scale, the

Hall parameter indicates the average angular travel of electrons between collisions, while on the macroscopic

scale, the value of ωeτe indicates the relative importance of the Hall field and the Hall current. Hall effects

are important when the Hall parameter, which is the ratio between the electron-cyclotron frequency and the

electron-atom-collision frequency, is high. This happens when the magnetic field is strong or when the collision

frequency is low. Hall currents are of great importance in many astrophysical problems, Hall accelerators, and

flight MHD, as well as flows of plasma in a MHD power generator. Mazumder et al. [8] examined the Hall

effects on combined free and forced convective hydromagnetic flow through a channel. Hall currents and surface

temperature oscillation effects on natural convection MHD heat-generating flow were considered by Takhar and

Ram [9]. Gourla and Katoch [10] presented the unsteady free convection MHD flow between heated vertical

plates. Borkakati and Chakrabarty [11] studied the unsteady free convection MHD flow between two heated

vertical parallel plates in an induced magnetic field. Jha [12] studied the unsteady MHD natural convective

Couette flow. Singh and Pathak [13] studied the effect of rotation and Hall currents on mixed convection MHD

flow through a porous medium filled in a vertical channel in the presence of thermal radiation. Das et al.

[14] investigated the radiation effects on free convective MHD Couette flow started exponentially with variable

wall temperature in the presence of heat generation. Effects of radiation on transient natural convection flow

between two vertical walls were discussed by Mandal et al. [15]. Recently, Sarkar et al. [16] studied the effects

of radiation on MHD free convective Couette flow in a rotating system. Seth and Ghosh [17] presented the

unsteady hydromagnetic flow in a rotating channel in the presence of an inclined magnetic field. Pop et al. [18]

examined the effects of the Hall current on free and forced convection flows in a rotating channel in the presence

of an inclined magnetic field. Kalita and Lahkar [19] examined the effects of a magnetic field on unsteady free

convection MHD flow between two heated vertical plates.

In the present paper, we have studied the combined effects of Hall currents and radiation on a hydromag-

netic free convective flow of a viscous incompressible electrically conducting fluid in the presence of an inclined

applied magnetic field. The temperature of the fluid motion is assumed to be changing with time. The mag-

netic Reynolds number is assumed to be small enough so that the induced magnetic field can be neglected. It

is also assumed that there is no applied voltage, which implies the absence of an electrical field. The analytical

solutions for velocity field, temperature distribution, shear stresses, and the rate of heat transfer at the channel

plates are obtained and are presented graphically. In space technology and in nuclear engineering applications,

such a problem is quite common. However, in these fields, the presence of a strong magnetic field and Hall
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current taking effect plays an important role. In this paper, we investigate the solution in which the buoyancy,

radiation, and Hall currents act simultaneously.

2. Formulation of the problem and its solution

Consider the unsteady hydromagnetic free convective flow of a viscous incompressible electrically conducting

fluid between two infinite vertical parallel plates separated by a distance 2h . The channel plates are electrically

nonconducting. Choose a Cartesian coordinate system with the x-axis taken at the middle of the channel along

the vertically upward direction, the z -axis normal to the plates, and the y -axis perpendicular to the xz -plane

(Figure 1). Initially, at time t ≤ 0, both the plates and the fluid are assumed to be at the same temperature,

Th . At time t > 0, the plate at z = −h is heated with the temperature Th + (T0 − Th) (1 − e−nt), T0 is the

temperature at the plates at z = h respectively, and n(> 0), a real number, denotes the decay factor. The

plate at z = h is thermally insulated. A uniform magnetic field of strength B0 is imposed at angle φ to the

x-axis. It is also assumed that the radiative heat flux in the x-direction is negligible in comparison with that

in the z -direction. As the plates are infinitely long along x and y directions, the velocity and temperature

fields are functions of z and t only. In accordance with the Boussinesq approximation, we assume that all fluid

properties are constant, except the density, which varies with temperature only in the body force term.

Figure 1. Geometry of the problem.

The Navier–Stokes MHD momentum equations under the Boussinesq approximation for the transient

MHD channel flow with inclined magnetic field can be written in component form as:

∂u

∂t
= ν

∂2u

∂z2
+ gβ(T − Th) +

B0

ρ
jy cosφ, (1)

∂v

∂t
= ν

∂2v

∂z2
− B0

ρ
jx cosφ, (2)

where u and v are the velocity components, ν is the kinematic viscosity, ρ is the fluid density, and g is the

acceleration due to gravity.

The energy equation is:

ρcp
∂T

∂t
= k

∂2T

∂z2
− ∂qr

∂z
, (3)
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where T is the temperature of the fluid, β is the coefficient of thermal expansion, ρ is the fluid density, k is

the thermal conductivity, cp is the specific heat at constant pressure, and qr is the radiative heat flux. The

effect of viscous and Joule dissipation is assumed to be negligible in the energy equation as small velocity is

usually encountered in free convection flows.

The initial and boundary conditions for the velocity and temperature distributions are:

u = 0 = v, T = Th for − h ≤ z ≤ h and t ≤ 0,

u = 0 = v, T = Th + (T0 − Th) (1− e−nt) at z = −h for t > 0, (4)

u = 0 = v,
dT

dz
= 0 at z = h for t > 0.

The generalized Ohm law on taking Hall currents into account is [20]:

j⃗ +
ωe τe
B0

(⃗
j × B⃗

)
= σ

(
E⃗ + q⃗ × B⃗

)
, (5)

where q⃗ , B⃗ , E⃗ , j⃗ , σ , ωe , and τe are respectively the velocity vector, the magnetic field vector, the electric field

vector, the current density vector, the electric conductivity, the cyclotron frequency, and the electron collision

time.

It is assumed that the magnetic Reynolds number Rem for the flow is small so that the induced magnetic

field can be neglected. This assumption is justified since the magnetic Reynolds number is generally very small

for partially ionized gases. Thus, it can be assumed that due to the low magnetic Reynolds number the applied

magnetic field is unaffected by the effect of the motion of the conducting fluid, i.e. the applied magnetic field

will guide the flow, whereas the effect of the magnetic field on the fluid motion manifests itself in the form

ωe τe
B0

(⃗
j × B⃗

)
, which is known as the Lorentz force. The Lorentz force will be a linear function of velocity when

Rem = 1. If the strength of the magnetic field is high, then one cannot neglect the Hall current. This is a rather

important case for some practical engineering problems. The electron-atom collision frequency is assumed to

be relatively high, so that the Hall effects cannot be neglected [7].

The equation of continuity ∇ · q⃗ = 0 with no-slip condition at the plate gives w = 0 everywhere in the

flow where q⃗ ≡ (u, v, w); u , v , and w are respectively the velocity components along the coordinate axes. The

solenoidal relation ∇ · B⃗ = 0 gives Bz=constant = B0 everywhere in the flow where B⃗ ≡ (0, 0, Bz). The

conservation of electric current ∇ · j⃗ = 0 yields jz = constant where j⃗ ≡ (jx, jy, jz). This constant is zero

since jz = 0 at the plates, which are electrically nonconducting. Hence, jz = 0 everywhere in the flow. As

the induced magnetic field is neglected, the Maxwell equation ∇ × E⃗ = −∂B⃗
∂t becomes ∇ × E⃗ = 0, which

gives ∂Ex

∂z = 0 and
∂Ey

∂z = 0 where E⃗ ≡ (Ex, Ey, Ez). This implies that Ex = constant and Ey = constant

everywhere in the flow. Since there is no electrical field applied in the current regime under consideration, the

polarization voltage is neglected. Therefore, it follows that Ex = 0 and Ey = 0, as indicated by Meyer [21].

In view of the above assumption, Eq. (5) yields:

jx +mjy cosφ = σvB0 cosφ, (6)

jy −mjx cosφ = −σuB0 cosφ, (7)
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where m = ωe τe is the Hall parameter, which can take positive or negative values. Positive values of m mean

that B0 is upward. For negative values of m , B0 is downward.

Solving for jx and jy from Eqs. (6) and (7), we have

jx =
σB0 cosφ

1 +m2 cos2 φ
(v +mu cosφ) , (8)

jy =
σB0 cosφ

1 +m2 cos2 φ
(mv cosφ− u) , (9)

where m = ωe τe is the Hall parameter.

On the use of Eqs. (8) and (9), the fluid flow be governed by the following system of equations:

∂u

∂t
= ν

∂2u

∂z2
+ gβ(T − Th) +

σB2
0 cosφ

1 +m2 cos2 φ
(mv cosφ− u) , (10)

∂v

∂t
= ν

∂2v

∂z2
− σB2

0 cosφ

1 +m2 cos2 φ
(v +mu cosφ) . (11)

It was shown by Cogley et al. [22] that in the optically thin limit for a nongray gas near equilibrium, the

following relation holds:

∂qr
∂y

= 4(T − Th)

∞∫
0

Kλ∗
h

(
∂eλ∗p

∂T

)
h

dλ∗, (12)

where K∗
λ is the absorption coefficient, λ∗ is the wave length, eλ∗p is the Planck function, and subscript h

indicates that all quantities have been evaluated at temperature Th , which is the temperature of the wall at

time t ≤ 0. Thus, our study is limited to the small difference of plate temperature from the fluid temperature.

Greif et al. [23] showed that for an optically thin limit, the fluid does not absorb its own emitted radiation;

this means that there is no self-absorption, but the fluid does absorb radiation emitted by the boundaries.

Treatments to the radiative heating are either in the limit where photon mean free paths are very small, called

optically thick, or very long, called optically thin. At high temperatures the presence of thermal radiation alters

the distribution of temperature in the boundary layer, which in turn affects the heat transfer at the channel

walls.

On the use of Eq. (12), Eq. (3) becomes

ρcp
∂T

∂t
= k

∂2T

∂y2
− 4 (T − Th) I, (13)

where

I =

∞∫
0

Kλ∗
h

(
∂eλ∗p

∂T

)
h

dλ∗. (14)

Introducing nondimensional variables

η =
z

h
, τ =

ν t

h2
, (u1, v1) =

h

ν
(u, v), θ =

T − Th

T0 − Th
, (15)
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Eqs. (10), (11), and (13) become

∂u1

∂τ
=

∂2u1

∂η2
+Grθ +

M2 cosφ

1 +m2 cos2 φ
(mv1 cosφ− u1) , (16)

∂v1
∂τ

=
∂2v1
∂η2

− M2 cosφ

1 +m2 cos2 φ
(v1 +mu1 cosφ) , (17)

Pr
∂θ

∂τ
=

∂2θ

∂η2
− Rθ, (18)

where M2 =
σB2

0h
2

ρν is the magnetic parameter that represents the ratio of the magnetic field strength to the

viscous force, R = 4I h2

k is the radiation parameter, Gr = gβ (T0−Th)h
3

ν2 is the Grashof number that approximates

the ratio of the buoyancy force to the viscous force acting on a fluid, and Pr =
ρν cp
k is the Prandtl number,

which measures the ratio of momentum diffusivity to thermal diffusivity.

The corresponding initial and boundary conditions for u1 , v1 , and θ are

u1 = 0 = v1, θ = 0 for − 1 ≤ η ≤ 1 and τ ≤ 0,

u1 = 0 = v1, θ = 1− e−ωτ at η = −1 for τ > 0, (19)

u1 = 0 = v1,
dθ

dη
= 0 at η = 1 for τ > 0,

where ω = nh2

ν is the temperature frequency parameter.

Combining Eqs. (16) and (17), we get

∂F

∂τ
=

∂2F

∂η2
+Grθ − aF, (20)

where

F = u1 + iv1, a =
M2 cos2 φ

1 +m2 cos2 φ
(1− im cosφ) and i =

√
−1. (21)

The corresponding boundary conditions for F and θ are

F = 0, θ = 0 for − 1 ≤ η ≤ 1 and τ ≤ 0,

F = 0, θ = 1− e−ωτ at η = −1 for τ > 0, (22)

F = 0,
dθ

dη
= 0 at η = 1 for τ > 0.

The Laplace transform method solves differential equations and corresponding initial and boundary value

problems. The Laplace transform has the advantage that it solves problems directly, initial value problems

without determining first a general solution, and nonhomogeneous differential equations without solving first
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the corresponding homogeneous equations. In order to obtain the exact solution of the present problem, we will

use the Laplace transform technique. On the use of the Laplace transformation, Eqs. (20) and (18) become

sF̄ =
d2F̄

dη2
+Grθ̄ − aF̄ , (23)

Prsθ̄ =
d2θ̄

dη2
− Rθ̄, (24)

where

F̄ (η, s) =

∞∫
0

F (η, τ)e−sτ dτ and θ̄(η, s) =

∞∫
0

θ(η, τ)e−sτ dτ. (25)

The corresponding boundary conditions for F̄ and θ̄ are

F̄ (−1, s) = 0, θ̄(−1, s) =
1

s
− 1

s+ ω
,

F̄ (1, s) = 0,
dθ̄

dη
(1, s) = 0. (26)

Solution of Eqs. (23) and (24) subject to the boundary conditions of Eq. (26) are given by

θ̄(η, s) =
ω

s(s+ ω)

cosh
√
sPr +R(1− η)

cosh 2
√
sPr +R

, (27)

F̄ (η, s) =



ωGr

(1− Pr)s(s+ ω)(s+ b)

[
cosh

√
sPr +R(1− η)

cosh 2
√
sPr +R

− sinh
√
s+a(1−η)

sinh 2
√
s+a

− sinh
√
s+a (1+η)

sinh 2
√
s+a cosh 2

√
sPr+R

]
for Pr ̸= 1

ωGr

(a−R)s(s+ ω)

[
cosh

√
s+R(1− η)

cosh 2
√
s+R

− sinh
√
s+a(1−η)

sinh 2
√
s+a

− sinh
√
s+a (1+η)

sinh 2
√
s+a cosh 2

√
s+R

]
for Pr = 1,

(28)

where b = a−R
1−Pr .

The inverse Laplace transforms of Eqs. (27) and (28) give the solution for the temperature and the

velocity distributions respectively as

θ(η, τ) =
cosh

√
R(1− η)

cosh 2
√
R

− cosh
√
R− ωPr (1− η)

cosh 2
√
R− ωPr

e−ωτ

+
∞∑
k=0

π(2k + 1)(−1)k es1τ

4s1(s1 + ω)Pr
cos(2k + 1)

π

4
(1− η), (29)
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F (η, τ) =



Gr

(1− Pr)

[
1

b

{
cosh

√
R(1− η)

cosh 2
√
R

− sinh
√
a(1− η)

sinh 2
√
a

− sinh
√
a(1 + η)

sinh 2
√
a cosh 2

√
R

}

− e−ωτ

b− ω

{
cosh

√
R− ωPr (1− η)

cosh 2
√
R− ωPr

− sinh
√
a− ω (1− η)

sinh 2
√
a− ω

− sinh
√
a(1 + η)

sinh 2
√
a− ω cosh 2

√
R− ωPr

}
+

∞∑
k=0

(2k+1)πes1τ

4s1(s1+ω)(s1+b)Pr

×(−1)k
{
cos(2k + 1)π4 (1− η)− sinh

√
s1+a (1−η)

sinh 2
√
s1+a

}
+

∞∑
k=0

πkes2τ

2s2(s2 + ω)(s2 + b)
(−1)k

{
sin

kπ

2
(1− η) +

sinh kπ
2 (1 + η)

cosh 2
√
s2Pr +R

}]
for Pr ̸= 1

Gr

(a−R)

[{
cosh

√
R(1− η)

cosh 2
√
R

− sinh
√
a(1− η)

sinh 2
√
a

− sinh
√
a(1 + η)

sinh 2
√
a cosh 2

√
R

}

−e−ωτ

{
cosh

√
R− ω (1− η)

cosh 2
√
R− ω

− sinh
√
a− ω (1− η)

sinh 2
√
a− ω

− sinh
√
a(1 + η)

sinh 2
√
a− ω cosh 2

√
R− ω

}
+

∞∑
k=0

(2k + 1)πes3τ

4s3(s3 + ω)
(−1)k

{
cos(2k + 1)

π

4
(1− η)− sinh

√
s3 + a(1− η)

sinh 2
√
s3 + a

}

+

∞∑
k=0

πkes2τ

2s2(s2 + ω)(s2 + b)
(−1)k

{
sin

kπ

2
(1− η) +

sinh kπ
2 (1 + η)

cosh 2
√
s2 +R

}]
for Pr = 1,

(30)

where

s1 = − 1

Pr

[
R+ (2k + 1)2

π2

16

]
, s2 = −

[
a+

k2π2

4

]
, s3 = −

[
R+ (2k + 1)2

π2

16

]
. (31)

In the absence of Hall currents (m = 0), Eqs. (29) and (30) are reduced to that obtained by Kalita and Lahkar

[19].

The steady-state solution for the temperature and the velocity distributions are respectively given by

θ(η, τ) =
cosh

√
R(1− η)

cosh 2
√
R

, (32)

F (η, τ) =


Gr

(1−Pr)b

[
cosh

√
R (1−η)

cosh 2
√
R

− sinh
√
a (1−η)

sinh 2
√
a

− sinh
√
a (1+η)

sinh 2
√
a cosh 2

√
R

]
for Pr ̸= 1

Gr
(a−R)

[
cosh

√
R (1−η)

cosh 2
√
R

− sinh
√
a (1−η)

sinh 2
√
a

− sinh
√
a (1+η)

sinh 2
√
a cosh 2

√
R

]
for Pr = 1,

(33)

3. Results and discussion

We have presented the nondimensional velocity and temperature distributions for several values of magnetic

parameter M2 , Hall parameter m , radiation parameter R , Grashof number Gr , Prandtl number Pr , magnetic
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field inclination φ , frequency parameter ω , and angular frequency ωτ in Figures 2–13. It is seen from Figure 2

that both the primary velocity u1 and the secondary velocity v1 decrease with an increase in magnetic parameter

Figure 2. Primary and second velocities for M2 when m = 0.5, Gr = 5, ω = 2, R = 2, Pr = 0.025, τ = 0.5, ωτ = π
2
,

and φ = π
4
.

Figure 3. Primary and second velocities for m when M2 = 10, Gr = 5, ω = 2, R = 2, Pr = 0.025, τ = 0.5, ωτ = π
2
,

and φ = π
4
.
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M2 . This is because the presence of a magnetic field in an electrically conducting fluid introduces a Lorentz

force (a resistive force similar to the drag force), which acts against the flow. This resistive force tends to slow

down the fluid flow and hence the fluid velocity components decrease with an increase in magnetic parameter.

This trend is consistent with many classical studies on magnetoconvection flow. Figure 3 reveals that both

Figure 4. Primary and second velocities for R when M2 = 10, Gr = 5, ω = 2, m = 0.5, Pr = 0.025, τ = 0.5,

ωτ = π
2
, and φ = π

4
.

Figure 5. Primary and second velocities for Gr when M2 = 10, R = 2, ω = 2, m = 0.5, Pr = 0.025, τ = 0.5,

ωτ = π
2
, and φ = π

4
.
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the primary velocity u1 and the secondary velocity v1 increase with an increase in Hall parameter m . Since

the magnetic field is strong, the electromagnetic force becomes very large, which results in the phenomenon

of the Hall currents. The Hall currents cause an increase in the secondary velocity. The secondary velocity

is totally dependent on the Hall currents. Thus, the secondary velocity can be manipulated by increasing or

decreasing the Hall parameter. The Hall parameter m has a marked effect on the velocity profiles. It is observed

Figure 6. Primary and second velocities for Pr when M2 = 10, Gr = 5, ω = 2, m = 0.5, R = 2, τ = 0.5, ωτ = π
2
,

and φ = π
4
.

Figure 7. Primary and second velocities for φ when M2 = 10, Gr = 5, ω = 2, m = 0.5, Pr = 0.025, τ = 0.5,

ωτ = π
2
, and R = 2.

444



GUCHHAIT et al./Turkish J Eng Env Sci

that an increasing value of m increases the velocity profiles until they reach the hydrodynamic values. This is

because the effective conductivity σ cosφ
1+m2 cos2 φ decreases as m increases for the fixed value of φ . Since the fluid

is assumed to be weakly ionized, we can consider the value of the Hall parameter m less than unity [7]. It is

seen from Figure 4 that an increase in radiation parameter R leads to a decrease in the primary velocity u1 and

the secondary velocity v1 . The radiation parameter arises only in the energy equation in the thermal diffusion

Figure 8. Primary and second velocities for ω when M2 = 10, Gr = 5, R = 2, m = 0.5, Pr = 0.025, τ = 0.5,

ωτ = π
2
, and φ = π

4
.

Figure 9. Primary and second velocities for ωτ when M2 = 10, Gr = 5, ω = 2, m = 0.5, Pr = 0.025, τ = 0.5,

R = 2, and φ = π
4
.
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term, and via coupling of the temperature field with the buoyancy terms in the momentum equation, the fluid

velocity is indirectly influenced by thermal radiation effects. An increase in the radiation parameter implies

less interaction of radiation with the momentum boundary layer and hence the flow becomes decelerated. We

focus on the positive values of the buoyancy parameter, i.e. Grashof number Gr , which corresponds to the

cooling problem. The cooling problem is often encountered in engineering applications. Figure 5 reveals that

both the primary velocity u1 and the secondary velocity v1 increase with an increase in Grashof number Gr .

Figure 10. Temperature for R when Pr = 0.025, ω = 2, and ωτ = π
2
.

Figure 11. Temperature for Pr when R = 2, ω = 2, and ωτ = π
2
.
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Figure 12. Temperature for ω when Pr = 0.025, R = 2, and ωτ = π
2
.

Figure 13. Temperature for R when Pr = 0.025, ω = 2, and R = 2.

The Grashof number signifies the relative effect of the thermal buoyancy force on the viscous hydrodynamic

force in the boundary layer. As expected, it is observed that there is a rise in the velocity components due to

the enhancement of thermal buoyancy force. The maximum of the velocity profiles shifts toward the left half

of the channel due to the greater buoyancy force in this part of the channel due to the presence of the hotter

plate. In the left half there lies the hot plate at η = −1 and heat is transferred from the hot plate to the fluid,

and consequently the buoyancy force enhances the flow velocity further. Figure 6 shows that both the primary
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velocity u1 and the secondary velocity v1 decrease with an increase in Prandtl number Pr . Prandtl number Pr

then provides a measure of relative effectiveness of momentum and energy transport of diffusion in the velocity

and thermal boundary layers respectively, e.g., in the case of gases Pr is nearly equal to unity and therefore

energy and momentum transfer by diffusion are comparable, whereas for liquid metals Pr < 1 and the energy

diffusion rate greatly exceeds the momentum diffusion rate. On the other hand, in the case of oils, Pr > 1. From

this interpretation it implies that the value of Pr influences the growth of the velocity and the thermal boundary

layer. Thus, the Prandtl number acts as the conducting link between the velocity field and the temperature

field since it involves momentum transfer that consequently yields heat transfer. Physically, this is true because

the increase in the Prandtl number is due to increase in the viscosity of the fluid, which makes the fluid thick

and hence causes a decrease in the velocity of the fluid. It is worth mentioning that the present investigation

deals with those functional fluids that act as liquid metals in many engineering applications because of their

ability to reduce the temperature of the system. For instance, liquid metals are used in nuclear power plants and

mercury, sodium, alloys, lead-bismuth, and bismuth are extensively utilized as coolants. It is seen from Figure

7 that the primary velocity u1 is accelerated whereas the secondary velocity v1 is retarded with an increase in

magnetic field inclination φ . As magnetic field inclination φ increases, the hydromagnetic drag force decreases.

Consistent with this, it is observed that a rise in inclination clearly accelerates the primary flow and decelerates

the secondary flow. Figure 8 demonstrates that both the primary velocity u1 and the secondary velocity v1

decrease with an increase in frequency parameter ω . The frequency of surface temperature oscillations exerts

a marked influence on the primary velocity u1 and the secondary velocity v1 , as shown in Figure 8, which are

decreased substantially with a rise in ω . Back flow is therefore augmented with increasing oscillation frequency,

with the maximum effect at close proximity to the plate η = −1. It is revealed from Figure 9 that both the

primary velocity u1 and the secondary velocity v1 increase with an increase in angular frequency ωτ . The

oscillations near the middle of the channel are of great significance.

The effects of radiation parameter R , Prandtl number Pr , frequency parameter ω , and angular frequency

ωτ on the temperature distribution are shown in Figures 10–13. It is observed from Figures 10–12 that the

fluid temperature θ decreases with an increase in radiation parameter R , Prandtl number Pr , or frequency

parameter ω . This result qualitatively agrees with the expectations, since the effect of radiation decreases the

rate of energy transport to the fluid, thereby decreasing the temperature of the fluid. Prandtl number Pr is

the ratio of the viscosity to the thermal diffusivity. An increase in thermal diffusivity leads to a decrease in

Prandtl number. Therefore, thermal diffusion has a tendency to reduce the fluid temperature. It is revealed in

Figure 13 that an increase in angular frequency ωτ leads to a rise in fluid temperature θ .

The rate of heat transfer θ
′
(−1, τ)

(
= ∂θ

∂η

∣∣∣
η=−1

)
and temperature θ(1, τ) at the plate η = 1 are

respectively given by

θ
′
(−1, τ) = −

√
R tanh 2

√
R+

√
R− ωPr tanh 2

√
R− ωPr e−ωτ +

∞∑
k=0

(2k + 1)2π2 es1τ

16s1(s1 + ω)Pr
, (34)

θ(1, τ) = sech2
√
R− e−ωτ sech2

√
R− ωPr +

∞∑
k=0

π(2k + 1)(−1)k es1τ

4s1(s1 + ω)Pr
, (35)

where s1 is given by Eq. (29).

Numerical results of the rate of heat transfer −θ
′
(−1, τ) at the plate η = −1 for several values of

radiation parameter R , Prandtl number Pr , frequency parameter ω , and angular frequency ωτ are presented
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in Table 1. Table 1 shows that the rate of heat transfer −θ
′
(−1, τ) increases with an increase in radiation

parameter R , Prandtl number Pr , frequency parameter ω , or angular frequency ωτ . This can be attributed

to the fact that as thermal radiation increases, the dominance effect of temperature gradient increases, leading

to an increase in the rate of heat transfer. This may be also explained by the fact that frictional forces become

dominant with increasing values of Prandtl number Pr and hence yield a greater heat transfer rate. An increase

in Prandtl number reduces the thermal boundary layer thickness. The Prandtl number signifies the ratio of

momentum diffusivity to thermal diffusivity. Fluids with lower Prandtl numbers will possess higher thermal

conductivities so that heat can diffuse from the sheet faster than for higher Pr fluids (thinner boundary layers).

Hence, the Prandtl number can be used to increase the rate of cooling in conducting flows. It is clear that the

rate of heat transfer is higher in the presence of thermal radiation. The negative value of θ
′
(−1, τ) physically

explains that there is heat flow from the hot plate η = −1 to the fluid. It is observed from Table 2 that the

plate temperature θ(1, τ) at η = 1 decreases with an increase in radiation parameter R , Prandtl number Pr ,

or frequency parameter ω . Furthermore, it is seen from Table 2 that the plate temperature θ(1, τ) at η = 1

increases with an increase in angular frequency ωτ .

The nondimensional shear stresses at the plate η = 1 are obtained as follows:

τx1 + iτy1 =

(
∂F

∂η

)
η=1

=



Gr
(1−Pr)

[√
a
b cosech2

√
a
(
1− cosh2

√
a sech2

√
R
)

− e−ωτ

b− ω

√
a− ω cosech2

√
a− ω

×
(
1− cosh2

√
a− ω sech2

√
R− ωPr

)
−

∞∑
k=0

(2k + 1)(−1)kπes1τ

4s1(s1 + ω)(s1 + b)Pr

√
s1 + a coth

√
s1 + a

−
∞∑
k=0

πk (−1)k es2τ

2s2(s2 + ω)(s2 + b)

{
1− (−1)k sech2

√
s2Pr +R

}]
for Pr ̸= 1

Gr

(a−R)

[√
a

b
cosech2

√
a
(
1− cosh2

√
a sech2

√
R
)

− e−ωτ

b− ω

√
a− ω cosech2

√
a− ω

×
(
1− cosh2

√
a− ω sech2

√
R− ω

)
−

∞∑
k=0

(2k + 1)(−1)kπes3τ

4s3(s3 + ω)

√
s3 + a coth

√
s3 + a

−
∞∑
k=0

πk (−1)k es2τ

2s2(s2 + ω)

{
1− (−1)k sech2

√
s2 +R

}]
for Pr = 1,

(36)

where s1 , s2 , and s3 are given by Eq. (29).

Numerical results of the nondimensional shear stresses at the plate η = 1 are presented in Figures 14–19

for several values of Hall parameter m , radiation parameter R , Grashof number Gr , inclination of magnetic

φ , frequency parameter ω , and angular frequency ωτ when Pr = 0.025. Figure 14 shows that the absolute

values of the shear stress τx1 due to the primary flow and the shear stress τy1 due to the secondary flow at

the plate η = 1 reduce with an increase in either radiation parameter R or magnetic parameter M2 . Since

449



GUCHHAIT et al./Turkish J Eng Env Sci

Table 1. Rate of heat transfer −θ
′
(−1, τ) at the plate η = −1.

Pr ω ωτ
R 0.015 0.020 0.025 2 3 4 π/6 π/4 π/3
0.5
1.0
1.5
2.0

0.50292
0.76710
0.95850
1.11471

0.50474
0.76828
0.95941
1.11548

0.50657
0.76946
0.96032
1.11625

0.50657
0.76946
0.96032
1.11625

0.51127
0.77245
0.96262
1.11818

0.51611
0.77549
0.96495
1.12013

0.28164
0.40958
0.50475
0.58333

0.36146
0.53729
0.66641
0.77244

0.42290
0.63558
0.79084
0.91800

Table 2. Temperature θ(1, τ) at the plate η = 1.

Pr ω ωτ
R 0.015 0.020 0.025 2 3 4 π/6 π/4 π/3
0.5
1.0
1.5
2.0

0.35996
0.20892
0.13489
0.09279

0.35867
0.20836
0.13460
0.09261

0.35736
0.20779
0.13429
0.09243

0.35736
0.20779
0.13429
0.09243

0.35397
0.20633
0.13352
0.09198

0.35040
0.20482
0.13273
0.09151

0.16919
0.10048
0.06566
0.04551

0.23597
0.13856
0.09002
0.06216

0.32692
0.19043
0.12319
0.08484

the intense amount of the magnetic field literally increases the Lorentz force that significantly opposes the flow

in the reverse direction, the magnetic field thus acts as the retarding force that causes the shear stresses to

decrease significantly. It is observed from Figures 15–18 that the absolute values of the shear stresses τx1 and

τy1 increase with an increase in Hall parameter m , Grashof number Gr , inclination of magnetic field φ , or

angular frequency ωτ . This happens because the electrical conductivity of the fluid decreases with increasing

m , which ultimately reduces the magnetic damping force and hence the shear stresses are increased considerably.

The absolute values of the shear stresses at the channel wall η = 1 enhance with increasing buoyancy force

due to increase in flow velocity. An increase in frequency of plate temperature oscillations ω also reduces the

components of shear stress at the plate η = 1 as shown in Figure 19.

Figure 14. Shear stresses τx1 and τy1 for R when m = 0.5, Gr = 5, ω = 2, τ = 0.5, ωτ = π
2
, and φ = π

4
.
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Figure 15. Shear stresses τx1 and τy1 for m when R = 2, Gr = 5, ω = 2, τ = 0.5, ωτ = π
2
, and φ = π

4
.

Figure 16. Shear stresses τx1 and τy1 for Gr when R = 2, Gr = 5, ω = 2, τ = 0.5, ωτ = π
2
, and φ = π

4
.

4. Conclusion

Analytical solutions have been obtained for the transient MHD free convection flow in a heated vertical parallel

plate channel in the presence of an inclined magnetic field taking Hall currents into account. The effects of

pertinent parameters on the flow field, the temperature distribution, and the shear stresses have been discussed.

Introducing the Hall terms causes an increase in the secondary velocity component and affects the primary

velocity component. Magnetic field and radiation have a retarding influence on the primary velocity. An
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increase in magnetic field inclination leads to acceleration of the primary velocity while suppressing the secondary

velocity. The preset model finds applications in hybrid MHD energy generators and also magnetic materials

processing systems.

Figure 17. Shear stresses τx1 and τy1 for φ when R = 2, Gr = 5, ω = 2, τ = 0.5, and ωτ = π
2
.

Figure 18. Shear stresses τx1 and τy1 for ωτ when R = 2, Gr = 5, τ = 0.5, ω = 2, and φ = π
4
.
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Figure 19. Shear stresses τx1 and τy1 for ω when R = 2, Gr = 5, τ = 0.5, ωτ = π
2
, and φ = π

4
.

References

[1] Takenouchi K. Transient magnetohydrodynamic channel flow with axial symmetry at a supersonic speed. J Phys

Soc Jpn 1985; 54: 1329–1338.

[2] Hardianto T, Sakamoto N, Harada N. Computational study of diagonal channel magnetohydrodynamic power

generation. Int J Energy Techn Policy 2008; 6: 96–111.

[3] Narasimhan MN. Transient Magnetohydrodynamic Flow in an Annular Channel, Technical Report. Madison, WI,

USA: University of Wisconsin-Madison Mathematics Research Center; 1963.

[4] Takhar HS, Ram PC. Free convection in hydromagnetic flows of a viscous heat-generating fluid with wall temperature

oscillation and Hall currents. Astrophys Space Sci 1991; 183: 193–198.

[5] Ryabinin AG, Khozhainov AI. Exact and approximate formulations of problems for unsteady flows of conducting

fluids in MHD channels. Fluid Dyn 1967; 2: 107–109 .

[6] Barmin AA, Uspenskii VS. Development of pulsation regimes in one-dimensional unsteady MHD flows with switch-

ing off of the electrical conductivity. Fluid Dyn 1986; 21: 18–30.

[7] Sutton G, Sherman A. Engineering Magnetohydrodynamics. New York, NY, USA: McGraw-Hill; 1965.

[8] Mazumder BS, Gupta AS, Datta N. Hall effects on combined free and forced convective hydromagnetic flow through

a channel. Int J Heat Mass Tran 1976; 14: 285–292.

[9] Takhar HS, Ram PC. Free convection in hydromagnetic flows of a viscous heat-generating fluid with wall temperature

oscillation and Hall currents. Astrophys Space Sci 1991; 183: 193–198.

[10] Gourla MG, Katoch S. Unsteady free convection MHD flow between heated vertical plates. Ganita 1991; 42: 143–

154.

[11] Borkakati AK, Chakrabarty S. Unsteady free convection MHD flow between two heated vertical parallel plates in

induced magnetic field. Indian J Theor Phys 1999; 47: 43–60.

[12] Jha BK. Natural convection in unsteady MHD Couette flow. Heat Mass Transfer 2001; 37: 329–331.

453

http://dx.doi.org/10.1143/JPSJ.54.1329
http://dx.doi.org/10.1143/JPSJ.54.1329
http://dx.doi.org/10.1504/IJETP.2008.017031
http://dx.doi.org/10.1504/IJETP.2008.017031
http://dx.doi.org/10.1007/BF00637718
http://dx.doi.org/10.1007/BF00637718
http://dx.doi.org/10.1007/BF01019553
http://dx.doi.org/10.1007/BF01019553
http://dx.doi.org/10.1115/1.3625105
http://dx.doi.org/10.1007/BF00637718
http://dx.doi.org/10.1007/BF00637718
http://dx.doi.org/10.1007/PL00013295


GUCHHAIT et al./Turkish J Eng Env Sci

[13] Singh KD, Pathak R. Effect of rotation and Hall current on mixed convection MHD flow through a porous medium

filled in a vertical channel in presence of thermal radiation. Indian J Pure Ap Phy 2012; 50: 77–85.

[14] Das S, Sarkar BC, Jana RN. Radiation effects on free convection MHD Couette flow started exponentially with

variable wall temperature in presence of heat generation. Open Journal of Fluid Dynamics 2012; 2: 14–27.

[15] Mandal C, Das S, Jana RN. Effect of radiation on transient natural convection flow between two vertical walls.

International Journal of Applied Information Systems 2012; 2: 49–56.

[16] Sarkar BC, Das S, Jana RN. Effects of radiation on MHD free convective Couette flow in a rotating system.

International Journal of Engineering Research and Applications 2012; 2: 2346–2359.

[17] Seth GS, Ghosh SK. Unsteady hydromagnetic flow in a rotating channel in the presence of inclined magnetic field.

Int J Eng Sci 1986; 24: 1183–1193.

[18] Pop I, Ghosh SK, Nandi DK. Effects of the Hall current on free and forced convection flows in a rotating channel

in the presence of an inclined magnetic field. Magnetohydrodynamics 2001; 37: 348–359.

[19] Kalita B, Lahkar J. Magnetic field effects on unsteady free convection MHD flow between two heated vertical plates

(one adiabatic). Advanced Studies in Theoretical Physics 2012; 6: 765–775.

[20] Cowling TG. Magnetohydrodynamics. New York, NY, USA: Interscience; 1957.

[21] Meyer RC. On reducing aerodynamic heat transfer rates by magnetohydrodynamic techniques. J Aerospace Sci

1958; 25: 561–566.

[22] Cogley AC, Vincentine WC, Gilles SE. A differential approximation for radiative transfer in a nongrey gas near

equilibrium. AIAA J 1968; 6: 551–555.

[23] Grief R, Habib IS, Lin JC. Laminar convection of a radiating gas in a vertical channel. J Fluid Mech 1970; 46:

513–520.

454

http://dx.doi.org/10.4236/ojfd.2012.21002
http://dx.doi.org/10.4236/ojfd.2012.21002
http://dx.doi.org/10.1016/0020-7225(86)90013-3
http://dx.doi.org/10.1016/0020-7225(86)90013-3
http://dx.doi.org/10.2514/8.7781
http://dx.doi.org/10.2514/8.7781
http://dx.doi.org/10.2514/3.4538
http://dx.doi.org/10.2514/3.4538
http://dx.doi.org/10.1017/S0022112071000673
http://dx.doi.org/10.1017/S0022112071000673

	Introduction
	Formulation of the problem and its solution
	Results and discussion
	Conclusion

