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Abstract: An analytical solution for a functionally graded two-layer beam subjected to transverse loading is handled

based on the theory of elasticity. The upper and lower layers are fully bonded to each other and simply supported at

the edges. Poisson’s ratios are taken as constant and Young’s moduli are assumed to vary exponentially through the

thickness of the layers. Numerical results for the normal stresses and shear stress are given as a solution and the effect

of grading on the stress distributions is investigated. In the functionally graded beam solution it is required that one

side of the beam is stiffer while the other side is softer when Young’s modulus is assumed to vary exponentially through

the thickness. The exponential variation of the elasticity modulus may be symmetrical about the mid-plane when the

beam is designated as layered.
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1. Introduction

Functionally graded materials (FGMs) are inhomogeneous composites whose material properties vary gradually

in one or more directions. Due to their application to a great variety of structures in modern industries such

as aerospace, automobile, biomedical, and nuclear energy, FGMs have been widely studied during the past two

decades.

As the application of FGMs has increased, new methodologies have been developed to analyze the

mechanical behavior of structural elements made of these materials. Bakirtas [1] investigated the contact

problem of rigid punch on a nonhomogeneous elastic half space where the elasticity modulus was assumed to

vary exponentially with depth. Delale and Erdogan [2] studied the crack problem for a nonhomogeneous plane

with an exponentially varying shear modulus in the crack surface direction. Sankar [3] developed an elasticity

solution and Zhu and Sankar [4] developed a combined Fourier series–Galerkin method for a functionally graded

(FG) beam subjected to sinusoidal transverse loading. Zhong and Yu [5] developed a plane elasticity solution

for a cantilever FG beam by means of the semiinverse method. Ding et al. [6] considered the plane stress

problem of anisotropic FG beams with various end conditions and static loadings. Two dimensional elasticity

solutions for the bending and free vibration of FG beams on a Winkler–Pasternak foundation were considered

by Ying et al. [7]. Lü et al. [8] presented the semianalytical solutions of FG beams, with an exponentially

varying elasticity modulus in two directions, using the state space-based differential quadrature method. Free

vibration analyses of FG beams were given by Aydogdu and Taskin [9],Yang and Chen [10], and Sina et al. [11],
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and nonlinear vibration analyses of FGMs were given by Şimşek [12], Ke et al. [13], and Shooshtari and Rafiee

[14]. Dag et al. [15] developed analytical and computational methods for the sliding contact problem between

rigid punches and a FG half plane assuming that the shear modulus of the half-plane varies exponentially along

the lateral direction.

Wang and Liu [16] investigated the bending problem of a bimaterial beam with a graded intermediate

layer under various end conditions. Kapuria et al. [17] studied the static and free vibration response of layered

FGM beams experimentally and theoretically. Morozov and Tovstik [18] considered the bending problem of

two-layer beam strips with nonrigid contact between them.

In this study, an analytical solution for a FG two-layer beam subjected to transverse loading is handled

based on the theory of elasticity. The upper and lower layers are fully bonded to each other and simply supported

at the edges. Poisson’s ratios are taken as constant and Young’s moduli are assumed to vary exponentially

through the thickness of the layers. Numerical results for the normal stresses and shear stress are given as

a solution and the effect of grading on the stress distributions is investigated. In the FG beam solution it is

required that one side of the beam is stiffer while the other side is softer when Young’s modulus is assumed to

vary exponentially through the thickness. This restriction is removed by designing the beam to be layered.

2. Elasticity analysis for graded two-layer beam

Figure 1 shows a layered FG beam of thickness h and length L . The beam is assumed to be in a state of plane

strain normal on the xy plane, and the width in the z -direction is taken as unity. While the bottom surface of

the beam is free of tractions, the upper surface of the beam is subjected to symmetric normal tractions:

py(x) = p cosβx, (1)

where

β =
π

L
. (2)

It is assumed that Poisson’s ratios are taken as constant and Young’s moduli are assumed to vary exponentially

through the thickness of the layers as follows:

Ei(y) = E0i e
γi y, (3)

where E0i denotes the elasticity modulus at the interface of the layers. The subscript i(i = 1, 2) denotes the

upper layer and lower layer respectively, and γi are the constants characterizing the gradual variation of the

material properties of the layers along the thickness direction. Figure 2 shows the variation of Young’s moduli in

the thickness direction of the layered FG beam. As can be seen in the figure, many options can be obtained for

the exponential variation of Young’s moduli when the beam is designated as layered: for example, softer-softer,

stiffer-stiffer, and softer-stiffer top and bottom faces.

The differential equations of equilibrium are:

∂σxi
∂x

+
∂τxyi
∂y

= 0,

∂τxyi
∂x

+
∂σyi
∂y

= 0. (4)
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ÇÖMEZ/Turkish J Eng Env Sci

h

y

p  (x)y 

L/2

1

2 h
1

2

L/2

Figure 1. Geometry of a layered FG beam subjected to

symmetric transverse loading.

Figure 2. Variation of Young’s moduli in the thickness

direction, (h1 = h2, E01 = E02 = E0) .

Assuming that the FGM is isotropic at every point, Hook’s law can be written as

σxi = (λi + 2µi)
∂ui
∂x

+ λi
∂vi
∂y

,

σyi = λi
∂ui
∂x

+ (λi + 2µi)
∂vi
∂y

,

τxyi = µi(
∂ui
∂y

+
∂vi
∂x

), (5)

where ui ,vi (i = 1, 2) are the x- and y -components of the displacement vector and λi and µi are the Lamé

constants.

λi(x) =
νiEi(y)

(1 + νi)(1− 2νi)

µi(x) =
Ei(y)

2(1 + νi)
(6)

Substituting Eq. (5) into Eq. (4), the following equations in ui(x, y)and vi(x, y)are obtained.

∂

∂x

(
(λi + 2µi)

∂ui
∂x

+ λi
∂vi
∂y

)
+

∂

∂y

(
µi(

∂ui
∂y

+
∂vi
∂x

)

)
= 0

∂

∂x

(
µi(

∂ui
∂y

+
∂vi
∂x

)

)
+

∂

∂y

(
λi
∂ui
∂x

+ (λi + 2µi)
∂vi
∂y

)
= 0 (7)

The solutions are assumed in a form such that satisfies the boundary conditions on the left and right end faces

of the simple supported beam [3].

ui(x, y) = φi(y) sinβx
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vi(x, y) = ψi(y) cosβx (8)

Substituting Eq. (8) into Eq. (7) and applying Eqs. (3) and (6), the following ordinary differential equations

are obtained.

(1− 2νi)
d2φi

dy2
+ γi(1− 2νi)

dφi

dy
− 2β2(1− νi)φi − β

dψi

dy
− βγi(1− 2νi)ψi = 0

β
dφi

dy
+ 2βγiνiφi + 2(1− νi)

d2ψi

dy2
+ 2γi(1− νi)

dψi

dy
− β2(1− 2νi)ψi = 0 (9)

The solution of Eq. (9) can be obtained as:

φi(y) =
4∑

j=1

Aije
sij y,

ψi(y) =

4∑
j=1

Aijmije
sij y, (10)

where sij(i = 1, 2 ; j = 1, ..., 4) satisfies the following characteristic equation.

s4i + 2γi s
3
i + (γ2i − 2β2)s2i − 2β2γi si + β2(β2 + γ2i

νi
1− νi

) = 0 (11)

The roots of the characteristic equation are given by

si1 =
1

2

(
−γi −

√
4β2 + γ2i + 4iβ |γi|

√
νi

1− νi

)
,

si2 =
1

2

(
−γi −

√
4β2 + γ2i − 4iβ |γi|

√
νi

1− νi

)
,

si3 =
1

2

(
−γi +

√
4β2 + γ2i + 4iβ |γi|

√
νi

1− νi

)
,

si4 =
1

2

(
−γi +

√
4β2 + γ2i − 4iβ |γi|

√
νi

1− νi

)
, (12)

and

mij =
(sij + 2γiνi)

(
2s2ij(1− νi) + 2sij γi(1− νi)− β2(3− 2νi)

)
β (β2 − 4γ2i (−1 + νi)νi)

. (13)

Substituting Eqs. (8) and (10) into Eq. (5), the stress components for the beam can be written as follows:

σxi(x, y) =
Ei(y)

(1 + νi)(1− 2νi)

4∑
j=1

Aij [β(1− νi) + νimijsij ] e
sijy cos βx,
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σyi(x, y) =
Ei(y)

(1 + νi)(1− 2νi)

4∑
j=1

Aij [βνi + (1− νi)mijsij ] e
sijy cosβx,

τxyi(x, y) =
Ei(y)

2(1 + νi)

4∑
j=1

Aij [sij − βmij ] e
sijy sinβx, (14)

whereAij(i = 1, 2 ; j = 1, ..., 4) are the unknown constants that will be determined from the boundary conditions

on the top and bottom surfaces of the beam and the interface continuity conditions.

The boundary and interface continuity conditions for the beam can be defined as follows.

σy1(x, h1) = −p cosβx

τxy1(x, h1) = 0

σy1(x, 0) = σy2(x, 0)

τxy1(x, 0) = τxy2(x, 0)

u1(x, 0) = u2(x, 0)

v1(x, 0) = v2(x, 0)

σy2(x,−h2) = 0

τxy2(x,−h2) = 0 (15)

Using the boundary and interface continuity conditions given by Eq. (15), eight equations to find Aij can be

obtained.

E01e
γ1h1

(1 + ν1)(1− 2ν1)

4∑
j=1

A1j [βν1 + (1− ν1)m1js1j ] e
s1jh1 = −p

4∑
j=1

A1j [s1j − βm1j ] e
s1jh1 = 0

4∑
j=1

{
[βν1 + (1− ν1)m1js1j ] A1j −

E02(1 + ν1)(1− 2ν1)

E01(1 + ν2)(1− 2ν2)
[βν2 + (1− ν2)m2js2j ]A2j

}
= 0

4∑
j=1

{
[s1j − βm1j ]A1j − E02(1 + ν1)

E01(1 + ν2)
[s2j − βm2j ]A2j

}
= 0

4∑
j=1

(A1j −A2j) = 0

4∑
j=1

(A1jm1j −A2jm2j) = 0

4∑
j=1

A2j [βν2 + (1− ν2)m2js2j ] e
−s2jh2 = 0
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4∑
j=1

A2j [s2j − βm2j ] e
−s2jh2 = 0 (16)

After determining Aij(i = 1, 2 ; j = 1, ..., 4) from Eq. (16), the stresses and the displacements at any point in

the layered beam can be evaluated.

3. Results and discussion

The effect of vertical grading on the normal stresses and shear stress is given in the figures. In the numerical

solutions Poisson’s ratio was taken as 0.25 (νi = 0.25). In the figures, Eh1 and Eh2denote the elasticity moduli

on the top and bottom surfaces of the layered beam, respectively.

Figure 3 shows the axial stress σx(0, y) distribution along the symmetry plane (x = 0) of the layered

beam for various values of the inhomogeneity parameter (γi) in the thickness direction or Ehi/E0 in the case

of γ1h1 = γ2h2 . The axial stress is compressive in the upper portion (near the loaded surface) and tensile in

the lower portion (near the free surface) of the layered beam. The compressive stress increases on the loaded

surface but the tensile stress decreases on the free surface when the loaded surface is stiffer than the free surface
(Eh1 = 10E0 = 100Eh2). In contrast, the compressive stress decreases but the tensile stress increases when

the loaded surface is softer. In the case of a homogeneous layered beam γihi = 0 (Ehi = E0), the axial stress

distribution becomes linear.

Figure 3. Axial stress σx(0, y) distribution along the

thickness of the layered beam for various values of Ehi/E0 :

variation of Young’s modulus is not symmetrical about the

mid-plane, (h1 = h2, h/L = 1/π, E01 = E02 = E0) .

Figure 4. Transverse shear stress τxy(L/2, y) distribution

along the right face of the layered beam for various values

of Ehi/E0 : variation of Young’s modulus is not symmet-

rical about the mid-plane, (h1 = h2, h/L = 1/π, E01 =

E02 = E0) .

Figure 4 shows the shear stress τxy(L/2, y) distribution along the right face of the layered beam for
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various values of Ehi/E0 in the case of γ1h1 = γ2h2 . For the homogeneous layered beam the shear stress

distribution resembles the typical parabolic profile as in beam theory and the maximum value occurs at the

middle point of the face (y = 0). For an FG layered beam the maximum value of the shear stress moves to

the softer layer. The shear stress is zero at the top and bottom point of the face, which is consistent with the

boundary conditions.

When the inhomogeneity parameter of the lower layer is γ2h2 = −γ1h1 , variation of Young’s modulus of

the layered beam becomes symmetrical about the mid-plane. That variation keeps the peak values of compressive

stresses and tensile stresses equal in the layered beam (Figure 5). The maximum absolute value of σx(0, y)

decreases when the upper and lower surfaces of layered beams are softer than the mid-plane, and the point

where the maximum stress occurs is close to the mid-plane (Eh1 = Eh2 = 0.1E0).

As well as the homogeneous case, the shear stress τxy(L/2, y) distribution is symmetrical about the

mid-plane when Young’s modulus of the layered beam is symmetrical (γ2h2 = −γ1h1) in the FG case (Figure

6). The shear stress increases with the decreasing Ehi /E0 , andthe maximum value of the shear stress occurs

at y = 0 in both cases.

Figure 5. Axial stress σx(0, y) distribution along the

thickness of the layered beam for various values of Ehi/E0 :

variation of Young’s modulus is symmetrical about the

mid-plane, (h1 = h2, h/L = 1/π, E01 = E02 = E0) .

Figure 6. Transverse shear stress τxy(L/2, y) distribution

along the right face of the layered beam for various values

of Ehi/E0 : variation of Young’s modulus is symmetrical

about the mid-plane. (h1 = h2, h/L = 1/π, E01 = E02 =

E0) .

Figures 7 and 8 show the axial stress σx(0, y) and the shear stress τxy(L/2, y) distributions along the

thickness of the layered beam for various values of E02/E01 with the homogeneous lower layer, respectively. In

the case of a stiffer lower layer (E02 = 10E01) the axial stress σx(0, y) and the shear stress τxy(L/2, y) decrease

in the upper layer but increase in the stiffer lower layer. It may be observed in Figure 7 that the axial stress

σx(0, y)that occurred in the layers takes the same value in the interface for E02 = E01 .

Figures 9 and 10 show the axial stress σx(0, y) and the shear stress τxy(L/2, y) distributions along the
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thickness of the layered beam for various values of h/L , respectively.Small values of h/L correspond to long,

thin beams while larger values of h/L correspond to short, thick beams. When decreasing the value ofh/L

both the axial stress σx(0, y) and the shear stress τxy(L/2, y) increase, as expected from beam theory.

Figure 7. Axial stress σx(0, y) distribution along

the thickness of the layered beam for various values of

E02/E01 , in the case of homogeneous lower layer. (h1 =

h2, h/L = 1/π, Eh1 = 0.1E01, Eh2 = E02) .

Figure 8. Transverse shear stress τxy(L/2, y) distribution

along the right face of the layered beam for various values

ofE02/E01 in the case of homogeneous lower layer, (h1 =

h2, h/L = 1/π, Eh1 = 0.1E01, Eh2 = E02) .

Figure 9. Axial stress σx(0, y) distribution along the

thickness of the layered beam for various values of h/L ,

(h1 = h2, Eh1 = Eh2 = 0.1E0) .

Figure 10. Transverse shear stress τxy(L/2, y) distribu-

tion along the right face of the layered beam for various

values of h/L . (h1 = h2, Eh1 = Eh2 = 0.1E0) .
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4. Conclusions

An exact solution is obtained for the FG two-layer beam subjected to cosinusoidal transverse loading, based

on the theory of elasticity. The exponential variation of the elasticity modulus may be symmetrical about the

mid-plane when the beam is designated as layered.

In the case of a simple beam when the stiffer side is loaded vertically, grading has a stress-reducing effect

on the unloaded softer side but the stress on the loaded stiffer side increases, and the reverse is true when the

softer side is loaded.

The symmetrical variation of the elasticity modulus about the mid-plane keeps the peak values of

compressive stresses and tensile stresses equal in the layered beam. The maximum absolute value of σx(0, y)

decreases but the shear stress τxy(L/2, y) increases when the top and bottom surfaces of layered beams are

softer than the mid-plane.
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[8] Lü CF, Chen WQ, Xu RQ, Lim CW. Semi-analytical elasticity solutions for bi-directional functionally graded

beams. Int J Solids Struct 2008; 45: 258–275.

[9] Aydogdu M, Taskin V. Free vibration analysis of functionally graded beams with simply supported edges. Mater

Des 2007; 28: 1651–1656.

[10] Yang J, Chen Y. Free vibration and buckling analysis of functionally graded beams with edge cracks. Compos Struct

2008; 83: 48–60.

[11] Sina SA, Navazi HM, Haddadpour H. An analytical method for free vibration analysis of functionally graded beams.

Mater Des 2009; 30: 741–747.

[12] Simsek M. Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving

harmonic load. Compos Struct 2010; 92: 2532–2546.

[13] Ke LL, Yang J, Kitipornchai S. An analytical study on the nonlinear vibration of functionally graded beams.

Meccanica 2010; 45: 743–752.

[14] Shooshtari A, Rafiee M. Nonlinear forced vibration analysis of clamped functionally graded beams. Acta Mechan-

ica 2011; 221: 23–38.

[15] Dag S, Guler MA, Yildirim B, Ozatag AC. Sliding frictional contact between a rigid punch and a laterally graded

elastic medium. Int J Solids Struct 2009; 46: 4038–4053.

[16] Wang MQ, Liu YH. Analytical solution for bi-material beam with graded intermediate layer. Compos Struct 2010;

92: 2358–2368.

[17] Kapuria S, Bhattacharyya M, Kumar AN. Bending and free vibration response of layered functionally graded beams:

a theoretical model and its experimental validation. Compos Struct 2008; 82: 390–402.

[18] Morozov NF, Tovstik PY. Bending of a two-layer beam with non-rigid contact between the layers. J Appl Math

Mec 2011; 75: 77–84.

381

http://dx.doi.org/10.1016/0020-7225(80)90132-9
http://dx.doi.org/10.1115/1.3167098
http://dx.doi.org/10.1115/1.3167098
http://dx.doi.org/10.1016/S0266-3538(01)00007-0
http://dx.doi.org/10.1115/1.1751184
http://dx.doi.org/10.1115/1.1751184
http://dx.doi.org/10.1016/j.compscitech.2006.08.023
http://dx.doi.org/10.1016/j.ijsolstr.2006.04.026
http://dx.doi.org/10.1016/j.ijsolstr.2006.04.026
http://dx.doi.org/10.1016/j.compstruct.2007.07.004
http://dx.doi.org/10.1016/j.compstruct.2007.07.004
http://dx.doi.org/10.1016/j.ijsolstr.2007.07.018
http://dx.doi.org/10.1016/j.ijsolstr.2007.07.018
http://dx.doi.org/10.1016/j.matdes.2006.02.007
http://dx.doi.org/10.1016/j.matdes.2006.02.007
http://dx.doi.org/10.1016/j.compstruct.2007.03.006
http://dx.doi.org/10.1016/j.compstruct.2007.03.006
http://dx.doi.org/10.1016/j.matdes.2008.05.015
http://dx.doi.org/10.1016/j.matdes.2008.05.015
http://dx.doi.org/10.1016/j.compstruct.2010.02.008
http://dx.doi.org/10.1016/j.compstruct.2010.02.008
http://dx.doi.org/10.1007/s11012-009-9276-1
http://dx.doi.org/10.1007/s11012-009-9276-1
http://dx.doi.org/10.1007/s00707-011-0491-1
http://dx.doi.org/10.1007/s00707-011-0491-1
http://dx.doi.org/10.1016/j.ijsolstr.2009.07.023
http://dx.doi.org/10.1016/j.ijsolstr.2009.07.023
http://dx.doi.org/10.1016/j.compstruct.2010.03.013
http://dx.doi.org/10.1016/j.compstruct.2010.03.013
http://dx.doi.org/10.1016/j.compstruct.2007.01.019
http://dx.doi.org/10.1016/j.compstruct.2007.01.019
http://dx.doi.org/10.1016/j.jappmathmech.2011.04.012
http://dx.doi.org/10.1016/j.jappmathmech.2011.04.012

	Introduction
	Elasticity analysis for graded two-layer beam 
	Results and discussion 
	Conclusions

