6. Complete the identities :-

(i) $(\mathbf{a}-2 \mathrm{~b})^{2}=$;	(ii) $\left(\frac{a}{2}-\mathrm{b}\right)^{2}=$
(iii) $\left(\mathbf{p}^{2}-\mathrm{q}^{2}\right)^{2}=$	(iv) $\left(\mathrm{I}-\mathrm{p}^{2}\right)^{2}=$
(v) $\left(\mathrm{r}-2 \mathrm{p}^{2}\right)^{2}=$;	(vi) $(\mathrm{I}-\mathrm{ct})^{2}=$
(vii) $\mathbf{A}(\mathrm{r}-\mathrm{ct})^{\mathbf{2}}=$	(viii) $\{\mathrm{r}(\mathrm{I}-\mathrm{ct})\}^{2}=$
(ix) $\left\{\mathrm{a}\left(\mathrm{s}-\mathrm{bt} \mathrm{t}^{2}\right)\right\}^{2}=$;	(x) $\left(r^{2}-\frac{1}{2} \mathrm{ab}\right)^{2}=$

7. The outer radius of a thin metal organ pipe is r inches, the thickness t inches; write a formula for calculating approximately the volume (V) of the metal employed, considering the pipe as a cylinder of length l feet. Write also a formula for the cost (C) in shillings of the material employed, if 1 lb . contains v c. inches and costs c pence.
8. A sheet of metal of area A is cooled t°, the coefficient of expansion being c. Give an approximation-formula (i) for its area after cooling; (ii) for d, the decrease in its area. (Compare Ex. IX, No. 22.)
9. Write a formula for the area of the total surface of a closed metal cone, the radius being r and the slant height l. Find approximately how much it decreases when the cone is cooled t°, the coefficient of expansion being c.
10. Show by the figure of No. 1 that $\sqrt{a^{2}-p}=a-\frac{p}{2 a}$ approximately. (Compare Ex. IX, No. 24.)
11. Write down approximate equivalents to the following expressions :-

$$
\begin{array}{ll}
\text { (i) } \sqrt{9 a^{2}-\mathrm{b}} ; & \text { (ii) } 4 \cdot 3 \sqrt{ }\left(\mathrm{p}^{2}-\frac{q}{3}\right) \text {; } \\
\text { (iii) } \sqrt{\left(\mathrm{r} 6-2 \cdot \mathrm{rt}^{2}\right)} \text {; } & \text { (iv) } \sqrt{\mathrm{a}^{2}-\mathrm{b}^{2}} \text {; }
\end{array}
$$

(v) $\sqrt{ }(a-4 \sqrt{\bar{b}})$.
12. The bob of a pendulum of length a is pulled out a small distance b from the vertical. Write a formula for calculating approximately how much the bob rises.

Apply your formula to the case of a pendulum 2 feet long pulled 4 inches out of the vertical.

