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Abstract

In recent years, great interest has been shown in porous media. The applications of porous media in
geophysics, petroleum processes, and air conditioning are well established. Many studies of porous media
have been carried out, mostly dealing with constant porosity. In this study, the variable porosity effects are
investigated for a vertical plate in a variable porous medium. The governing partial nonlinear differential
equations were transformed into a set of coupled ordinary differential equations, which was solved using the
fourth-order Runge-Kutta method. The results obtained for the different power law index n, and variable
porosity of the bed, were found to be in good agreement with previous studies. Results show that when
porosity increases temperature variation becomes steeper, and the Nusselt number increases almost linearly
with increasing porosity.
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Gözenekli Ortama Düşey Olarak Yerleştirilmiş Düz Plaka Üzerindeki Newton
Olmayan Akışkanın Doğal Konveksiyonuna Gözenek Yoğunluğunun Etkisi

Özet

Son senelerde gözenekli ortam ile ilgili çalışmalar ilgi çekmektedir. Jeofizik, petrol endüstrisi ve ik-
limlendirme ile ilgili konularda uygulama alanı bulmuştur. Gözenekli ortam üzerine yapılan çalışmaların
çoğunluğu sabit gözenek yoğunluğu üzerinedir. Bu çalışmada düşey plaka üzerindeki doğal konveksiyon akışa
değişken gözenek yoğunluğunun etkisi incelenmiştir. Kısmi, linear olmayan, ilgili diferansiyel denklemler
normal diferansiyel denklemlere dönüştürülerek dördüncü dereceden Runge-Kutta yöntemi ile çözülmüştür.
Newton olmayan akışkanların çeşitli “n” değerleri ve değişken gözenek yoğunluğu “e” için elde edilen sonuçlar
daha önceki çalışmalarla karşılaştırılmış ve uyumlu olduğu görülmüştür. Gözenek yoğunluğu arttıkça sıcaklık
değişim eğrisi dikleşmekte ve Nusselt sayısı artmaktadır.

Anahtar Sözcükler: Newtonien olmayan akış, doğal konveksiyon, gözenekli ortam.
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Nomenclature

a, b, c
:

constants

D : packing diameter
e : porosity of bed
f : dimensionless stream function
g : gravitational acceleration
h : local-heat-transfer coefficient
k : new bed permeability
K : new power-law constant
Kl : power-law constant
km : thermal conductivity of the

fluid-saturated porous medium
l : length of the plate
n : power-law index
p : pressure
Ra : Rayleigh number
T : temperature
q : heat flux
u : velocity in x-direction
v : velocity in y-direction
x : transverse coordinate
y : longitudinal coordinate

Greek Symbols

α : equivalent thermal diffusivity
β : coefficient of thermal expansion
η : dimensionless similarity variable
θ : dimensionless temperature
ρ : density
ψ : stream function

Subscripts

o : initial
w : wall
∞ : infinity

Superscripts

* : dimensionless property
‘ : derivative with respect to η

Introduction

There has been an increase in interest in the effect
of porous media, because of their extensive practi-
cal applications in geophysics, thermal insulation in
buildings, petroleum resources, packed-bed reactors
and sensible heat-storage beds. Many studies re-
lated to non-Newtonian fluids saturated in a porous
medium have been carried out. Dharmadhikari
(1985) studied experimentally the effect of non-
Newtonian fluids in a porous medium. Chen & Chen
(1988) investigated the free convection flow along a
vertical plate embedded in a porous medium. Rees
(1996) analyzed the effect of inertia on free convec-
tion over a horizontal surface embedded in a porous
medium. Nakayama (1991), investigated the ef-
fect of buoyancy-induced flow over a non-isothermal
body of arbitrary shape in a fluid-saturated porous
medium. A ray-tracing method for evaluating the
radiative heat transfer in a porous medium was ex-
amined by Argento (1996). All of these studies were
dealing with uniform averaged porosity. However,
variation in the porous medium is a fact in most ac-
tual cases. A better description of the temperature

distribution and velocity field could be produced, if
variation in porosity were taken into consideration.
Vafai et.al. (1985), carried out an experimental in-
vestigation into variable porosity, finding that the
Nusselt number depends on the Reynolds number
and the free-stream porosity. In the study presented
below, the effect of variable porosity on the free con-
vection flow, along a vertical plate embedded in a
porous medium is investigated numerically. A con-
figuration of the porosity variation for both increas-
ing and decreasing porosity is assumed. A similarity
solution is sought for the governing equations. Then
the effect of variable porosity on the temperature
distribution and Nusselt number in both cases (in-
creasing and decreasing porosity) is stated.

Governing Equations

The problem, illustrated in Figure 1, represents a
non-Newtonian power-law fluid flow along a constant
temperature vertical plate embedded in a porous
medium. The governing equations for this study can
be written as follows (Chen 1988):
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Figure 1. Physical model and its coordinate system.

∂u

∂x
+
∂v

∂y
= 0 (1)

un = −k(n)
K

[
∂p

∂x
+ ρg

]
(2)

u
∂T

∂x
+ v

∂T

∂y
= α

[
∂2T

∂x2
+
∂2T

∂y2

]
(3)

ρ = ρ∞[1− β(T − T∞)] (4)

the boundary conditions for these equations are:

v = 0, T = Tw at y = 0 (5)

u = 0, T = T∞ at y →∞ (6)

where K, n, and k(n) are the power-law constant,
power-law index, and the permeability of the porous
medium, respectively. These are:

K =
5n1

2 + 3n1

(
150
32

)n2

K1 (7)

n = n1 + 0.3(1− n1) (8)

n2 =
(

3n1

2 + n1

)
(9)

k(n) =
2
e

[
De2

8(1− e)

]n−1

. (10)

Outside the boundary layer, the flow of the power-
law fluid remains stagnant. Thus

−
(
dp

dx

)
= ρ∞g. (11)

To simplify the proceeding equations, the following
dimensionless terms are introduced:

x∗ =
x

`
, y∗ =

y

`
(12)

v∗ =
v[

ρ∞βgk(n) (Tw−T∞)
K

] 1
n

,

u∗ =
u[

ρ∞βgk(n) (Tw−T∞)
K

] 1
n

(13)

Ra = ρ∞βgk(n)
(Tw − T∞)

K
ln/(Kαn),

Ra∗ =
[
ρ∞βgk(n)

(Tw − T∞)
K

ln/(Kαn)
] 1
n

(14)

θ =
(T − T∞)
Tw − T∞)

. (15)

Applying Eq. (11) to Eq. (2) and using the dimen-
sionless terms, Eqs. (1-3) can be written as,

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0 (16)

(u∗)n =
(
k(n)
k0

)
θ (17)

u∗
∂θ

∂x∗
+ v∗

∂θ

∂y∗
=

1
Ra∗

∂2θ

∂y∗2
. (18)

To transform the above nonlinear partial differential
equations into a set of ordinary differential equations
the following dimensionless variables are defined:

ξ(x∗) =
(
x∗

Ra∗

) 1
2

(19)
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η =
(

y∗

ξ(x∗)

)
= y∗

(
Ra∗

x∗

) 1
2

(20)

ψ = U(x∗)ξ(x∗)f(η) =
(
x∗

Ra∗

) 1
2

f(η) (21)

by using the newly defined terms, the velocity com-
ponents become

u∗ =
∂ψ

∂y∗
= f ′(η) (22)

v∗ = − ∂ψ

∂x∗
=

1
2

(f ′η − f)/(Ra∗x∗)
1
2 (23)

whereas Eqs. (17-18) and their boundary conditions
become

θ =
(

k0

k(n)

)
f ′n (24)

θ′′ +
1
2
θ′f = 0 (25)

θ = 1, f = 0 at η = 0 (26)

θ = 0, f ′ = 0 at η →∞ (27)

from Eq. (10),

k(n) =
2
e

[
De2

8(1− e)

]n−1

(28)

and

e = a[1− b(1− e−cη)] (29)

where a, b and c are constants.

k0 =
2
e0

[
De2

0

8(1− e0)

]n−1

. (30)

If e is constant then k(n) = k0 = constant and the
original equations for constant porosity are obtained.
The variation of the porosity is shown in four differ-
ent cases in Figure 2.

The local heat flux at the wall is

qw = −km
(
∂T

∂y

)
y=0

(31)

= −km(Tw − T∞)θ′(0)
1
l

(
Ra∗

x∗

) 1
2

(32)

where the local Nusselt number is

Nux =
hx

km
=

qwx

km(Tw − T∞)
. (33)

Substituting Eq. (33) into (32) gives

Nux(
Ra∗

x∗

) 1
2

= −θ′(0). (34)

Solution Procedure

Eqs. (1-3) and their boundary conditions have
been non-dimensionalized, then solved using the sim-
ilarity method. The resulting equations, namely
(24-25) with the boundary conditions (26-27) are
solved numerically using the fourth-order Runge-
Kutta method, with step size ∆η = 0.1 and η∞ = 9.

Table 1. Dimensionless temperature distribution and dimensionless velocity distribution when n = 1.

Successive Chen & Chen present
approximation study study

η f ′ = θ1\n = u∗ f ′ = θ1\n = u∗ f ′ = θ1/n = u∗

0.000 1.00000 1.00000 1.00000
1.000 0.58715 0.58722 0.58719
4.000 0.06624 0.06643 0.06631
7.000 0.00600 0.00624 0.00609

Results and Discussion

The results of Eqs. (24-27) using the Runge-Kutta
method are shown in Figures 3-10, for Newtonian
and non-Newtonian fluids in different variable poros-
ity media. These results have been compared to pre-
vious studies and have been found to be in good
agreement, as shown in Table 1. Figures 3-6 show
the dimensionless temperature versus the similarity

variable η for different porosity variations (e=0.3 to
0.1, 0.3 to 0.2, 0.3 to 0.4, and 0.3 to 0.5) and at the
same time with a different power-law index n (0.5,
1.0, and 2.5). It is clear that as the porosity increases
the temperature variation becomes steeper, which is
explained by the increase in the porous media, and
thus the increase in the heat transfer rate. Figures
7-9 show again the dimensionless temperature versus
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the similarity variable η, but for a variable power-law
index n (0.5, 1.0, 2.5), each showing the four different
porosity variations for the same power-law index. It
is interesting to note that the lines of the dimension-
less temperature approach each other as the porosity
increases. This gives the impression that there is an
optimum porosity for each power-law index. Fig-

ure 10 represents the values of θ′ = (Nu/Ra∗x∗)1/2

versus power-law index, with different porosity vari-
ations. It may be stated clearly that as the porosity
increases the ratio (Nu/Ra∗x∗)1/2 increases. Fig-
ure 11 shows the variation of (Nu/Ra∗x∗)1/2 with
porosity. The ratio shows almost a linear increment
as the porosity increases.
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Figure 2. The variation of porosity, in four different

cases e=0.3 to 0.1, 0.3 to 0.2, 0.3 to 0.4, 0.3 to 0.5.

Figure 3. Temperature distribution along the plate in

terms of the similarity variable.

________

9876543210
η

_

_

_

_

1.0

0.8

0.6

0.4

0.2

0.0

θ

e = 0.3 – – 0.2
n = 0.5
n = 1.0
n = 2.5

________

9876543210
η

_

_

_

_

1.0

0.8

0.6

0.4

0.2

0.0

θ

e = 0.3 – – 0.4
n = 0.5
n = 1.0
n = 2.5

Figure 4. Temperature distribution along the plate in

terms of the similarity variable.

Figure 5. Temperature distribution along the plate in

terms of the similarity variable.
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Figure 6. Temperature distribution along the plate in

terms of the similarity variable.

Figure 7. Temperature distribution along the plate in

terms of the similarity variable.
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Figure 9. Temperature distribution along the plate in

terms of the similarity variable.
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Conclusions
In this study the effect of porosity on free convec-

tion flow along an isothermal vertical plate embed-
ded in a porous medium was investigated. The result
of this study was in good agreement with previous
studies of Newtonian fluid, i.e., n = 1. The results

show that as the porosity increases the temperature
variation becomes steeper, that is, the heat transfer
rate increases as expected, the Nusselt number in-
creases almost linearly with increasing porosity, and
increasing the porosity increases the Nusselt number,
especially with non-Newtonian fluids with n > 1.
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