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Dokuz Eylül University

Environmental Engineering Department
Tınaztepe Campus, Buca-İzmir-TURKEY
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Abstract

A variety of methods are being used to display the information which is concealed in the quality variables
observed in a water quality monitoring network. A large portion of these approaches are statistical methods.
When the number of variables is greater than two, employment of multivariate analysis techniques gives
simpler and more easily interpretable results for the evaluation of observed quality data. In this study, it was
attempted to determine factors that caused variations in water quality at the Ağaçköy Monitoring station
on the Porsuk Tributary in the Sakarya river-basin by principal components analysis.
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Esas Bileşenler Analizi Yardımıyla Su Kalitesinin Değerlendirilmesi

Özet

Su kalitesi gözlem istasyonlarında ölçülen kalite değerlerinin içerdiği bilgiyi ortaya çıkarmak için çeşitli
yöntemler kullanılmaktadır. Bu yöntemlerin çoğunluğu istatistiksel metodlara dayanmaktadır. Değişken
sayısının ikiden fazla olması durumunda, gözlenmiş mevcut verilerin değerlendirilmesi için çok değişkenli
analizlerin (multivariate analysis) kullanılması sayesinde daha basit ve kolay yorumlanabilir sonuçlar elde
edilebilmektedir. Bu çalışmada, Sakarya havzasında Porsuk kolu üzerinde kurulmuş bulunan Ağaçköy su
kalitesi gözlem istasyonunda gözlemlenen kalite değişimlerine neden olan faktörler esas bileşenler anal-
izi kullanılarak belirlenmeye çalışılmıştır. Başka bir ifadeyle gözlem istasyonu çevresinde su kalitesindeki
değişimlere neden olan etkenlerin tespit edilmesi amaçlanmıştır.

Anahtar Sözcükler: Anahtar kelimeler: Akarsu havzası, çok değişkenli analiz, esas bileşenler analizi, kalite
değişkenleri, su kalitesi.

Introduction

Multivariate analysis techniques are very useful
in the analysis of data corresponding to a large num-
ber of variables. Analysis via these techniques pro-
duces easily interpretable results. Multivariate data
consists of observations on several variables for a

number of samples (also called sample vectors, or
individuals). Data of this type arise in all branches
of science, ranging from physiology to biology, and
methods of analyzing multivariate data constitute an
increasingly important area of statistics.
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A wide variety of multivariate analysis techniques
is available. The choice of the most appropriate
technique depends on the nature of the data, prob-
lem, and objectives. The underlying theme of many
multivariate analysis techniques is simplification. In
other words, it is desired to summarize a large body
of data by means of relatively few parameters.

One fundamental distinction between the tech-
niques is that some analysis are primarily con-
cerned with relationships between variables, while
others are primarily concerned with relationships
between samples. Techniques of the former type
are called variable-directed, while the latter are
called individual-directed (sample-directed) multi-
variate analysis.

In the analysis of dependence between variables,
if the variables do not arise on an equal footing,
multivariate regression analysis is recommended. It
should be noted that the term ‘equal footing’ does
not imply that some variables are more important
than others, though they may be. Rather it indicates
that there are dependent and explanatory variables.
In multiple regression, the variation in one depen-
dent variable is explained by means of the variation
in several explanatory variables. In multivariate re-
gression, more than two dependent variables are in
question.

If the variables arise on an equal footing, as for
example when different dimensions of different mem-
bers of a particular species are measured and the
primary interest is in the variables, then analysis of
interdependence of variables is the subject of inter-
est. When there are only two variables, correlation
analysis provides the desired information to some ex-
tent. With more than two variables, principal com-
ponents analysis may be appropriate. This technique
aims to transform the observed variables to a new set
of variables which are uncorrelated and arranged in
decreasing order of importance. The principal aim
is to simplify the problem and to find new variables
(principal components) which make the data easier
to understand.

In this multivariate analysis study, principal com-
ponent analysis was employed to investigate the fac-
tors which caused variations in the observed qual-
ity data at the Ağaçköy water quality monitoring
station in the Sakarya river-basin. This study also
demonstrates the usefulness of the technique in the
analysis of water quality data. A literature review on
principal components analysis, a technique that was
formerly used in the field of hydrology, has shown

its appropriateness for water quality data, as con-
firmed by some recent case studies in the litera-
ture (Mahloch, 1974; Schetagne, 1985; Karpuzcu &
Şenes, 1987).

Principal components analysis requires the inter-
preter to be experienced in the field of inquiry. For
instance, a mathematician or statistician, applying
psychological data to principal components analy-
sis, can not interpret the components reliably. This
point, interpretation, constitutes the most problem-
atic aspect of principal components analysis.

In the realization of this study, software programs
commercially known as Minitab (1991) and Systat
(1990) were used. Minitab (1991) statistical software
was used in regression analysis for the substitution
of missing values and systat (1990) was principally
utilized for the derivation and subsequent rotation of
principal components.

2. Principal Components Analysis

2.1. Principal Components from Correlation
or Covariance Matrix

Correlation or covariance matrices may be used in
principal component analysis. The sums of squares
and sums of products of the normalized scores con-
stitute the correlation matrix, R (Hope, 1968). In
other words, if one is deriving the principal compo-
nents from correlation matrix R, this means that the
variables have been standardized to have unit vari-
ance. The mathematical derivation is the same in
the choice of any of these matrices. If the correla-
tion matrix is used, the components turn out to be
eigenvectors of R. However, it is important to note
that the eigenvalues and the eigenvectors of R will
generally not be the same as those of S (covariance
matrix). The use of the R matrix for analyzing in-
volves a decision that variables have been considered
equally important (Chatfield & Collins, 1980).

Principal components are generally changed by
scaling. In other words, principal components de-
pend upon the scales used to measure the variables.
If, for example, one variable has a greater variance
than all the others, then this variable will dominate
the first principal component of the covariance ma-
trix whatever the correlation structure, whereas if
the variables are all scaled to have unit variance,
then the first principal component will be quite dif-
ferent in kind (Chatfield & Collins, 1980). Karpuzcu
and Şene (1987) stated that most applications of this
analysis have involved a correlation matrix rather
than a covariance matrix. They stated that if the
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parameters (variables) are in widely different units
(mg/l., pH, ◦C, m3/min., etc.), then standard vari-
ates and correlation matrix should be used.

Considering the importance of the variables in
principal components analysis, Chatfield and Collins
(1980) stated that if the variables are not to be con-
sidered of equal importance, then the analysis of the
correlation matrix is not recommended.

2.2. The Identification of Important Compo-
nents

After computing the variances (eigenvalues, or latent
roots) and principal components (eigenvectors) of a
correlation (or covariance) matrix, the usual proce-
dure is to look at the first few components which,
hopefully, account for a large proportion of the total
variance.

Chatfield and Collins (1980) stated that when an-
alyzing a correlation matrix where the sum of the
eigenvalues is equal to the number of variables, many
social scientists use the rule that eigenvalues less
than 1 may be disregarded. This arbitrary policy is a
useful rule of thumb but has no theoretical justifica-
tion. It may be better to look at the pattern of eigen-
values and see if there is a natural breakpoint in the
eigenvalues. Chatfield and Collins (1980) claimed
that one serious drawback is that there is no objec-
tive way of deciding how many components to retain.

2.3. Rotation of Principal Components

In principal components analysis, the variables are
rotated to obtain new variables (principal compo-
nents or principal axes) and later the number of prin-
cipal components are reduced by eliminating some
relatively unimportant components. Sometimes the
first few principal components selected are rotated to
achieve a new set of components which can be more
easily interpreted. A variety of rotation techniques
(varimax, equamax, quartimax) may be used for this
purpose. Varimax rotation is the most widely used
rotation in principal component analysis. This ro-
tation, which includes an orthogonal rotation, is too
complicated a technique to explain in this study. The
original paper by the author illustrates the theory of
the technique (Kaisher, 1958).

When using rotation, the usual procedure is to
carry out a principal components analysis, first by
subjectively choosing the number of important prin-
cipal components, and then calculating linear combi-
nations of the selected eigenvectors in the subspace

of m dimensions so as to get a new set of compo-
nents (which will no longer be principal) satisfying
some desired property. The idea is that each vari-
able should be heavily loaded on as few components
as possible. One such technique for accomplishing
this transformation is a varimax rotation. This tech-
nique tends to eliminate medium-range correlations
between the components and the original variables,
thus simplifying the decision as to which of the origi-
nal variables to include in the components extracted
(Chatfield & Collins, 1980).

3. Revealing the Causes of the Variations in
Sakarya River-Basin water Quality by Princi-
pal Components Analysis

3.1. Selected Station

Water quality data observed at monthly intervals be-
tween the years 1979 and 1984 at Ağaçköy moni-
toring station, situated on Porsuk Tributary in the
Sakarya river-basin, were obtained from the records
of State Hydraulic Works (DSI, 1985; DSI, 1987) and
used in this study. The Sakarya river-basin is located
in north-western Anatolia, and has a surface area
of 58,000 km2. The main course of the river orig-
inates from the northern part of the city of Afyon
city and extends 824 km before discharging into the
Black Sea. The average flow of the river is about
200 m3/s, with a highly variable flow regime. A sig-
nificant tributary of Sakarya river is Porsuk, which
passes through the plains of Kütahya and the city
of Eskişehir. The length of Porsuk is 442 km up to
its confluence with the Sakarya river near the town
of Polatlı (Mazlum, 1992). The Ağaçköy monitor-
ing station is situated on the Porsuk tributary near
the city of Kütahya. This situation is subject to
pollution from industrial, agricultural and residen-
tial sources. Surface runoff and drainage waters also
cause nonpoint source pollution along the river.

3.2. Estimation of Missing Values

Water quality data used in this study was that ob-
tained at the Ağaçköy monitoring station between
1979 and 1984 in the Sakarya river-basin. There
were some missing values in the observed data. The
method proposed by Buck (1960) was used in this
study for the estimation of missing values. This
method is based on the use of the multilinear re-
gression equation, in which the dependent variable
is the variable with the missing value.
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Ağaçköy monitoring data were measured at
monthly intervals, constituting 72 samples (rows)
for six years. Out of 72 rows, 4 did not have any
observed values and therefore were completely elimi-
nated from the analysis. The remaining 68 rows were
evaluated, and there were determined to be (i) 55
complete samples, (ii) 6 samples missing variables for
SS (Suspended Solids) (iii) 3 samples missing vari-
ables for DO (Dissolved Oxygen) (iv) 1 sample miss-
ing a variable for BOD5 (v) and 3 samples missing
variables for SS (Suspended Solids) and NO3-N.

3.3. Principal Component Analysis of Water
Quality Data

Among the observed variables at Ağaçköy monitor-
ing station, Q, T, pH, EC, SS, MAl, Cl, NH3-N,
NO3-N, DO, Pv, and BOD5 were selected for the
analysis due to their continuity of measurement in
time scale. These symbols signify flowrate, temper-
ature, negative logarithms of hydrogen-ion concen-
tration in water, electrical conductivity, suspended
solids, methyl-orange alkalinity, chloride, ammonia-
nitrogen, nitrate-nitrogen, dissolved oxygen, per-
manganate value, and biochemical oxygen demand,
respectively.

In the application of principal components anal-

ysis to water quality data from the Ağaçköy mon-
itoring station a correlation matrix was used. The
reason was that variables were different in scale (as
suggested by Karpuzcu and Şeneş, 1987) and equal
in importance (as suggested by Chatfield & Collins,
1980).

The results of principal components analysis of
the data are presented in Table 1a, and the 12 subse-
quently derived components were rotated according
to varimax rotation in order to make interpretation
easier (Table 1b). Table 1b yields 12 factors which
may be interpreted as having vital importance to the
water quality status of the river-basin.

As Chatfield and Collins (1980) stated, compo-
nents with an eigenvalue of less than 1 should be
eliminated so that fewer components are dealt with.
The first four components were extracted (Table 2a)
and the other components have been eliminated.
When the percentages of the total variances of the
4 extracted components are accumulated, it can be
seen that these first four principal components ac-
count for 72% of the total variance of the original
data. This means that majority of the variance of
the original data has been accounted for by these
extracted components. These components were later
rotated (Table 2b).

Table 1a. Principal components from correlation matrix

Latent Roots (Eigenvalues or Variances) Explained by Principal Components
1 2 3 4 5 6 7 8 9 10 11 12

3.481 2.456 1.549 1.162 0.989 0.677 0.511 0.412 0.271 0.258 0.135 0.099
Percent of Total Variance Explained

1 2 3 4 5 6 7 8 9 10 11 12
29.007 20.467 12.905 9.683 8.246 5.645 4.260 3.432 2.261 2.146 1.122 0.827

Component Loadings
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12

Q 0.813 0.337 -0.262 -0.017 0.007 0.203 0.036 0.049 0.077 0.241 -0.168 -0.138
T -0.734 0.539 -0.238 0.075 -0.035 0.018 0.084 0.182 0.023 -0.037 0.170 -0.191
pH -0.088 0.061 -0.246 0.472 0.829 0.032 -0.041 -0.035 0.113 0.006 0.013 0.038
EC -0.821 0.312 -0.067 0.079 -0.024 -0.203 -0.028 0.206 -0.160 0.304 -0.065 0.103
SS 0.644 0.575 -0.264 -0.003 -0.172 0.149 0.251 0.066 0.110 0.052 0.158 0.162
MA1 -0.463 -0.380 0.357 0.083 0.015 0.682 0.085 0.179 -0.025 0.016 -0.015 0.026
C1 -0.183 0.372 0.646 -0.349 0.301 -0.028 0.323 -0.274 -0.029 0.124 0.032 -0.032
NH3-N 0.097 0.565 0.641 -0.037 -0.027 0.007 -0.450 0.095 0.213 0.032 0.035 0.015
NO3-N 0.029 -0.378 -0.163 -0.775 0.333 -0.096 0.026 0.307 0.114 -0.015 0.003 0.014
DO 0.659 -0.623 0.113 0.067 0.095 -0.017 -0.161 0.023 -0.174 0.220 0.208 -0.048
Pv 0.524 0.675 0.061 -0.120 0.244 0.096 -0.091 0.131 -0.349 -0.184 -0.030 0.009
BOD5 0.467 -0.176 0.539 0.421 -0.007 -0.295 0.298 0.316 0.041 -0.060 -0.041 -0.026
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Table 1b. Varimax rotated components
Variance Explained by Rotated Components

1 2 3 4 5 6 7 8 9 10 11 12
2.470 2.044 1.043 1.014 1.022 1.015 1.033 0.968 0.742 0.369 0.145 0.135

Percent of Total Variance Explained
1 2 3 4 5 6 7 8 9 10 11 12

20.585 17.037 8.690 8.452 8.517 8.457 8.610 8.070 6.181 3.073 1.206 1.121
Rotated Loadings

1 2 3 4 5 6 7 8 9 10 11 12
Q -0.293 0.868 -0.093 0.008 0.046 0.174 0.060 0.002 0.168 -0.029 -0.003 0.295
T 0.942 -0.070 0.010 0.088 0.090 -0.047 0.015 -0.173 0.008 0.068 0.235 0.021
pH 0.059 -0.021 -0.020 0.038 0.994 0.006 -0.065 -0.000 0.044 0.012 0.004 0.004
EC 0.725 -0.316 0.053 0.064 0.046 -0.024 0.032 -0.104 -0.072 0.589 0.018 0.001
SS 0.019 0.924 -0.018 0.100 -0.078 0.209 0.032 0.050 0.163 -0.085 -0.000 0.217
MA1 0.032 -0.285 0.054 0.013 -0.007 -0.950 -0.017 -0.011 -0.111 0.008 0.002 0.004
Cl 0.129 -0.062 0.958 -0.046 -0.021 -0.054 0.215 0.044 0.089 0.014 -0.008 0.005
NH3-N 0.068 0.076 0.229 0.133 -0.080 0.017 0.938 0.086 0.159 0.009 -0.004 0.002
NO3-N -0.140 -0.079 0.043 -0.971 -0.041 0.011 -0.119 -0.114 -0.009 -0.017 0.002 0.003
DO -0.906 0.028 -0.175 -0.097 0.022 -0.009 -0.075 0.192 -0.006 0.077 0.299 .008
Pv -0.016 0.482 0.151 0.014 0.083 0.182 0.262 0.020 0.796 -0.033 -0.000 0.006
BOD5 -0.323 0.039 0.049 0.130 -0.000 0.012 0.088 0.930 0.015 -0.031 0.004 0.001

Table 2a. Principal components with an eigenvalue less than1
Latent Roots (Eigenvalues or Variances) Explained by Principal Components

1 2 3 4
3.481 2.456 1.549 1.162

Percent of Total Variance Explained
1 2 3 4

29.007 20.467 12.905 9.683
Component Loadings Communalities

PC1 PC2 PC3 PC4
Q 0.813 0.337 -0.262 -0.017 0.843
T -0.734 0.539 -0.238 0.075 0.891
pH -0.088 0.061 -0.246 0.472 0.294
EC -0.821 0.312 -0.067 0.079 0.782
SS 0.644 0.575 -0.264 -0.003 0.815
Mal -0.463 -0.380 0.357 0.083 0.493
Cl -0.183 0.372 0.646 -0.349 0.710
NH3-N 0.097 0.565 0.641 -0.037 0.740
NO3-N 0.029 -0.378 -0.163 -0.775 0.770
DO 0.659 -0.623 0.113 0.067 0.839
Pv 0.524 0.675 0.061 -0.120 0.748
BOD5 0.467 -0.176 0.539 0.421 0.716

Table 2b. Varimax rotated (the first four) components
Variances Explained by Rotated Components

1 2 3 4
2.876 2.778 1.744 1.250

Percent of Total Variance Explained
1 2 3 4

23.969 23.148 14.530 10.414
Rotated Loadings Communalities

1 2 3 4
Q 0.314 0.861 -0.057 0.025 0.843
T -0.918 -0.078 0.046 0.200 0.890
pH -0.127 0.021 -0.281 0.447 0.295
EC -0.793 -0.344 0.080 0.166 0.781
SS 0.058 0.893 0.054 0.102 0.814
Mal 0.010 -0.694 0.102 0.030 0.493
Cl -0.158 -0.100 0.804 -0.173 0.711
NH3-N -0.022 0.177 0.824 0.169 0.739
NO3-N 0.077 -0.070 -0.154 -0.859 0.772
DO 0.884 0.008 -0.223 -0.096 0.840
Pv 0.014 0.764 0.403 0.050 0.748
BOD5 0.688 -0.044 0.279 0.404 0.578

However, communalities in Table 2a and Table 2b
show that variances of variable pH and MA1 have
not been described well by these four components.
Percentages of the total variance of pH and MA1
are 0.295 and 0.493 respectively (Table 1b). For this

reason, the fifth principal component was taken into
consideration.

Since the communalities show that variance of
the variable MA1 has again not been described well,
the next component, component 6, has also been
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MAZLUM, ÖZER, MAZLUM

taken into consideration (Table 3a) and subsequently
these six components have been rotated (Table 3b).

In this case, communalities show that all the vari-
ables have been described to an acceptable level.

Table 3a. The first six principal components
Latent Roots (Eigenvalues or Variances)

Explained by Principal Components
1 2 3 4 5 6

3.481 2.456 1.549 1.162 0.989 0.677
Percent of Total Variance Explained

1 2 3 4 5 6
29.007 20.467 12.905 9.683 8.246 5.645

Component Loadings Communalities
PC1 PC2 PC3 PC4 PC5 PC6

Q 0.813 0.337 -0.262 -0.017 0.007 0.203 0.884
T -0.734 0.539 -0.238 0.075 -0.035 0.018 0.893
pH -0.088 0.061 -0.246 0.472 0.829 0.032 0.983
EC -0.821 0.312 -0.067 0.079 -0.024 -0.203 0.823
SS 0.644 0.575 -0.264 -0.003 -0.172 0.149 0.866
MA1 -0.463 -0.380 0.357 0.083 0.015 0.682 0.958
C1 -0.183 0.372 0.646 -0.349 0.301 -0.028 0.802
NH3-N 0.097 0.565 0.641 -0.037 -0.027 0.007 0.741
DO 0.659 -0.623 0.113 0.067 0.095 -0.017 0.848
PV 0.524 0.675 0.061 -0.120 0.244 0.096 0.817
BOD5 0.467 -0.176 0.539 0.421 -0.007 -0.295 0.803

Table 3b. Varimax rotated (the first six) components
Variances Explained by Rotated Components

1 2 3 4 5 6
2.859 2.554 1.669 1.241 1.048 0.942

Percent of Total Variance Explained
1 2 3 4 5 6

23.838 21.285 13.908 10.343 8.737 7.850
Rotated Loadings Communalities

1 2 3 4 5 6
T −0.926 -0.092 0.042 0.122 0.102 -0.014 0.893
DO 0.895 0.019 -0.199 -0.080 0.035 0.000 0.848
EC −0.786 -0.415 0.094 0.114 0.073 0.085 0.824
BOD5 0.670 -0.110 0.252 0.480 0.046 0.215 0.813
SS 0.014 0.892 -0.017 0.147 -0.111 0.190 0.866
Q 0.290 0.882 -0.079 0.014 0.024 0.123 0.844
Pv 0.014 0.757 0.440 -0.003 0.155 0.165 0.817
Cl -0.126 -0.085 0.867 -0.155 0.020 -0.063 0.803
NH3-N -0.048 0.200 0.773 0.287 -0.137 0.006 0.741
NO3-N 0.163 -0.121 -0.007 −0.919 -0.035 0.063 0.891
pH -0.066 0.009 -0.067 0.036 0.986 -0.003 0.982
MA1 -0.012 -0.389 0.054 0.044 0.004 −0.896 0.959

Interpretation of the Results

Component loadings (correlation coefficients) and
the variances (eigenvalues) regarding the compo-
nents were computed for all the variables at the first
step (Table 1a). The proportion of the total variance
explained by each principle component is additive,
with each new component contributing less than the
preceding one to the explained variance. In other
words, the components are derived in decreasing or-
der of importance in Table 1a. Subsequently, these
components were rotated to eliminate medium-range
loadings (correlations) to make the interpretation of
the components easier (Table 1b). Twelve rotated
components which were too numerous to explain and
components which explain a relatively small propor-
tion of the total variance of the principal components

were eliminated for simplification (Mazlum, 1994).

Then the first four components selected (Table
2a), whose variances are greater than 1, were rotated
(Table 2a). In the last step, the number of compo-
nents considered was 6 (Table 3a). Subsequently,
these 6 components were rotated (Table 3b). Ta-
ble 3b shows that 0.959 of the total variance of MA1
was described. Since all the communalities are larger
than 0.7 in this final case, it may be assumed that all
the variables were described to an acceptable level.
It can also be seen from Table 3b that these six prin-
cipal components accounted for 86% of the total vari-
ance of the original data. Consequently, the conclu-
sive result was that the first six components can be
considered significant in the analysis.

In general, component loadings (correlation coef-
ficients) larger than 0.6 may be taken into considera-
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tion in the interpretation (Mahloch, 1974). In other
words, the most significant variables in the compo-
nents represented by high loadings have been taken
into consideration in evaluating the components. In
addition to the significance of high loading values,
there exists a difference between the components;
the components with larger variances are more de-
sirable since they give more information about the
data. When the variances (eigenvalues) of the com-
ponents are examined in the related tables, it can
be seen that principal components are in decreasing
order of importance with respect to their variances.

An interpretation of the rotated six principal
components in Table 3b is made by examining
the component loadings noting the relationship to
the original variables. The first component gives
information about the variation in dissolved oxy-
gen state, electrical conductivity, temperature and
BOD5 . In this component, BOD5 loading indicates
that a domestic discharge exists just ahead of the
station. However, when the raw data observed at
the Ağaçköy monitoring station is examined, it can
be concluded that the observed BOD5 values are
quite low (about 2 mg/lt.), proving that there is a
relatively small discharge as compared to river dis-
charge. In the second component, suspended solids
(SS) and methyl orange alkalinity (MA1) are impor-
tant; seasonal effect of flow is demonstrated by the
positive relation between suspended solids and flow
in this component. In the third component, it can
be understood that a domestic waste is discharged
into the river due to the significance of Chloride (Cl)
and ammonia-nitrogen (NH3-N) in that component.
Due to the significance of nitrate in the fourth com-
ponent, it can be concluded that nitrification takes
place in the vicinity of the station. In the fifth com-
ponent, pH is the important variable and it can be
claimed that an industrial waste discharge is being
carried out. The last component shows that alka-
linity shows increase, possibly due to the river-basin
structure.

Evaluation of the Results and Conclusions

From the 12 components in Tables 1a and 1b, the
first six components are sufficient to explain the mon-
itoring area. As can be seen in these tables, these
components explain more than 70% of the total vari-
ance of the original data set. Moreover, the first six
selected principal components explained more than
70% of the variance of each quality variable (see

Communalities in Table 3a and Table 3b). As can
be seen in the tables, the variance of the principal
components and the variance of the related rotated
components are nearly the same for all components.
Therefore, both tables a and b in this article can be
examined to evaluate the percent of variances of the
components explained.

Principal components analysis of water quality
data from the Ağaçköy monitoring station showed
that small domestic waste discharge, industrial waste
discharge, nitrification and seasonal effects are the
main causes of variations in water quality in that
region. Availability of information on the activities
in that region would have made the interpretation
of the components easier since some activities might
have lasted for short periods and not for the entire
duration of the observation period.

In the interpretation of principal components,
difficulties arose in explaining the physical nature of
significant variables (variables with high loadings) in
some components (e.g. T, DO, EC, BOD5 in the first
component in Table 1b). From this point if view, it
can be said that the principal components were not
obtained well enough for interpretation of the com-
ponents with respect to variables. Limited number
of data (insufficient data), improper frequency of ob-
servation of data and errors in analyzing the quality
variables in the laboratory or in situ may have con-
tributed to this failure.

For this reason, it is worthwhile to stress that
more systematically observed data should be used in
this analysis. More frequently observed (in a certain
time period) data or data observed as frequently as
necessary may help obtain more meaningful principal
components. Furthermore, it may be necessary to
observe and subsequently include certain new qual-
ity variables in the analysis in order to make the
interpretation of principal components easier. With
the help of these new variables, it may be easier to
understand what it is the factor explain (e.g. nitrifi-
cation, domestic discharge). On the other hand, the
observation of some variables may not be important
for this analysis and thus may be eliminated from
the monitoring program.

Similar to this analysis, factor analysis was for-
merly used to discover the factors which affect the
field of inquiry (monitoring field). Past experiences
with factor analysis were mostly on medicine (specif-
ically psychology), biology and hydrology, and re-
cent applications have intensified in the field of water
quality. Factor analysis is being replaced by princi-
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pal components analysis, which yields more reliable
results. Factor analysis includes an error structure
while principal components analysis is a pure math-
ematical technique without any assumption. The re-

sults of principal components analysis demonstrate
that it provides reliable information with respect to
reality in fields of scientific research.
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Karpuzcu, M. & Şenes, S. “Design of Monitoring Sys-
tems for Water Quality by Principal Component Anal-
ysis and a Case Study”. Proceedings of the Inter-
national Symposium on Environmental Management.
Environment ’87. Vol.1, 673-690. Istanbul 1987.

Mazlum, N. “Multivariate Analysis of Water Quality
Data”. Master of Science Thesis, Dokuz Eylül Univer-
sity, Graduate School of Natural and Applied Sciences.
Bornova, İzmir 1994.
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