
Tr. J. of Engineering and Environmental Science
23 (1999) , 49 – 57.
c© TÜBİTAK

Evaluation of a Modified Jeffreys Type Model for Viscoelastic
Fluids

Mehmet KOPAÇ
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Abstract

In this study using some existing constitutive equations, a modified Jeffreys type model with retardation
time is developed which is successful with the experimental data for simple shear flow and shear free flow.
Nonlinear regression analysis based on Marquardt Algorithm is used for determination of material parameters
for simple shear flow. The general form of the modified model is reduced by using the simple shear flow
conditions and Oldroyd derivative for cartesian coordinates. In the determination of material parameters
of the modified model is used experimental data of Leider and Lilleleht(1973) for viscometric functions.
When viscometric functions of the modified model is compared with viscometric functions of the existing
constitutive equations which use the material parameters of Leider and Lilleleht(1973), viscometric functions
of the modified model is found to be more successful.
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Değiştirilmiş Jeffreys Tipli Bir Modelin Viskoelastik Akışkanlar İçin
Değerlendirilmesi

Özet

Bazı mevcut bünye denklemlerinin kullanıldığı bu çalışmada, basit kaymalı(simple shear) ve kaymasız(shear
free) akımlar için deneysel verilere göre daha başarılı olan değiştirilmiş Jeffreys tipli bir model geliştirilmiştir.
Basit kaymalı akımda malzeme parametrelerin belirlenmesi için, Marquardt Algoritmasının temel teşkil ettiği
lineer olmayan regresyon analizi kullanılmıştır. Değiştirilen modelin genel formu, basit kaymalı akım şartları
ve karteziyan koordinatlar için Oldroyd türev operatörü kullanılarak indirgenmiştir. Modelin malzeme
parametrelerinin belirlenmesinde, Leider ve Lilleleht(1973)’ın viskometrik fonksiyonlarına ait deneysel ver-
iler kullanılmıştır. Değiştirilen modele ait viskometrik fonksiyonlarının, Leider ve Lilleleht(1973)’ın malzeme
parametrelerinin kullanıldığı mevcut bünye denklemlerinin viskometrik fonksiyonları ile karşılaştırıldığında,
değişiklik yapılan modelin daha başarılı olduğu bulunmuştur.

Anahtar Sözcükler: Viskoelastik akışkanlar, lineer olmayan regresyon; Nümerik simulasyon; bünye den-
klemleri
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Introduction

The formulation of a general rheological equation
of state which completely describes a given material
is the ultimate objective of the rheologist. This ten-
sor equation is a completely general mathematical
model for the rheological behavior of the material,
and may be used to predict a variety of specific ma-
terial functions. The test of validity of the model is
the degree to which it can represent measured mate-
rial functions. If agreement between the model and
observed data is achieved, the constant parameters
which appear in the model equation, which consti-
tute the rheological properties of the material, may
be evaluated.

By proper application of the basic principles,
mathematical model or general rheological equations
of state for viscoelastic fluids may be formulated
which should be valid for any deformation, regardless
of magnitude or time history. By employing these
models to calculate the response(i.e., stress behav-
ior) in various specific deformations such as steady
simple shear, oscillatory shear, etc., analytical ex-
pressions for the corresponding material functions
such as apparent viscosity, normal stress functions
complex modulus, etc., may be determined.

Materials and their generalized models or rheo-
logical equations of state may be broadly classified as
linear or nonlinear(Bird et al., 1987; Bird and Wiest,
1995). One consequence of nonlinearity is shear de-
pendent apparent viscosity and normal stress coef-
ficients. Essentially all real materials of complex
structure are nonlinear except under conditions of
very small deformation.

A comparison and evaluation of a number of
viscoelastic models has been presented by Bogue
and Doughty(1966). Leider and Lilleleht(1973)
obtained the material parameters in the White-
Metzner(White and Metzner, 1965) and Oldroyd 3-
constant(Williams and Bird, 1962) models for steady
shear flow.

Arıkol(1985) obtained the point velocity and
first normal stress difference data via non-contact
measurements techniques, namely laser Doppler
anemometry(LDA) and stress birefringence for the
periodic contractions and expansions channel. The
non-newtonian fluid was a 5% polyisobutylene solu-
tion in mineral oil flowing through the channel shown
in Fig. 1. This type of flow is interesting and chal-
lenging since it is considered as a reasonable sim-
ulation of flow through porous media(Arıkol, 1985)
owing to its periodic contractions and expansions.

Davidson et al.(1993) used both LDA and stress bire-
fringence to determine velocity and stress data in the
straight-walled portion of a periodically constricted
channel.

Nonlinear hydrodynamic stability analysis has
been done by Park and Lee(1995) for viscoelas-
tic fluids heated from below for the cases of rigid-
rigid and rigid-free boundary conditions that can be
compared with experimental results(Schlüter et al.,
1965). In that study a very general constitutive rela-
tion, which encompasses the Maxwell model, the Jef-
freys model(or Oldroyd model) and the Phan-Thien-
Tanner model(Sokolov and Tanner, 1972) has been
adopted.

A comparative evaluation of existing rate-type
constitutive equations have been provided by Kopaç
et al.(1997) for a viscoelastic fluid undergoing ac-
celerated flow. For each constitutive equations,
the numerical values of material parameters which
yield the best fit with experimental data are deter-
mined via non-linear regression analysis. Kopaç and
Arıkol(1997) proposed a model which is more con-
sistent with the experimental stress difference values
using non linear regression analysis in the periodic
contractions and expansions channel for shear free
flow.

In this study, the model proposed by Kopaç and
Arıkol(1997) and Kopaç et al.(1998) that’s success-
ful for shear free flow will be used for simple shear
flow. For this reason the viscometric functions of
the model has to be determined. Upon compari-
son of the viscometric functions determined with the
experimental results(Leider and Lilleleht, 1973), the
material parameters appearing in constitutive equa-
tions are determined via non linear regression anal-
ysis(Constantinides, 1987). The comparison of vis-
cometric functions of the proposed model with the
existing functions of White-Metzner and Oldroyd 3-
constant models is also aimed. The material param-
eters determined for simple shear flow will be used
for shear free flow for the solution of the reduced dif-
ferential equations along the centerline of these three
models(Kopaç et al., 1997; Kopaç and Arıkol, 1997).
The solution of differential equations for shear free
flow are obtained using 4th order Runge-Kutta Inte-
gration technique(Mathews, 1992).

Flow conditions

The two types of flow often used to characterize poly-
meric liquids are simple shear flow and shear free
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flow. For the periodic contractions and expansions
channel shown in Fig. 1, only two-dimensional flow
is considered and all changes in the 3-direction are

neglected. Flow conditions have been presented by
Kopaç et al.(1997) and Kopaç and Arıkol(1997) for
both flow type.
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Figure 1. General and side views of the flow channel. Dimensions(metres): A=0.06; B=0.02; C=0.2; D=0.17;

a=0.00207∓0.00005; b=0.00445∓0.00005; c=0.00695∓0.00005; d=0.00875∓0.0001; e=0.0175∓0.0001; f=0.0095∓0.00005

Governing equations

Continuity equation:

Dρ

Dt
+ ρdivV = 0 (1)

(1) Equation can be written for incompressible liq-
uids as follows;

divV = 0 or
∂V1

∂x1
+
∂V2

∂x2
= 0 (2)

where V1 and V2 are velocities in 1- and 2- directions
respectively.
The rate of strain and vorticity tensors can be writ-
ten as follows;

∆ij = (Vi,j + Vj,i) (3)

Ωij = (Vj,i − Vi,j) (4)

Modified model

The non linear derivative operator constitutive equa-
tion proposed for the shear free flow in the previ-
ous study(Kopaç and Arıkol, 1997) is used for sim-
ple shear flow. This is a modified form of Jeffreys
model. The relaxation time and viscosity which are
constants at Jeffreys model are used in this model to
be dependent of 2nd invariant of rate of strain tensor.
Retardation time was used as a constant parameter
as in Jeffreys (or Oldroyd) model. The derivative
operator in this model is as in Jeffreys Model(Bird
et al., 1987; Williams and Bird, 1962). For retarda-
tion time and viscosity, the expressions proposed by
White and Metzner(1965) were used. This modified
model has been defined as follows;

τij + θJ(τij) = µ[∆ij + λJ(∆ij)] (5)
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where θ, µ and λ are relaxation time parameter, vis-
cosity and retardation time parameter respectively.
J is nonlinear derivative operator. θ and µ have been
presented such as White and Metzner (1965) as fol-
lows;

θ =
1

θ0 + θ1|II∆|r/2
; µ =

η0

1 + d1|II∆|r/2
(6)

where θ0, θ1, r and d1 are constant parameters; η0 is
zero viscosity; II is second invariant.
Nonlinear derivative operator, J, can be written as
follows;

J()ij ≡ D/Dt()ij − 1/2[∆k
i ()jk + ∆k

j ()ik]

+1/3()kn∆kngij (7)

where D/Dt is Jaumann derivative and have been
presented as follows;

D/Dt()ij ≡ ∂/∂t()ij + V k()ij,k +
1
2

[Ωki ()kj − ()ikΩkj ] (8)

The compenents of rate of strain and vorticity ten-
sors have been reduced for simple shear flow as fol-
lows;

∆̄ij =

 0 1 0
1 0 0
0 0 0

 γ̇
Ω̄ij =

 0 −1 0
1 0 0
0 0 0

 γ̇ (9)

where γ̇ (shear rate) =∂V1
∂x2

Derivations of viscometric functions

Viscosity function (η(γ̇)), first and second normal
stress coefficients [Ψ1(γ̇),Ψ2(γ̇)] are defined gener-
ally as follows(Bird et al., 1987);

η =
τ12

γ̇
; Ψ1 =

τ11 − τ22

γ̇2
; Ψ2 =

τ22 − τ33

γ̇2
(10)

Compenents of J() of stress and rate of strain ten-
sors obtained used Eqs(7 to 9) have been reduced as
follows;

J̄(τij) = γ̇

 −4
3
τ21 −τ22 0

−τ22
2
3
τ21 0

0 0 2
3
τ21


J̄(∆ij) = γ̇2

 −4
3 0 0

0 2
3 0

0 0 2
3

 (11)

Inserting equation (11) in equation (5), the com-
ponents of stress were found as follows with the
asummption of τ21=τ12;

τ11 = (−4/3)µλγ̇2 + (4/3)θγ̇τ12; (12)
τ12 = µγ̇ + θγ̇τ22 (13)
τ22 = (2/3)µλγ̇2 − (2/3)θγ̇τ12; (14)
τ33 = (2/3)µλγ̇2 − (2/3)θγ̇τ12; (15)

Rearrangement of Equations (12-15), according to
Equation (10), viscometric functions of the modified
model were derived as follows,

Viscosity function:

η =
τ12

γ̇
= µ

1 + 2
3
θλγ̇2

1 + 2
3
θ2γ̇2

(16)

First and second normal stress coefficients:

Ψ1 =
τ11 − τ22

γ̇2
= 2µ

θ − λ
1 + 2

3θ
2 γ̇2

(17)

Ψ2 =
τ22 − τ33

γ̇2
= 0 (18)

Determination of material parameters and re-
sults

The experimental viscometric data of Leider and
Lielleieht(1973) have been utilized in order to deter-
mine the material parameters. The material parame-
ters of viscometric functions defined by equation (16,
17) have been determined using the nonlinear re-
gression method developed by Constantinides(1987).
Application of the algorithm to the equations has
been given in detail in the previous studies(Kopaç,
1992; Kopaç et al., 1997; Kopaç and Arıkol, 1997;
Kopaç et al., 1998). The material parameters de-
termined for the modified model and the results for
White-Metzner ve Oldroyd 3-constant models deter-
mined by Leider and Lielleleht(1973) have been given
in Table 1.
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Using the parameters given in Table 1 at the vis-
cometric functions for 3 models, sum of square val-
ues with respect to the experimental data are given
in Table 2.

Using the material parameters given in Table 1,
comparison of the variation of viscometric functions
with respect to shear rate with experimental data
are presented in Figures 2 and 3.

Also, nonlinear differential equations reduced to
symmetry axis were obtained for shear free flow in
the previous studies(Kopaç, 1992; Kopaç et al., 1997;

Kopaç and Arıkol, 1997; Kopaç et al., 1998) for each
of three models used. The material parameters de-
termined for simple shear flow were used as input
in these equations. These equations were solved by
the 4th order Runge-Kutta integration method and
compared with the experimental data(Arıkol, 1976,
1985). Experimental stress difference values(Arıkol,
1976, 1985) and the results for each of 3 models were
shown in Figure 4. Sum of square values of the er-
rors for model results with respect to experimental
values are summarized in Table 3.

Table 1. Numerical values of parameters of the viscoelastic models

Model Parameters
η0=66 dynes.sec/cm2

θ0=10.359000 sec−1

Modified Model θ1=0.3325100 sec−1/r

(This study) λ=0.0199490 sec
d1=0.0054894 sec−1/r

r=0.7000000
White-Metzner η0=66 dynes.sec/cm2

(Leider and Lilleleht, 1973) θ0=13.20 sec−1

θ1=5.250 sec−1/r

d1=0.154 sec−1/r

r=0.750
Oldroyd 3-constant η0=66 dynes.sec/cm2

(Leider and Lilleleht, 1973) λ1=0.1050 sec
λ2=0.0292 sec

Table 2. Comparison of viscometric functions of different constitutive equations

Model Sum of squares
η(x(0.1Pas)2) Ψ1(x(0.1Pas2)2)

Modified Model 12.4 0.107
Oldroyd 3-constant 47.3 0.236

White-Metzner 469.5 27.1

Table 3. Comparison of first normal stress difference predictions of different constitutive equations via fourth order

Range-Kutta integration method

Model Sum of squares (x(0.1Pa)2)
Modified Model 2113

Oldroyd 3-constant 2237
Whiti-Metzner 3072

Discussion

In the previous studies(Kopaç et al., 1997), it has
been shown that White-Metzner and Oldroyd 3-
constant models seem to be more successful than the
other existing models for shear free and simple shear
type flows. For this reason in this study the modified

model was compared with these two equations. For
the determination of viscometric functions for these
two existing models with respect to shear rate, η0

value used is 66 dyn.s/cm2 and the parameter val-
ues determined by Leider and Lilleleht(1973) were
used.

It is seen in Table 2 that sum of squares of
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both viscometric functions for the modified model
are lower than those of the other existing models.
Sum of squares of White-Metzner model are much
larger than the other two models. In other words
it can be said that retardation time parameter (sec-
ond time parameter) models fits to the experimental
results with lower error than the models without re-
tardation time.

As for viscosity function(η), all the viscoelastic
models predict constant viscosity (zero viscosity) η0

at low shear rate (γ̇ <1) and decreasing viscosity
function with slightly different slopes with increasing
shear rate(Fig. 2). The predictions for the Oldroyd
3-constant and White-Metzner models deviate from
the experimental data at high shear rates. Similar
variation has been observed for the modified model
and the Oldroyd 3-constant models for viscosity val-
ues in the range 0.1≤ γ̇ ≤ 10 for γ̇ >10, the results of
Oldroyd 3-constant model deviates from the results
of the modified model.

In the whole range results of the modified model
are in good agreement with the experimental viscos-

ity function.
The first normal stress coefficient (Ψ1) predicted

by the modified model and Oldroyd 3-constant
model are in good agreement with the experimen-
tal data throughout the shear rate range consid-
ered(Fig. 3). The predictions for the White-Metzner
model deviate from the data at the shear rate range
0.1≤ γ̇ ≤10.

When the results of each of three models for shear
free flow were compared with the experimental re-
sults of Arıkol(1985), the modified model is appeared
to be more successful as seen in Figure 4. Oldroyd 3-
constant model gives closer results with the modified
model whereas White-Metzner model gives poorer
results.

As a result for both flows, shear free and simple
shear flows, the results of the modified model are in
better agreement with the experimental results. It
has been concluded that the models with retardation
time and those of which material parameters are de-
pendent on invariant of rate of strain tensor are more
successful.
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Figure 2. Comparison of the values of viscosity function of considered models with experimental data of Leider and

Lilleleht(1973).
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Figure 3. Comparison of the values of first normal stress coefficient of considered models with experimental data of

Leider and Lilleleht(1973).

Figure 4. Comparison of the values of first normal stress difference of constitutive equations with experimental data of

Arıkol(1985) for shear free flow.

Nomenclature

d1 parameter for viscosity for
White-Metzner and Modified Models

II∆ second invariant of rate
of strain tensor

r parameter for viscosity
and relaxation time
for White-Metzner and
Modified Models

V1 velocity in the 1 direction
V2 velocity in the 2 direction
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x1 distance in the 1 direction
x2 distance in the 2 direction

Greek letters

∆ij rate of strain tensor
∆̄ij components of rate

of strain tensor
γ̇ shear rate
η viscosity function

(in the simple shear flow)
η0 zero viscosity
θ relaxation time for

White-Metzner and Modified
models

θ0 parameter of relaxation
time for
White-Metzner and Modified
Models

θ1 parameter of
relaxation time for
White-Metzner and Modified
Models

λ retardation time for
Modified model

λ1 relaxation time for Oldroyd
3-constant model

λ2 retardation time for Oldroyd
3-constant model

µ viscosity for White-Metzner
and Modified Models

τij the stress tensor
Ψ1 first normal stress

coefficient(in the simple shear flow)
Ψ2 second normal stress coefficient

(in the simple shear flow)
Ωij the vorticity tensor
Ω̄ij compenents of the

vortisity tensor

Other symbols and operators

D/Dt material derivative
D/Dt Jaumann derivative
J() Oldroyd nonlinear time derivative
(),j derivative of quantity () with respect

to the j coordinate direction
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