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Abstract

Classical time series analysis requires many assumptions such as the normality of data, linearity in the
autocorelation coefficient and statistical parameter estimations. It is almost impossible to find all these
assumptions applicable in stochastic time series generation or simulation. This paper provides a simple
fuzzy-probabilistic method for the time series analysis. The basis of the methodology is to construct the
fuzzy base rule domain from the available daily maximum temperature records at Kandilli observatory in
Istanbul. The new concepts of transition and cumulative probability procedures are employed for taking
decision among the alternative consequent fuzzy sets prior to the defuzzification.
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Günlük En Büyük Sıcaklığın Zaman Serisinden Yeni Bir Bulanık Modelleme
Yaklaşımı İle Tahmini

Özet

Klasik zaman serilerinin incelenmesi verinin normalliği, öz ilişki katsayılarının doğrusallığı ve istatis-
tiksel değişkenlerin kestirimi gibi kabuller gerektirir. Stotastik zaman serilerinin oluşturulması veya sim-
ulasyonunda, bütün bu kabullerin uygulanabilirliği hemen hemen imkansız gibidir. Bu çalışma, zaman
serilerinin incelenmesinde, basit bir bulanık-olasılık yöntemi sağlamaktadır. Metodoloji, İstanbul Kandilli
rasathanesinde kaydedilen günlük en büyük sıcaklıklardan, bulanık kural temeli oluşturulmasına dayanmak-
tadır. Durulaştırma adımından önceki çeşitli bulanık küme seçeneklerine karar vermek amacı ile yeni yapılı
geçiş ve birikimli olasılık prosedürü uygulanmıştır.

Anahtar Sözcükler: Bulanık kural, geçiş matrisi, olasılık, zaman serisi

Introduction

The pioneering work of Zadeh (1965) concerning
the processing of the linguistic uncertainties by the
of fuzzy sets has opened a wide spectrum of applica-
tions in many diverse fields. Fuzzy application areas
include estimation, prediction, control, approximate
reasoning, intelligent system design, machine learn-

ing, image processing, machine vision, pattern recog-
nition, medical computing, robotics, optimization,
civil, chemical and industrial engineering. Unfortu-
nately, fuzzy applications in meteorology domain are
rather very rare and there is a great future in its
application to atmospheric and meteorological prob-
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lem solutions. The atmospheric events are complex,
ambiguous and vagueness embedded in their nature.
This is mainly due to the fact that earth and atmo-
spheric scientists are involved basically with tradi-
tional uncertainty techniques among which are the
statistics, probability and stochastic processes with
control implementations through adaptive Kalman
filtering. However, there is an unlimited scope ap-
plication possibilities in natural sciences for the fuzzy
principles.

Fuzzy techniques for treating uncertain qualita-
tive information include fuzzy set theory, fuzzy arith-
metic and mathematics, fuzzy logic, fuzzy decision
making and fuzzy control. In general fuzzy proce-
dures transform through uncertain basic rules that
reflect the behavior of the system concerned and con-
sequently the uncertain or crisp information as initial
and boundary conditions as well as the input vari-
ables are mapped so as to produce again uncertain
or crisp results. In any natural even very precise
approaches that we think are accurate include a cer-
tain amount of ambiguity and vagueness. Sugges-
tion of the chaos theory for dynamic systems where
the system equations are the fundamental laws of
the physics and the conservation principles of energy,
momentum and mass in addition to the thermody-
namic fundamentals the solutions are always depen-
dent on the initial conditions. Although the system
remain the same, infinitesimally small changes in the
initial conditions lead to different results, which can
be regarded collectively as numerically vague and
ambiguous. This is tantamount to saying that even
though the system equations are spatially and tem-
porally the same, they transfer negligibly close input
values to completely independent and very different
output values. Hence, the question is what causes
such randomness, unpredictability in the output val-
ues? The answer is the vagueness in the system
equations which cannot reflect the reality exactly or
which cannot adopt itself to the small changes dur-
ing the evolution of the natural phenomenon. It is
therefore logical to treat these phenomena by the
fuzzy principles.

(i) Another elegance of the fuzzy set theory is
that during the assimilation of input data it does
not require any specification concerning the data
structure. For instance in the statistical or stochas-
tic modeling if the data is distributed according to
the normal (Gaussian) distribution then the avail-
able stochastic procedures in the data treatment can
be used. Otherwise, prior anything the data must be

rendered into a normal form.
(ii) In fuzzy treatment linguistic rules are utilized

to approximate the desired output or predictions.
(iii) The construction of model does not require

any integro-differential equations or recurrence rela-
tionships similar to the Markov or ARIMA models.

Jenkins and Watts (1968) give detailed account
for time series analysis in time domain by Box and
Jenkins (1970) and in the frequency domain. Afore-
mentioned drawbacks in clissical time series anal-
ysis are not encountered in the fuzzy probabilistic
model proposed in this paper. Besides, the classical
techniques require separation of trend and periodic-
ity prior to stochastic prediction in the time series.
Fuzzy probabilistic method, on the other hand, does
not require such separations.

This paper shows the application of fuzzy logic
to daily maximum temperature sequences recorded
at Kandilli observatory in Istanbul.

Fuzzy Sets

Sets are collection of objects with the same proper-
ties and in crisp sets the objects either belong to the
set or not. In practice the characteristic value for an
object belonging to the set considered is coded as 1
and if it is outside the set then the coding is 0. For
instance, in a set of positive even integer numbers
the first three objects are 2, 4 and 6 their schematic
representations with characteristic values are shown
in Figure 1a.

In crisp sets, there is no ambiguity or vagueness
as for the belonging of each object to the set con-
cerned. On the other hand, in daily life human are
always confronted with objects that may be simi-
lar to each other with different properties and there-
fore there arises uncertainty as to their belonging
to a common set with membership values 0 or 1. Of
course, logically some of the similar objects may par-
tially belong to the same set and therefore, an ambi-
guity emerges in the decision of belonging or not. In
order to alleviate such situations Zadeh (1965) gener-
alized the crisp set membership degree as having any
value continuously between 0 and 1. Fuzzy sets are a
generelization of conventional set theory. The basic
idea of fuzzy sets is easy to grasp. Hence an object
with membership degree 1 belongs to the set with
no doubt and those with 0 membership values again
absolutely do not belong to the set but objects with
intermediate membership degrees belong to the same
set partially. The greater is the membership degree
the more the object belongs to the set. For instance,
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if approximately positive even integer numbers are
requested then the membership function in Figure
1a takes the form in Figure 1b where there are in-
terference between the numbers desired because of a
fuzzy linguistic word approximately. In this man-
ner any fuzzy linguistic word can be expressed as
fuzzy set. In meteorology there are many linguis-
tic fuzzy words some of which are warm, cloudy,
foggy, dense, high, low, dry, wet, small, etc.

In meteorology, for instance, any statement
about the weather temperature includes uncertainty
in the forms of vagueness or ambiguity. If the tem-

perature at a place changes between almost T0 and
T1
◦C then this domain of change should have lin-

guistically some subsets by considering everyday con-
servation. In general the temperature is either cold
or cool or warm or hot. Hence, there are four sub-
sets of the temperature universal set at a location.
Within the whole universal set it is not possible to
define the delimitation of these linguistic words with
certainty. However, intuitively one can know approx-
imate position of each linguistic word as a shown in
Figure 2.
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Figure 1. Crisp and fuzzy numbers
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Figure 2. Temperature fuzzy subsets

Accordingly constructed triangles represent the
approximate properties of cold, cool, warm and hot
fuzzy subsets. Any meteorological factor can be sub-
divided into fuzzy sets that interfere with each other.
However, a subjective point in delimiting the fuzzy
subsets can be avoided by employing actual data
and/or expert opinions as will be explained in the
application section of this paper.

1. Fuzzy Rule Base

In any diagnostic or prognostic study in meteorol-
ogy for the application of fuzzy reasoning there are
three interdependent steps. A successful execution
of these steps leads to the solution of the problem
in a fuzzy environment, i.e., the solution procedure
digests any type of uncertainty in the basic evolution
of the event concerned.

(a) Fuzzification step: All meteorological
events are considered as having ambiguous charac-
teristics and therefore their domain of change are di-
vided into many fuzzy subsets which complete, nor-
mal and consistent with each other. Hence the do-

main of change is fuzzified. This stem is applied to
each meteorology factor considered in the solution of
the problem.

(b) Inference: This step is, in fact, relates sys-
tematically pair wise all the factors that take place in
the solution depending on the purpose of the prob-
lem. In fact this part includes many fuzzy condi-
tional statements to describe a certain situtation.
For instance if two events X and Y are interactive
then they are dependent on each other. Conditional
statements express the dependence as follows ver-
bally without any equation as used in the classical
approaches,

IF X is A (1) THEN Y is B(1)

ALSO

IF X is A (2) THEN Y is B (2)

ALSO
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IF X is A (3) THEN Y is B(2) (1)

ALSO

. . .

. . .

. . .

ALSO

IF X is A (n) THEN Y is B (n)

where A(1), A(2),. . ., A(n) and B(1), B(2),. . ., B(n)
are the linguistic description of X and Y respectively,
and they are fuzzy subsets of X and Y that cover the
whole domain of change of X and Y. The fuzzy condi-
tional statements in Eq.(1) can be formalized in the
form of the fuzzy relation R(X,Y) as R(X,Y)=ALSO
(R1, R2, R3, . . . , RN) where ALSO represents a sen-
tence connective which combines Ri’s into the fuzzy
relation R(X,Y), and Ri denotes the fuzzy relation
between X and Y determined by the i-th fuzzy condi-
tional statement. After having established the fuzzy
relationship R (X,Y) then the compositional rule of
inference is applied to infer the fuzzy subset B for Y,
given a fuzzy subset A for X as B=AoR(X,Y) where
“o” is a compositional operator (Kosko, 1992).

(c) Defuzzification: The final result from the
previous step is in the form of fuzzy statement and
in order to calculate the deterministic value of a lin-
guistic variable Y the defuzzification method must
be applied (Kiszka, et al., 1985a,b) as

y =
∑L

i yi
L

(2)

or center-average method according to Wang (1993)
via using fuzzy basis expansion, expressed as

p(x) =
∏M
i=1 µAij(xi)∑L

j=1

∏M
i=1 µAij(xi)

(3)

y = f(x) =
L∑
j=1

pj(x)yj (4)

where p(x) is fuzzy basis function and y is particu-
lar value of the linguistic variable Y, yj is the sup-
port value in which the membership function reaches
its maximum grade of membership, and finally L is
number of rules and M the number of inputs.

2. Application

Fuzzy controller by means of the first order struc-
tural dependence along a given time series provides
simple prediction process provided that the fuzzy
subsets of the variability domain is divided into
meaningful fuzzy intervals. The application of the
methodology proposed in the previous sections is
presented for daily temperature records at Kandilli
observatory where records are kept since 1912. Such
a long record is not necessary for the model develop-
ment hence, in this study, only the most recent two
years duration daily maximum temperature records
are used. First of all, the maximum temperature
domain is divided into 11 triangular subsets that
are normal, consistent and complementary. Here,
normality implies that fuzzy subset has membership
value equal to 1 at least for one of the members.
They are complementary in the sense that at any
temperature value there are distinctive fuzzy tem-
perature subsets and their membership degress sum-
mation at a given temperature is equal to 1. On
the other hand, these 11 fuzzy subsets, namely Ai
(i=1,2,. . . ,11) are shown in Figure 3 and they are
treated equivalently for the input and output maxi-
mum temperature values. Herein, the input temper-
ature is the maximum temperature of any day and
the output the maximum temperature for the follow-
ing day.

Once the fuzzy temperature subsets are provided,
it is then possible to train sequentiall the tempera-
ture time series so as to find the steady state per-
centages, i.e., probabilities in the transitional matrix.
The first 365 daily temperature values are employed
for determining the transition matrix elements from
the fuzzy subsets in Table 1. These are final fuzzy
associative matrix elements.

After training period the following fuzzy rule base
is obtained for the maximum temperature predic-
tion.
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Figure 3. Kandilli maximum temperature fuzzy subsets

Table 1. Relative transition matrix

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11
A1 0.3 0.5 0.2 0 0 0 0 0 0 0 0
A2 0.06 0.29 0.43 0.21 0.01 0 0 0 0 0 0
A3 0.01 0.13 0.36 0.35 0.13 0.02 0.01 0 0 0 0
A4 0 0.04 0.23 0.37 0.24 0.08 0.03 0.00 0 0 0
A5 0 0 0.10 0.28 0.34 0.21 0.06 0.01 0.00 0 0
A6 0 0 0.01 0.09 0.22 0.034 0.23 0.07 0.03 0.01 0.00
A7 0 0 0 0.01 0.07 0.29 0.36 0.18 0.06 0.02 0.01
A8 0 0 0 0 0.00 0.07 0.22 0.37 0.27 0.06 0.01
A9 0 0 0 0 0 0.01 0.07 0.32 0.42 0.18 0.01
A10 0 0 0 0 0 0 0.01 0.15 0.46 0.34 0.03
A11 0 0 0 0 0 0 0 0.36 0.5 0.14

This fuzzy rule-base is the main tool in predic-
tion the future likely maximum temperature values.
Figure 4 gives the trained and predicted temperature
sequences. It is obvious that the periodic pattern in
the daily temperature sequences is modeled succes-
fully with the proposed fuzzy logic model, because
the relative error appears less than 10 percent. In the
non-training part, the actual values and predicted

ones do not fall on each other and consequetly the
error amount is X-X̂. However, in order to asses the
validity of fuzzy prediction it is necessary to have an
overall measure of the individual errors in the form of
average performance error (APE) defined as follows

APE =
∑n

i |xi − x̂i|∑n
i |xi|

× 100 (5)
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For the daily temperature series calculated in this
study APE=% 7.12. This is less than practically

acceptable limit of 10%.
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Figure 4. Training and prediction parts of maximum temperature time series

Table 2. Fuzzy rule-base

IF X(t) A1 THEN X(t+1) A2
IF X(t) A2 THEN X(t+1) A3
IF X(t) A3 THEN X(t+1) A3
IF X(t) A4 THEN X(t+1) A4
IF X(t) A5 THEN X(t+1) A5
IF X(t) A6 THEN X(t+1) A6
IF X(t) A7 THEN X(t+1) A7
IF X(t) A8 THEN X(t+1) A8
IF X(t) A9 THEN X(t+1) A9
IF X(t) A10 THEN X(t+1) A10
IF X(t) A11 THEN X(t+1) A11

3. Conclusions

Prediction of meteorological records such as the max-
imum temperature serially from the structure of
the observed time series the fuzzy rule-base mod-
elling provides an efficient way. This approach does

not give any recurrence formulation like Markov or
ARIMA models in the literature but rather the ba-
sic generation mechanism is extracted from the given
observation sequence partially after the division of
the variable domain into subsets with triangular
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fuzzy numbers. The first part of given time series
is used to identify the transitional matrix elements
with the given subsets. This step is referred to as
the training period and helps to determine the fuzzy
relationship between the temperature states at any
two successive time instances. Such reletionships are
expressed as conditional satatements in the form of
IF-THEN rules between these instances. After the
identification of a set of valid IF-THEN rules the
remaining part of the series is predicted with the rule
base at hand.

The application of the methodology is performed
for daily maximum temperature values recorded at
Kandilli observatory at the Asian coastal part of Is-
tanbul City. The procedure yields the general sta-
tistical features of the past records including the
trend and periodicity components without using any
global or local periodicity-trend methodologies such

as Fourier or linear trend analysis.

4. Notations

Aj(i) = j-th fuzzy subset of input
variable at i-the fuzzy rule base,

B(i) = i-th fuzzy subset of output
variable,

m = number of implications,
Ri = i-th fuzzy rule base in the

system,
R(X, Y) = fuzzy relationship,
Xj = i-th input variable for fuzzy set,
Y = fuzzy output variable for the

system,
pi(x) = fuzzy basis function,
y = particular value of Y,
o = sup-star composition.
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