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Abstract

The effective use of water reservoirs is one of the most important problems of recent times. In particular,
the optimization of the operation of water supply systems greatly affected by periods of drought is of
principal importance in reducing the damage the users may face. The natural inflows which affect the result
of this multistage decision problem have a random nature that must be taken into account. In this study a
change-constrained LP model is proposed which takes this important factor into consideration. This model
has been applied to the optimization of the monthly operation of a real water supply system. The results
for different exceedance probabilities obtained by this model are compared with those obtained by a DP
model.
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Kısa Süreli Hazne İşletme Optimizasyonu İçin Şans Kısıtlı LP Modeli

Özet

Biriktirme haznelerinin etkin kullanımı günümüzün en önemli problemlerinden biridir. Özellikle kurak
dönemlerden oldukça etkilenen su temini sistemlerinin işletmelerinin optimizasyonu, kullanıcıların karşılaşabi-
lecekleri zararları en aza indirmek açısından çok önem taşımaktadır. Bu çok adımlı karar verme probleminin
sonucunu etkileyen tabii akımların rastgele karakterleri gözönüne alınmalıdır. Bu çalışmada, bu önemli
davranışı gözönüne alan bir şans kısıtlı LP modeli sunulmaktadır. Bu model, gerçek bir su kaynakları sis-
teminin aylık işletmesinin optimizasyonuna uygulanmştır. Değişik aşılma olasılıkları için bu LP modeli ile
elde edilen sonuçlar, DP modeli ile elde edilenlerle karşılaştırılmıştır.

Anahtar Sözcükler: Hazne işletmesi, Optimizasyon, İstatistik

Introduction

At present, the water supply of large cities gener-
ally comes from surface resources. Water resources
and water needs are not always compatible and the
regulation is carried out by storage reservoirs. Al-

though water resources are called renewable, the av-
erage usable amount is constant. Furthermore, this
amount diminishes because of pollution; thus their
effective use is an important problem for all coun-
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tries. The rise in population increases water need
management and periods of drought affect the wa-
ter supply systems. In those periods the manage-
ment of water resources systems to minimize the
damage to the users is of particular importance.
Increases in both the number of objectives and in
the relations between water resources systems, make
reservoir management for the effective use of the re-
sources a highly complex problem, especially dur-
ing periods of drought. The most important uncer-
tainties in this problem arise from the random na-
ture of the inflows to the system. In this study, a
chance-constrained linear programming (LP) model
which takes this random nature into consideration
was developed and the optimum management policy
was sought. The reservoir planning and operation
studies which have made progress in recent decades
are based on Rippl’s (1983) graphical method. The
weakness of this method, which can only investigate
a constant need, is overcome by Thomas and Bur-
den’s ’(1963) sequent peak algorithm. The opera-
tion of water resource systems is a multistage deci-
sion problem. Dorfman (1962) first used the Linear
Programming for the solution of this problem.

After Yehs, (1985) state of the art study, in-
vestigating the methods and practical application
in reservoir operation, Dynamic Programming (DP)
and Linear Programming (LP) methods are com-
monly used in the solution of this problem.

The principle of these optimization methods, is
the determination of a set of decision variables max-
imizing or minimizing an objective function subject
to a set of constraints. The objective function and
the constraints are mathematical functions related to
decision variables. In a reservoir operation problem
it is convenient to designate the release or the ending
storage as the decision variable. The constraits can
be expressed as reservoir capacity constraints and
continuity equation. The steps in this multistage
decision problem are generally equal time periods.
Although DP is the most convenient method for the
solution of this problem, it requires a different formu-
lation for each different system. Contrarily, LP can
be taken as an easy method with its ready-to-use so-
lution packages. The most significant difficulties in
the use of this method are the linearity conditions of
both the objective function and the constraints, as
well as the rapid rise of the number of constraints
with the stage number Yeh (1981) used the LP for
short term decisions and the DP for long term deci-
sions.

1. Chance Constrained (CC) Formulation for
LP

LP models are often used in water resource prob-
lems. The objective function

Max x0 =
n∑
j=1

cjxj (1)

and the constraints
n∑
j=1

aijxj ≥ bi i = 1, 2 . . .m (2)

xj ≥ 0 j = 1, 2, . . .m (3)

are linear functions of decision variables (xj). If one
introduce St, Qt, Et and RT as, respectively, the be-
ginning storage, the inflow, the evaporation and the
release in stage t, the linear operating rule can be
written, for the operation period (N) thus:

Rt = St +Qt − Et − bj t = 1, 2, . . .N,
j = 1, 2, . . .12 (4)

as a function of operation decision variable (bj),
where j denotes the months of the year. If (4) is
introduced in the continuity equation

St+1 = St +Qt −Et −Rt t = 1, 2, . . .N (5)

where St+1 is the ending storage, the equality

bj = St+1 (6)

can be obtained for the decision variable bj.
The net evaporation loss (Et) is a linear function

of the average storage

Et = eot + et
St + St+1

2
t = 1, 2, . . . , N (7)

where eot and et are fixed loss and loss per unit of
storage volume, respectively. If (7) and (6) are in-
troduced in (4) linear decision rule can be written as
a function of only the decision variables:

Rt = Qt − eot + (1− et
2

)bj−1 − (1 +
et
2

)bj

(8)
t = 1, 2, . . . , N, j = 1, 2, . . . , 12

Since the decision variables (bj) in (8) are de-
termined with respect to inflows (Qt), the random
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(stochastic) nature of these inflows must also be con-
sidered. At any stage, the deficit (0 ≤ Dt ≤ T ), can
be expressed as the difference between the target (T)
and the release (Rt).

Dt = T −Rt, Rt ≤ T, t = 1, 2, . . . , N (9)

Thus, the nonexceedance probability of the
deficit for a particular percentage (0 ≤ ft ≤ 1) of
the target can be written as the chance constraint

P [Dt ≤ ftT ] ≥ p (10)

Writing the deficit (9) as a function of the operating
rule (8) and introducing into the chance constraint
(10) results in the relationship between the target
(T) and the inflow (Qt) yields

P
[
(1− ft)T + eot − (1− et

2
)bj−1

+(1− et
2

)bj ≤ Qt
]
≥ P (11)

Qt is a random variable having a particular prob-
ability structure. Depending on its probability func-
tion, the exceedance probability of a certain Qpt value
can be written thus:

P [Qt ≥ Qpt ] = p (12)

and if one introduces (12) into (11), the chance con-
straint can be rewritten in a deterministic form:

(1− ft)T + eot − (1− et
2

)bj−1+(1 +
et
2

)bj≤Qpt(13)

t = 1, 2, . . .N, j = 1, 2, . . . ,12

Thus, with the LP model, the decisions
(bj , j=1,2,. . . ,12) maximizing the objective function

Max Td, Td = (1 − ft)T (14)

can be determined, subject to the constraints

Td + eot − (1− et
2

)bj−1 + (1 +
et
2

)bj ≤ Qpt(15a)

Smin≤bj ≤K, t=1, 2, . . . ,N, j=1, 2, . . . , 12(15b)

where Smin and K denote the minimum reservoir
storage and reservoir capacity, respectively.

2. Case Study

2.1. Formulation

This proposed method was applied to
Büyükçekmece reservoir, which is one of the units of
the Istanbul Water Supply System. Reservoir char-
acteristics are Smin = 20× 106m3, K = 182× 106m3

and the area-volume relationship is shown in Fig.1
in two-step linearized form.

A (106m3)

S (106m3)41

A-=0.031S+23.7

A-=0.323S+23.7

Figure 1. Area-Volume Relationship of Büyükçekmece
Reservoir

In Table 1, mean monthly precipitation (P) and
mean monthly evaporation (E) values are given. The
evaporation volume can be calculated as follows:

Table 1. Evaporation Values for Büyükçekmece Reservoir

Month O N D J F M A M J J A S
P(cm) 5.1 7.5 8.4 6.7 4.5 4.4 4.5 2.9 2.5 2.5 1.8 2.4
E(cm) 9.5 4.9 2.5 1.8 2.2 5.3 9.6 14.9 20.1 25.4 24 16.9
εt(cm) 4.4 -2.6 -5.9 -4.9 -2.3 0.9 5.1 12.0 17.6 22.9 22.2 14.5
eot 0.5 -0.3 -0.7 -0.55 -0.25 0.1 0.6 1.4 2.05 2.65 2.55 1.65

S<41 102et 1.42 -0.84 -1.90 -1.58 -0.74 0.29 1.65 3.88 5.68 7.40 7.17 4.68
eot 1.05 -0.6 -1.4 -1.15 -0.55 0.2 1.2 2.85 4.2 5.4 5.25 3.45

S<41 102et 0.14 -0.08 -k0.18 -0.15 -0.07 0.03 0.16 0.37 0.55 0.71 0.69 0.45
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Et = 10−2εt×A = 10−2εt(bS+a) = eot+etS(16)

where εt is the monthly net evaporation rate and
eot = 10−2εt.a, et = 10−2εt.b. The values for eot and
et are shown in Table 1.

Since the purpose here is short-term optimal op-
eration policy determination, the operation period
was taken to be one year (N=12), considering the
periodicity in both inflows and needs. Thus, the ob-
jective function of this LP formulation can be written

Max Td (17)

and the constraints

Td − (1− et
2

)bj−1 + (1 +
et
2

)bj ≤ Qpt − eot(18a)

t, j = 1, 2, . . . , 12
bj ≤ 182× 106, j = 1, 2, . . . , 12 (18b)
−bj ≤ −20× 106, j = 1, 2, . . . , 12 (18c)

where the decision parameters (bj) are the monthly
ending storages. Since the operation period is one
year (12 months), there will be no difference between
the t and j subscripts.

3. Solution

In the application phase the exceedance proba-
bility value, p, and thus the values for Qpt must be
determined. Here two approaches can be introduced.
First, the determination of Qpt values for each month
of the year as the values corresponding to a certain
exceedance probability p, according to (12). The low
flows and mean flows corresponding, respectively, to

p = 0.8 and p = 0.5 are taken into account. The Qpt
values for these probabilities are given Table 2 as 1
and 2, respectively. The sequential nature of the in-
flows has importance in reservoir operation and tar-
get value. Then, the second approach is to determine
the Qpt values from the 20 years long observed flow
series. Thus the most critical year, the second most
critical yera and least critical year (wet year) were
taken into account corresponding, respectively, to ex-
ceedance probabilities p=0.95, p=0.90 and p=0.05.
In the observed series, these correspond to the years
1991, 1973, 1982, respectively, and the Qpt values are
given in Table 2 as No 3,4,5. An important prob-
lems is the determination of the firm yield in plan-
ning and operation phases of the storage reservoirs.
Thus the percentage (ft) in (10) and (13) equals zero
(ft = 0) and then the objective function (17) be-
comes Max Td = Max T . The critical period deter-
mines the firm yield. The definition of the critical
period depends on the nature of the problem. Here,
it is defined as the time period where the inflows are
lowest for a particular water use (need) in a partic-
ular water resource system. The critical period was
determined to be two years (24 months), from 1990
to 1991, shown in Table 2 as No 6.

The first 5 series corresponding to various p val-
ues were used in the LP model described in (17) and
(18) and the results are given in Table 3. The end-
ing storage values maximizing the objective function
for these series are in Table 4. Similarly, the re-
sulting Td value for the series 6 is in Table 5 and
the linear operating rule monthly ending storages
(bj, j = 1, 2, . . . , 12) are in Table 6.

Table 2. Qpt (106m3/month) Values for Different p Values

No Month O N D J F M A M J J A S
1 Q0.8 1.3 4.0 6.4 8.9 8.0 6.4 3.8 2.0 2.0 1.9 2.0 2.1
2 Q0.5 6.3 10.7 17.1 19.7 15.1 16.8 8.0 5.0 3.1 2.3 2.2 2.4
3 1991 2.0 5.6 6.8 5.8 5.1 3.5 3.4 3.6 3.1 1.6 2.3 3.1
4 1973 0.8 7.7 18.4 5.5 10.0 3.4 3.8 5.0 0.6 0.5 0.4 0.5
5 1982 3.5 7.0 8.3 63.8 32.3 19.1 6.1 5.6 2.9 2.5 2.2 2.5
6 Critical 1.3 14.9 63.2 15.6 13.1 1.4 1.6 1.7 1.9 1.9 1.4 1.5

period 2.0 5.6 6.8 5.8 5.1 3.5 3.4 3.6 3.1 1.6 2.3 3.1
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Table 3. Td Values from LP and DP Models for Various
Qpt Series

Flow series 1 2 3 4 5
Model

LP 2.5 6.9 2.1 3.1 11.2
DP 2.6 7.2 2.0 3.1 11.4

4. Solution With Linear Programming (LP)

The problem can be investigated, deterministi-
cally, with given inflow values, using the continuity
equation (5). With LP formulation (1-3), using (6)
and (7), the objective function can be written as fol-
lows:

Table 4. Monthly Reservoir Ending Storages for Different Qpt Series Obtaiend With LP and DP Models

Flow Month O N D J F M A M J J A S

series Model
1 CC LP 20 22 27 34 40 44 44 41 36 30 25 22

DP 20 22 27 35 41 45 45 42 37 31 25 22
2 CC LP 20 24 35 50 29 69 67 60 49 38 29 21

DP 20 24 35 49 58 69 68 63 54 44 33 22
3 CC LP 20 24 30 35 38 40 40 38 35 30 25 21

DP 20 25 31 36 40 42 42 40 37 31 27 21
4 CC LP 20 25 42 45 53 53 52 51 44 36 29 23

DP 20 25 42 46 53 54 53 52 45 37 29 23
5 CC LP 25 22 20 74 96 105 98 89 76 62 47 34

DP 25 22 20 74 96 105 98 89 76 62 47 34

Table 5. Td Values Obtained in Critical Period With LP
and DP Models

Model CC LP LP DP
Td 1.54 4.8 4.8

MaxT (19)

and the constraints thus:

Rt(1−
et
2

)bt−1 + (1 +
et
2

)bt≤Qt−eot (20a)

t = 1, 2, . . . , N

−Rt + (1− et
2

)bt−1 − (1 +
et
2

)bt ≤ −Qt − eot(20b)

t = 1, 2, . . . , N
T −Rt ≤ 0 t = 1, 2, . . . , N (20c)
S ≤ 182.106 t = 1, 2, . . . , N (20d)
St ≤ −20.106 t = 1, 2, . . . , N (20e)

The critical period inflows used in this problem
result in a Td value and ending storages given in Ta-
bles 5 and 6, respectively. It is seen that the tar-
get value is much higher than the value obtained by
CCLP where an annual operating rule was assumed.

Table 6. Ending Reservoir Storages Obtained From Critical Period With LP and DP Models (106m3/month)

Month O N D J F M A M J J A S
Model
CC LP 20 24.5 31 36.4 40.5 40 38.9 36.2 32.6 27.8 23.2 21

LP 20 30.6 90.8 104.6 114 110 104.6 96.2 86 74.6 63.6 56.4
52 53.8 57.6 60 61 59.5 56.5 51.8 45.2 36.3 28.9 24.3

DP 20 30.8 90.6 109.5 112.2 109.3 104.7 98.1 90.2 81.5 71.9 64.9
60.3 62 65.3 67.8 68.6 67.8 64.9 60.3 53.6 44.5 36.2 24.3

5. Solution With Dynamic Programming
(DP)

In order to compare the results of the LP formu-

lation, the optimization of the system was carried
out with a DP model. For this purpose, the OP-
TIMA program (Duranyıldız, 1988) for optimizing
the operation of a river basin was used. Since the
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maximization of the firm water is under investiga-
tion, the objectiv function can be written

maxT = max

[
min(Vf )

t

]
, t = 1, 2, . . . , N(21)

and the transition equation for any stage

f?t (St) = max[minVf (St + 1), ft−1?(St)] (22)
t = 1, 2, . . . , N

where Vf is the return function. The constraints of
this model are the same as for the LP model (18 b,
c). The DP model has been applied to the 6 flow se-
ries determined earlier with the same initial storages
as the LP models, and the results are summarized in
Tables 3 and 5. The ending storages corresponding
to these results are in Tables 4 and 6. The results of
the DP and LP models are very close.

6. Conclusions

In recent times water supply has become an im-
portant problem, especially for large cities. The
rapid increase in water need and the limited amount

of available water necessitate the effective use of wa-
ter resources. The basis of the solution of this prob-
lem is the determination of the optimal operation of
the water resource systems, and it is of great im-
portance, in this context, to take into account the
random nature of the inflows. In this study a chance
constrained (CC) LP model able to take into account
this random nature of the flows was developed. Opti-
mal monthly operating policies for a one-year period
were determined for different inflows with different
exceedance probability levels for the water supply
system to which the model was applied. Here the
deficit percentage (ft) of the target water was taken
to be zero and the firm yield maximization was in-
vestigated. Similarly, different results may be ob-
tained with different deficit percentages and the risk
can be calculated. No difference was found between
the results obtained from LP and DP models. Espe-
cially for short term operation optimization, the LP
model proposed above, which takes into account the
stochastic nature of the natural flows seems more
suitable because of the ready-to-use solution pack-
ages for obtaining rapid results. It is seen also that
the model yields much smaller results when a yearly
operation rule is introducted into the model.
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