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Gain Scheduling Adaptive Model Control

Nafiz Aydın HIZAL
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Abstract

Adaptive Model Control (AMC) is an adaptive control methodology that makes use of FIR (Finite
Impulse Response) adaptive modeling and that requires a minimum of a priori knowledge about the plant
to be controlled. The control relies on the inversion of the adaptively obtained model. In this work, a Gain
Scheduling version of this methodology is proposed and tested on the simulated pitch dynamics of the A-4D
aircraft, which is a time varying plant. The proposed system is formed by combining the Adaptive Model
Control system with a learning algorithm that learns and stores the AMC weight vectors under various
operating conditions in a “gain scheduling matrix”.
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Kazanç Programlamalı Uyarlamalı Model Kontrolü

Özet

Uyarlamalı Model Kontrolü (UMK), sonlu impuls cevaplı filtreler ile yapılan modellemeye dayanan ve
kontrol edilecek sistem hakkında minimum ön bilgi gerektiren bir uyarlamalı kontrol yöntemidir. Kontrol
işlemi, uyarlamalı olarak elde edilmiş olan modelin ters çevrilmesi temeline dayanır. Bu çalışmada, bu
yöntemin Kazanç Programlamalı bir şekli önerilmekte ve A-4D uçağının, zamanla değişen bir yapıda olan
yunuslama dinamiğine simülasyon ile uygulanarak test edilmektedir. Önerilen sistem, Uyarlamalı Model
Kontrolü sistemi ile bir öğrenme algoritmasının birleştirilmesi ile oluşmaktadır. Öğrenme algoritması, değişik
şartlar altındaki UMK ağırlık vektörlerini bulup saklayarak, bir “kazanç programlama matrisi” oluşturur.

Anahtar Sözcükler: Uyarlamalı Kontrol, Uyarlamalı Model Kontrolü, Kazanç Programlama, Zamanla
Değişen Sistemler.

Introduction

Adaptive Model Control (AMC) which dates
from early 1970s is an adaptive control methodology
proposed by Widrow and his coworkers. A signifi-
cant application of Adaptive Model Control was the
control of the blood pressure of a dog, which was
experimentally realized (Widrow 1971, Widrow and
Stearns 1985). On the other hand, Adaptive Inverse
Control was proposed in the mid 1980s (Widrow

1986), and has been under development since then
(Widrow and Bilello 1993, Widrow and Walach 1996,
Widrow et al. 1996).

These two methodologies require a minimum
amount of a priori knowledge about the plant to be
controlled, and they have many attributes in com-
mon. For command tracking, they do not use feed-
back in the usual sense (unless the plant is unstable),
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but they “close” the loop through the adaptation
process. They rely on adaptively obtaining the effec-
tive inverse of the plant, so that the cascade connec-
tion of this effective inverse and the plant practically
emulate a transfer of unity, providing what is termed
a “deconvolution” of the plant. For adaptive model-
ing, both of them use FIR (Finite Impulse Response)
adaptive filters comprised of a tapped delay line, a
linear combiner and an adaptation algorithm such as
the LMS (Least Mean Squares) algorithm to adapt
the weights of the linear combiner. The two method-
ologies differ in the manner the effective inverse of
the plant is obtained; in Adaptive Model Control, a
direct model of the plant is obtained adaptively, and
it is inverted algebraically to generate an algorithm
to be used as the cascade controller, while in Adap-
tive Inverse Control, the adaptively obtained model
is either the inverse model which is then copied to
the controller position in the system if no “distur-
bance cancelation” is used, or the direct model if the
disturbance cancelation scheme is to be mechanized.
In this latter case, the inverse model is derived from
the direct model by a second adaptive process that
runs offline.

Since the time it was proposed in the mid 1980s,
Adaptive Inverse Control has been studied and de-
veloped to include a “reference model” for specifying
the system behavior, in addition to the scheme for
disturbance cancelation. It is favored for its struc-
ture that can accomodate neural nets, so that ef-
fective inverses for nonlinear plants can be obtained
also. On the other hand, the algebraically invert-
ing Adaptive Model Control methodology can also
be used with the advanced features above, combined
with its potential for faster adaptation. This faster
adaptation potential is due to the simpler structure
of an AMC system compared to that of an AIC sys-
tem, and in particular, due to the fact that AMC
has a single adaptive process running, while AIC has
two such processes running interdependently, limit-
ing the adaptation speeds considerably. It is shown
in (Hızal 1998c) that the plant variation rates that
can be handled successfully by the AMC system is
much greater than those that can be handled by
the AIC system. Therefore, it is concluded in the
above reference that, especially for fast plant varia-
tion rates and where considerable nonlinearities do
not exist, an AMC system can be superior to an AIC
system.

In the present work, a gain scheduled version of
the AMC system is proposed and tested, using the
A-4D aircraft as a testing platform in simulations.
The addition of this gain scheduling capability ren-
ders the adaptation speed irrelevant with regard to
plant variations, but nevertheless an AMC system
is used due to its simplicity advantage, as the plant
under consideration is linear. With the Mach num-
ber as the measurable environmental parameter, a
gain scheduling matrix is formed with one of its two
dimensions representing the Mach number, and the
other one representing the weight vector index. The
adaptive process has to handle only the long term
plant variations, modifying the gain scheduling ma-
trix as required, in addition to the correction of any
possible initial errors in the matrix. A learning algo-
rithm is used for gain scheduling matrix training.
This algorithm trains the matrix elements (called
the “support values” in the terminology of this algo-
rithm) according to their contributions to the result
of the interpolation that produces the plant impulse
response vector (the “weight vector”) for any inter-
mediate Mach number.

Adaptive Model Control

The operating principle of the Adaptive Model Con-
trol system with the “disturbance cancelation” and
the “reference model” features added as proposed
in (Hızal 1998c), is depicted in Figure 1. The di-
rect modeler adaptively forms the discrete time im-
pulse response of the plant by varying the weights
of the linear combiner which receives its inputs from
a tapped delay line, comprising a transversal filter
(Figure 2). After convergence, the weights contain
the identification information about the plant dy-
namics in the form of an impulse response shape.
The inversion of the plant dynamics is effected alge-
braically by using this weight vector, and this process
is named “Forward Time Calculation”. The Forward
Time Calculation block is placed between the com-
mand signal to be followed by the plant, and the
plant input, effectively canceling the plant dynam-
ics. Ideal inversion would result in the plant out-
put following the command signal exactly, while the
causality principle prevents this ideal behavior for
plants with a deadtime. In practice, there may be
further limitations due to saturation of the actuator
and/or the plant input.
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Figure 1. Block diagram of the AMC system, with the disturbance cancelation and the reference model features added.
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Figure 2. The transversal filter used in adaptive FIR modeling.

Having chosen an appropriate sampling period Ts
for the system, the tapped delay line length n is cho-
sen to cover the “memory time” of the plant to be
modeled, i.e., a time span in which the impulse re-
sponse of the plant, which is assumed to be stable,
reaches an insignificantly small value. If this memory
time is not known a piori for the plant in question, it
is possible to make the delay line length large enough
to be on the safe side. This would result in a certain
number of the weights at the end of the weight vector
to assume negligible values after convergence, which
can then be removed in a final design. In addition
to the n+1 weights that result from n delay units,
there is also a “bias” weight that can model non-
zero plant outputs which may be present in spite of
zero inputs, and which may be due to slow, drift type
disturbances and/or nonlinearities. The bias weight

has a constant and unity input (Widrow and Stearns
1985).

The LMS (Least Mean Squares) adaptation algo-
rithm devised by Widrow and Hoff (Widrow and Hoff
1960, Widrow and Stearns 1985, Widrow and Walach
1996) is a steepest descent algorithm using an ap-
proximation for the gradient. The descent is on a
“performance surface” defined by the expected value
of the error e, which is the difference between the
actual modeler response and the desired response.
The desired response is the response the modeler is
expected to give after convergence. In case of adap-
tive modeling, the modeler receives the same input
signal as the system to be modeled, and the desired
response is the output of the plant to be modeled.
Denoting the weights as the vector W, the LMS al-
gorithm gives the weight vector W(k+1) at the k+1
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st instant, as

W(k + 1) = W(k) + 2µe(k)X(k) (1)

where the vector X denotes the linear combiner input
(tapped delay line output), and µ is a convergence
constant. The convergence constant µ controls the
stability, the convergence speed, and the convergence
behavior with regard to the presence and the nature
of adaptation oscillations. It also controls the “mis-
adjustment”, which is extra error due to the fact
that the gradient used by the algorithm is an ap-
proximation. The difference with the actual gradient
may be interpreted as noise which is low-pass filtered
through the slowness of the adaptation whose speed
can be controlled by this convergence constant. Us-
ing the expectation operator E over the time index
k, the autocorrelation matrix of the input is defined
as

R = Ek[XXT ] (2)

Stability of the LMS algorithm is guaranteed if the
convergence constant µ is selected within the range
(Widrow and Stearns 1985)

0 < µ < (1/trace(R)) (3)

The expected value of the weight vector converges to
the optimal, or Wiener, vector W? which is given by

W? = R−1P (4)

where the crosscorrelation vector P between the de-
sired response d and the input vector X is defined
as

PT = EK [dXT ] (5)

The purpose of giving Equations (2) and (5) here
(which are not used in the present methodology) is
to make a brief introduction to the LMS algorithm.
The LMS Algorithm and transversal filter combi-
nation has been used for adaptive FIR modeling
of many linear, and some nonlinear systems (Hızal
1982, Hızal 1984). Extensive reference lists on this
method of modeling are available in (Widrow and
Walach 1996).

For control purposes, the model has to be used
to generate a controller, and this is achieved by the
Forward Time Calculation process. The linear com-
biner, with its weights wi and the bias weight w0,
leads to the equation.

n+1∑
i=1

x(k − i + 1)wi(k) + w0(k) = r(k) (6)

if its output is assumed to be equal to the command
signal r(k), which is practically the case after con-
vergence of the model. This gives the required input
to the plant at the k th instant, x(k), as

x(k) =
1

w1(k)

r(k)− w0(k)

−
n∑
i=2

x(k − i+ 1)wi(k)

]
(7)

and this constitutes the Forward Time Calculation
algorithm.
A problem is encountered if the first weight of the
model, namely w1, is zero or very small. For second
or higher order plants, the impulse response starts
from zero, therefore w1 is zero. If the plant has
deadtime, then any number of the initial weights
can be zero. Denoting the first nonzero weight as
wp (or, in an actual application, the first one that
is large enough not to cause any numerical compu-
tation problems), the forward time calculation takes
the form

x(k) =
1

wp(k)

r(k + p− 1)− w0(k)

−
n∑

i=p+1

x(k − i + p)wi(k)

 (8)

The appearance of r(k+p-1) in this expression in-
dicates that p-1 future command values will be re-
quired. For some applications, this may be possi-
ble. If not, r(k) is used instead, with the assumption
that r varies slowly compared to the sampling pe-
riod, leading to the plant’s following the command
signal with a p-1 step delay, which is inevitable with
a plant having deadtime.

The difference between the plant output and the
direct modeler output is an estimate of the distur-
bance. After changing its sign, it is injected at the
summing point on the left, modifying the command
signal (Figure 1). The reference model is placed
in cascade with the plant. Effectively canceling
the plant dynamics by the forward time calculation,
there remains the reference model dynamics as the
dominant dynamics of the entire system.
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Table 1.

Flight Condition K [s−1] τ [s] ωn[rads−1] ζ

Mach 0.4 -0.1114 11.98 0.933 0.1301
Mach 0.6 -0.2052 7.494 1.428 0.1370
Mach 0.8 -0.2890 5.108 1.943 0.1524

The Gain Scheduling Matrix Learning Algo-
rithm

The gain scheduling matrix training algorithm pro-
posed for use here allows the use of a finite number
of “support points” in the Mach number direction,
thus enabling the definition of such a matrix. This
algorithm was originally used for building heating
automation (Leimgruber et al. 1984, Leimgruber et
al. 1988) which required learning of the building
thermal dynamics. In its original form, it has a two
dimensional input space, but its dimensions can be
increased as in (Hızal 1997) where wind speed ef-
fects are taken into account also. In (Hızal 1998a),
properties of this algorithm was studied, and being
a learning algorithm, it was applied to a jet engine
characteristics monitoring problem (Hızal 1998b).

The algorithm has the estimation and the train-
ing stages. Estimation is performed by multidimen-
sional linear interpolation, using a number of “sup-
port” values, represented by the gain scheduling ma-
trix in the present problem. Training is based on
the correction of these support values according to
their contributions to the interpolation result, and
according to the estimation error.

In the original two dimensional form of the al-
gorithm, the ranges of the input variables X and Y
are subdivided into mx and my regions respectively,
thus generating and (mx+1) by (my+1) dimensioned
grid, at the intersections of which the support values
will be located. The estimation at a particular input
point (X1, Y1) gives the estimate ZE = fE(X1, Y1).
The actual Z value, ZM , must be measured at the
time of the estimation (as in the engine character-
istics application) or after using the estimate (as in
the building automation application) so that the er-
ror can be used in the training stage following this
estimation.

A single cell of the input space grid is shown in
Figure 3. If the present input point (X1, Y1) is within
the indicated cell, the four surrounding support val-
ues are to be used for a bilinear interpolation, com-
pleting the estimation phase. This procedure at a
particular time step k is represented by the equa-
tions

Z4

D2

D1D4

X1
D3

Z1

ZA Z2

ZE
Y1

Z3

ZB

Figure 3. One cell of the learning algorithm. (X1, Y1) is
the input point.

ZA = Z1 + (Z2 − Z1)D1/(D1 + D2) (9)
ZB = Z3 + (Z4 − Z3)D1/(D1 +D2) (10)
ZE = ZA + (ZB − ZA)D3/(D3 + D4) (11)

where the time index k is omitted, Di are the dis-
tances of the input point from the cell edges, Zi are
the neighboring support values, ZA and ZB are the
auxiliary estimates, and ZE is the estimate.

To train the system, the actual value ZM is used
to calculate the “error factor” F which is the relative
error.

F = (ZM − ZE)/ZE (12)

The four support values Zi are corrected accord-
ing to the error factor F and with varying degrees
that depend on their contributions to the estimate,
represented by the correction weights Ki which are
calculated as functions of the distances Di.

K1 = [D2/(D1 + D2)][D4/(D3 + D4)] (13)
K2 = [D1/(D1 + D2)][D4/(D3 + D4)] (14)
K3 = [D2/(D1 + D2)][D3/(D3 + D4)] (15)
K4 = [D1/(D1 + D2)][D3(D3 + D4)] (16)

Equation (17) below gives the correction expression
for the i’th support value, its new value Zi(k + 1)
being calculated from the quantities at the time step
k.

Zi(k + 1) = Zi(k)[1 +Ki(k)F (k)] (17)
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In (Hızal 1998a, Hızal 1998b), the effects of in-
cluding a concergence constant on stability and per-
formance are investigated, as well as the effects of
the number of support values on the accuracy.

If the nonlinear function to be learned has zero
values, then Equation (12) would mean division by
zero. In this case a bias can be added to the function
to move it away from zero. It is also possible to use
the absolute rather than the relative error, and this
is done in the present work.

Although the gain scheduling matrix has two di-
mensional data in the present problem, one of its di-
mensions, being the weight vector index, is not sub-
ject to intermediate inputs, therefore the use of this
algorithm here has a one dimensional input space
only. If the measurable environmental parameters
resulting in plant variations were more in number,
the dimensionality of the algorithm would increase
accordingly.

The Combination of the Two Algorithms

The combined use of the LMS dynamic modeling al-
gorithm and the gain scheduling matrix training al-
gorithm leads to the following procedure: At each
time step, a linear interpolation is performed in the
Mach number direction of the gain scheduling ma-
trix to obtain the weight vector for the present Mach
number, to be used in the direct modeler and the
forward time calculation block. The modeling error
that results at this step is used in the LMS algorithm
to obtain a weight correction vector δw, as

δwk = 2µekXk (18)

with the notation used in Eqn. (1), and where ek re-
places F in (12). This δwk is divided into two parts,
to be applied to the two neighboring support vectors
that were used in the interpolation. The division is
according to the linear relationships

δwk1 = K1 δwk, δwk2 = K2 δwk (19)

where

K1 = (M −M1)/(M2 −M1),
K2 = (M2 −M)/(M2 −M1) (20)

with M being the current Mach number, andM1 and
M2 standing for the two neighboring support Mach
values.

In the algorithm generated as a combination of
the two algorithms, the convergence constants of the
two algorithms appear as a product, hence a single
convergence constant µ is defined as this product.
The fact that the constant Ki <1 are included in
the training of the support values leads to a decrease
in the convergence constant values from the point of
view of the LMS algorithm. Although the amount
of this decrease varies depending on the Mach value
(training point) at a particular instant, by assum-
ing a uniform distribution of the training points, it
is clear that the mean reduction factor is 1/2, since
the constants Ki vary within the range [0,1] (Eqn.
20). However, for a learning algorithm with a two
dimensionla input space, the constants Ki are found
as the product of the normalized coordinates of the
training point within a cell defined by four neigh-
boring support points (Eqs. 13-16), in which case
the reduction factor is 1/4 as can be seen from the
double integral∫ 1

y=0

∫ 1

x=0

x y dx dy = 1/4 (21)

where the normalized coordinates within a cell are
called x and y for convenience, and K=x y. This en-
tails the use of a larger convergence constant µ for
the same LMS algorithm performance, and therefore
the stability limits with regard to µ are increased
inversely proportionally with this factor. This was
observed in the present study.

The Testing Platform

The plant model used for testing the proposed gain
scheduling adaptive scheme is that of the A-4D
fighter aircraft with regard to its longitudinal short-
period dynamics. It was not the aim of this work to
design a control system for A-4D, but this plant was
used as a testing platform, as it has time variability
in addition to being a rather difficult plant to model
by a FIR filter, as explained below.

The aircraft short period equations (Blakelock
1991), combined with the numerical values for the
A-4D aircraft (Nelson 1990) gives the block diagram
in Figure 4, where the typical dynamics of an ele-
vator servo is added also. The parameter values for
three flight conditions are given in Table 1. Poly-
nomial fits are used for intermediate Mach numbers
within the range [0.4, 0.8].
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Figure 4. Transfer functions of the A-4D pitch dynamics and the elevator servo.
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Figure 6. Time response of the AMC system with gain
scheduling. There is a step disturbance at time
step 470.
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in Figure 6.
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Figure 8. The gain scheduling matrix for A-4D, also de-
picting the variation of its impulse response
with the Mach number.

Figure 8, being the gain scheduling matrix, also
shows the pitch rate response shapes of A-4D for
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various Mach numbers. It can be observed that the
response curves change considerably with the Mach
number, and generally, the damping is seen to be too
low. The low damping makes this plant a rather dif-
ficult one to model by a FIR filter, as the sampling
period is to be selected according to the highest fre-
quency component in the response, while the time
span of the FIR filter is to be selected according to
the “memory time” of the system, which is long due
to the low damping, resulting in a large number of
weights in the adaptive modeler. In accordance with
Eqn. (3), the large size of the weight vector limits
the useful range of convergence constants µ by sta-
bility considerations. The aircraft was considered to
be an appropriate testing platform because of this
high dimensionality in its modeled dynamics. An
appropriate sampling period was Ts=0.1 s, and the
resulting weight vector size to cover a time span of
30 seconds was 300 elements.

Performance Evaluations

The main parameters of the proposed system that
a designer needs to consider are the locations of the
support points in the Mach number direction, the
convergence constant, the reference dynamics to be
represented by the reference model, in addition to
the two parameters that are directly apparent from
the plant dynamics, namely, the sampling period and
the weight vector (or tapped delay line) length.

In this work, a third order reference model was
used, with the transfer function

G(s) =
1

a3s3 + a2s2 + a1s+ 1
, a3 = 1/27,

a2 = 9/27, a1 = 22/27. (22)

The selection of the reference model is primarily
dependent on the specific application area. In case of
an aircraft control system for instance, the reference
model dynamics would depend on the performance
expected from the aircraft, also considering e.g. the
control effort and the structural limitations. On the
other hand, the selected reference model affects the
performance of the gain scheduling system. A faster
reference model is more demanding with regard to
support values densities of the gain scheduling ma-
trix. In the present study, however, the A-4D aircraft
acted only as a testing platform, so a reasonable ref-
erence model was appropriate, without further con-
siderations due for a complete pitch control system
design.

Time response curves with a random command
input signal are given in Figure 5 and Figure 6. Fig-
ure 5 depicts the case with no gain scheduling, the
AMC weights reamining as those for Mach 0.4, while
actually the Mach number changes from 0.4 to 0.8
along the horizontal axis in the diagram. Compared
to the ideal response which is that of the reference
model, the actual response is satisfactory at the be-
ginning, but deteriorates as the Mach number in-
creases in time. On the other hand, in Figure 6, gain
scheduling is active, and the performance remains
uniformly satisfactory in time as the Mach number
range from 0.4 to 0.8 is covered. At time step 470,
there is a step disturbance applied on the plant out-
put. It can be seen that the “disturbance cancela-
tion” mechanism of the AMC eliminates its effects
within a short time, returning the response close to
that of the reference model. This disturbance cance-
lation response region is enlarged and given in Figure
7.

Figure 8 shows the gain scheduling matrix in
three dimensions, with the horizontal input plane
having the components “Mach number index” and
the “weight vector index”. The support point lo-
cations in the Mach number direction need not be
uniformly distributed, and an appropriate distribu-
tion reduces the required number of points, hence
the gain scheduling matrix size, for a given level of
accuracy. Denser placement of the support points
where the curvature of the surface to be generated
is greater, leads to a more efficient arrangement re-
garding the relationship between the gain schedul-
ing matrix size and a required accuracy level. The
17 support points used in the Mach number direc-
tion are given in Figure 9. With a weight vector size
of 300 elements, the gain scheduling matrix size be-
comes 17×300 in this case. However, coarser Mach
resolution was also satisfactory, down to 5 supports
in this direction, shown as full circles in Figure 9.
To investigate this, a “mean square error” study was
conducted, with its results given in Figure 10. With
only two supports (i.e. a single interpolation region
covering the entire Mach range under consideration),
the response was excessively oscillatory and totally
unacceptable.

The constant µ in this case is a combined con-
vergence constant of the two algorithms. Though
it determines, among other things, the convergence
speed, in this application the speed requirements are
not determined by the plant time variation rates, be-
cause of the presence of gain scheduling. It is only
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Figure 10. Mean square errors versus the number of sup-
port values in the Mach direction.

necessary to achieve a learning rate that will be able
to follow any long term plant variations manifested
as a change in the gain scheduling matrix support
values. This makes it possible to use a relatively
small convergence constant µ, leading to better per-
formance in other respects, namely, being away from
instability conditions by a large margin, low sen-
sitivity to gradient noise which is inherent in the
LMS algorithm, and low sensitivity to external noise

sources. A combined convergence constant value of
µ=0.002 was successfully used throughout the inves-
tigations, and this resulted in the correction of any
initial errors in the gain scheduling matrix, whose ini-
tial values were determined analytically by the theo-
retical impulse responses at various Mach numbers.

Conclusions

The results indicate that the proposed combination
of the adaptive modeling algorithm and the learning
algorithm produces a viable gain scheduling system
that exhibits the desirable behavior of gain shedul-
ing systems, namely, the lack of a speed limit for
the plant variations that can be handled succesfully,
in addition to the desirable feature of adaptivity in
the form of a capability for correction of the gain
scheduling matrix in case of long term changes in
the plant characteristics, and also for the correction
of any possible initial errors in that matrix.

The selection of a convergence constant µ is not
critical for this medhodology, since the adaption
speed requirements are relaxed and a relatively small
µ value will suffice, eliminating other problems re-
lated to the adaptation speed, namely the stability
of the system, the gradient noise and the external
measurement noise sensitivities.

An appropriate distribution of support points
minimizes the gain scheduling matrix size for a given
accuracy, though with modern digital equipment,
neither the memory capacities nor the operation
speeds are likely to be a limiting factor for the size
of this matrix. Although the matrix size affects also
the adaptation speeds, this latter is not critical in
the present methodology.
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İstanbul Technical University, 1982.

Hızal, N. A., “Simulation Study on Adaptive Modeling
in a Reactor Heat Transfer Channel”, Annals of Nu-
clear Energy, Pergamon Press, 11/5: 207-211, 1984.

Hızal, N. A., “Control of Building Heating Turn-on
and Turn-off Times by a Learning System (in Turk-
ish)”, Proc. MAMKON ‘97, Istanbul Technical Uni-
versity, Faculty of Mechanical Engineering, 1997.

Hızal, N. A. “A Study on a Learning Algorithm”, (in
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