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D.P.Ü. Mühendislik Fakültesi, İnşaat Bölümü,
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Abstract

An elastic-plastic analysis of the compression bond of column longitudinal reinforcement in bases is
presented. In this analysis, slip failure of the ribbed reinforcing bars due to shear stresses between bar and
concrete is considered. On the basis of the Mindlin equation, in conjunction with finite difference calculus,
expressions are derived for the distribution of bond stress, load-vertical displacement relationship of the
column bars in the anchorage length, and the failure load of the foundation. The theoretical solutions are in
good agreement with the experimental results and the distribution of bond stress is shown to be significantly
influenced by the bar stiffness factor, K.
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Temellerde Kolon Donatısının Basınç Aderansının Elastik-Plastik Analizi

Özet

Bu çalışmada kolon boyuna donatısının basınç aderansının elastik- plastik analizi sunulmuştur. Bu
analizde beton ve çubuk arasındaki kayma gerilmelerinden doğan kayma kırılması göz önüne alınmıştır.
Sonlu farklar hesabı ile birlikte Mindlin denklemine dayalı olarak, temelde ankraj boyunca aderans gerilmesi
dağılımı, kolon çubuklarının yük-düşey yer değiştirme ilişkisi ve aderansın güç tükenmesine erişmesi için
bağıntılar çıkarılmıştır. Teorik çözümlerin deney sonuçları ile iyi uyum içinde olduğu ve çubuğun relatif
rijitliği K nın aderans gerilmesi dağılımını önemli ölçüde etkilediği gösterilmiştir.

Anahtar Sözcükler: Temel, nervürlü donatı, ankraj boyu, aderans gerilmesi, kayma

1. Introduction

The anchorage bond capacity of deformed bars
is limited to one of two failure modes, namely, split-
ting failure (Ferguson and Thompson, 1962) and slip
failure (Rehm, 1968). A large number of experi-
ments have made it clear that bond failure of ribbed
bars takes place by extensive splitting of the concrete
cover due to inefficient containment. Typical exam-
ples are tensile lapped joints in beams (Roberts and
Ho, 1973) and compression lapped joints in columns

(Cairns and Arthur, 1979). Several researchers, such
as Tepfers (1979) and Cairns (1979), have presented
theoretical studies related to the splitting failure of
concrete cover due to the radial component of bond
forces exerted on the surrounding concrete from a
ribbed bar.

In contrast, failure can occur by shearing of the
concrete, i.e. slipping of the bar, provided that suf-
ficient containment over the bar is present (Astill
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and Al-Sajir, 1980; Astill and Turan, 1982) so that
bursting forces produced by the bond action of the
bar do not overcome the splitting resistance of the
member prior to shearing forces. This type of bond
failure was observed in tests concerning the anchor-
age bond of ribbed bars in the transference of load
from columns to foundations, details of which are
given in a previous study (Turan, 1983). This ef-
fect is related to the resistance to bursting forces
provided by the large containment available over the
column compression bars in the anchorage length of
the base.

The Mindlin solution (Mindlin, 1936) for a force
at a point in the interior of a semi-infinite elastic
solid has led to the elastic analysis of many engineer-
ing problems associated with friction bonds (Mattes
and Poulos, 1969; Poulos and Davis, 1968; Ivering,
1980). In the present study, the theoretical analy-
sis of the compression bond of column longitudinal
reinforcement in the foundation is carried out using
the Mindlin equation (Mindlin, 1936) in conjunction
with finite difference calculus, which takes into ac-
count slip failure of the ribbed bars in the anchor-
age lengths. The theoretical work is divided into
two parts, namely, elastic analysis and elastic-plastic
analysis.

2. Elastic Analysis

In this analysis, a cylindrical surface is assumed
for ribbed bars with a nominal diameter of circular
cross-section such that the bar configurations act as
exaggerated roughness and the column longitudinal
reinforcement is considered compressible in relation
to the surrounding concrete with a constant elastic
modulus Es. The anchorage length of the bar is di-
vided into n equal cylindrical elements. It is assumed
that each bar element is subjected to a uniform bond
stress. The bar tip is considered to be a smooth rigid
circular disc of the same diameter as the bar shaft,
across which a vertical stress is uniformly distributed
and the embedding concrete medium is assumed to
be an ideal elastic material with constant Young’s
modulus Ec and Poisson’s ratio vc.

The solution to the problem involves the com-
putation of the displacement factors. The vertical
displacement influence factors for the bar elements
may be obtained by integration of the Mindlin equa-
tion (Mindlin, 1936). From the Mindlin equation the
vertical displacement influence factor, at any point
in a semi-infinite elastic solid, due to a downward
force in the interior of the solid is

wb =
1

16πGc(1− vc)

[
3− 4vc
R1

+
8(1− vc)2 − (3− 4vc)

R2
+

(z̄ − c)2

R3
1

+
(3 − 4vc)(z̄ + c)2 − 2cz̄

R3
2

+
6cz̄(z̄ + c)

R5
2

]
(1)

where R1, R2, z̄ and c are geometric relationships as
shown in Figure 1, and R1 and R2 and are given by

R1 =
√

[r̄2 + (z̄ − c)2];

R2 =
√

[r̄2 + (z̄ + c)2] (2)

As can be seen in Figure 2, z̄ = (i − 1/2), z =
(z̄+c) and z1 = (z̄−c). Substituting z = (z̄+c), z1 =
(z̄−c), z̄ = (z−c) and Gc = Ec/(1+2vc) in equation
1, and defining

V =
1 + vc

8π(1− vc)Ec
V1 =

z2
1

R3
1

V2 =
(3 − 4vc)

R1

V3 =
5− 12vc + 8v2

c

R2

V4 =
(3− 4vc)z2 − 2cz + 2c2

R3
2

V4 =
6cz2(z − c)

R5
2

in which

R1 =
√

4a2 cos2 θ + z2
1

R2 =
√

4a2 cos2 θ + z2 (3)

it follows that

wb = V (V1 + V2 + V3 + V4 + V5) (4)

Referring to Figure 2, consider a point i at the mid-
height of the ith element on the periphery of the bar
having radius a. For the point i the influence factor
for vertical displacement due to a bond stress on the
jth element may be given by

wij = 4a
∫ jδ

(j−1)δ

∫ π/2

0

[V (V1+V2+V3+V4+V5)]dθdc(5)
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Figure 1. Geometric representation for Mindlin problem
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Figure 2. Geometric representation for a cylindrical bar element
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Figure 3. Geometric representation for the end of the bar
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The geometric representation for the end of the bar
(i.e. bar tip) is indicated in Figure 3. Similarly, for
the point i the influence factor for vertical displace-
ment due to uniform stress on the bar end is

wib =
∫ 2π

0

∫ a

0

[V (V1 + V2 + V3 + V4 + V5)]rdrdθ (6)

in which

c = n;R1 =
√
z2

1 + a2 + r2 − 2ra cos θ;

R2 =
√
z2 + a2 + r2 − 2ra cos θ (7)

If the influence factor for the displacement of the
centre of the bar end due to bond stress on element
j is taken into account, it will be

wbj = 2πa
∫ jδ

(j−1)δ

[V (V1 + V2 + V3 + V4 + V5)]dc (8)

in which

i = n+
1
2

;R1 =
√
z2

1 + a2;R2 =
√
z2 + a2 (9)

Finally, the influence factor for vertical displacement
of the bar tip due to the load on the tip is

wbb =
π2

2

∫ a

0

[V (V1 + V2 + V3 + V4 + V5)]rdr (10)

For use in equation (10),

i = n+
1
2

; c = n;R1 = r;R2 =
√

4c2 + r2 (11)

The integrals in equations 5, 6, 7 and 10 are eval-
uated numerically. To carry out the numerical in-
tegration, the grid meshwork for the bar elements
and the bar tip is shown in Figure 4. It is noted
that the grid indication number M=49 was found to
be satisfactory to produce sufficient accuracy in the
numerical integrations, and was therefore used con-
sistently throughout the theoretical analyses. The
integration of equation 5 produces vertical displace-
ment influence factors of all n elements of the bar
due to a bond stress on each element, which may be
given in matrix form as

[DB] =


W11 W11 . . . Wln

W21 W21 . . . W2n

. . . . . .
Wn1 Wn1 . . . Wmn

 (12)

Likewise, the integration of equation 5 produces ver-
tical displacement influence factors for n bar ele-
ments due to a normal stress on the bar tip. Sim-
ilarly, the integration of equation 8 yields the dis-
placement influence factors for the bar tip due to a
bond stress on n elements of the bar. They may be
expressed by the following column and row matrices
respectively.

[DC] =


W1b

W2b

.
Wnb

 (13)

[DF ] =
[
Wb1 Wb2 . . Wbn

]
(14)

Finally, the integration of equation 10 yields a scalar
representing the displacement influence factor for the
bar tip itself, which is labelled as

Wbb = Wbb (15)

Expressions 12, 13, 14, and 15 may be collected in
an overall matrix given by

[CS] =


W11 W12 . . . Wln W1b

W21 W22 . . . W2n W2b

. . . . . .
Wn1 Wn2 . . . Wnm Wnb

Wb1 Wb2 . . . Wbn Wbb

 (16)

It is noted that when the end bearing of the bar is
neglected, matrix [CS] becomes

[CS] = [DB] (17)

3. Proposed Method

An outline of a cylindrical bar of length (la) embed-
ded in an isotropic elastic concrete medium is shown
in Figure 5. Since the elastic conditions prevail in
the surrounding concrete, at any point along the bar
periphery the displacements of the concrete must be
compatible to those of the bar itself. Thus, to ob-
tain a solution for the unknown stresses on the bar-
to-concrete interface and the corresponding displace-
ments, the displacement of the concrete adjacent to
the bar may be equated to the displacement of the
bar itself.
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Figure 4. Grid meshwork of bar elements and the bar tip
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Figure 5. Stresses in the bar and surrounding concrete medium

It was evident from previous tests (Turan, 1983)
that the bursting forces produced by the bond ac-
tion of the ribbed bars were ineffective because of
the large concrete containment available over the
bars in the base. On the other hand, inclusion of
base tension reinforcement - which is normally al-
ways present - or provision of links round the bars
within the anchorage length, or a combination of the
two also introduces an extra confining element to the
bars against the bursting effect. Thus, the bursting
forces are virtually negligible in the foundation, and,
hence the radial displacement of the concrete is very
small. Therefore, the radial displacement of the con-
crete is neglected in the analysis, and only the com-
patibility of the vertical displacement is taken into
account. The vertical displacements are computed at
the mid-point of the periphery of each bar element.

Referring to Figure 5a, let the vertical displace-
ment of the concrete adjacent to the bar at any ele-
ment i, due to a bond stress on element j, be ∆cij.
Taking downward displacement to be positive, ∆cij

may be given by

∆cij =
φ

Ec
Wijτij (18)

Similarly, the displacement at i due to a normal
stress on the bar tip is

∆cib =
φ

Ec
Wibτib (19)

Thus, the vertical displacement at i due to all n bar
elements and to the bar tip may be expressed as

∆ci =
φ

Ec
(
n∑
j=1

Wijτij + Wibτib) (20)

When the vertical displacement of the concrete un-
der the bar tip due to the bond stress on element j
is considered, it will be

∆cbj =
φ

Ec
Wbjτj (21)

324



TURAN

Finally, the vertical displacement of the concrete un-
der the bar tip due the normal stress on the bar tip
may be expressed as

∆cbb =
φ

Ec
Wbbτb (22)

Hence, the vertical displacement of the concrete un-
der the bar tip due to all n bar elements and to the
bar tip itself is

∆cb =
φ

Ec
(
n∑
j=1

Wbjτj +Wbbτb) (23)

Equations 20 and 23 may be formulated in the fol-
lowing matrix form:

[∆c] =
φ

Ec
[CS][τ ] (24)

In order to determine the displacement of the bar it-
self, the bar is assumed to be subjected to pure axial
compression only. Consider a small bar element on
which the stresses act as shown in Figure 5b. From
the vertical equilibrium of the bar element, resolving
forces leads to the following expression

∂σ

∂z
= −τπφ

As
(25)

Defining As as

As =
πφ2

4
(26)

and substituting As in equation 26 and simplifying
gives

∂σ

∂z
= −4τ

φ
(27)

Referring to Figure 5b, consideration of the axial
strain of the bar element gives

∂∆s
∂z

= − σ

Es
(28)

where ∆s is the displacement of the bar. Differenti-
ating equation 18 with respect to z and substituting
∂σ/∂z from equation 27 leads to the following equa-
tion for the displacement of the bar:

∂2∆s
∂z2

=
4τ
φEs

(29)

Equation 29 may be represented in terms of the fi-
nite difference expressions. For an element i within
the interval n − 1 ≥ i ≥ 2, equation 19 may be ex-
pressed in the following finite difference form to give
the bond stress as

τi =
φ

4δ2
Es(∆si−1 − 2∆si + ∆si+1) (30)

∆si−1,∆si and ∆si+1 are the displacements of the
mid-points of the elements i-1, i and i+1 respectively,
and δ = la/n

Referring to Figure 5c, at the top of the bar con-
sider an imaginary element having a mid-point dis-
placement ∆′s1, above the first real element. At the
top of the bar, the normal stress in the bar is

G =
P

As
(31)

Hence, referring to equation 28, the displacement of
the imaginary element may be related to the dis-
placement of the uppermost real element as

∆′s1 = ∆s1 +
σ

Es
(32)

Substituting 31 in equation 32, re-writing equation
30 for the first real element and substituting the
value of ∆′ s1 from 32 in equation 30 results in the
bond stress on the first element in the form

τ1 =
φ

4δ2
Es(−∆s1 + ∆s2) +

Pn

πφla
(33)

In order to obtain the finite difference expression for
the bottom element of the bar n, the bond stress may
be related to the displacements of elements n-2, n-1,
n and the bar tip, using equation 29 and finite differ-
ences for points with unequal spacing, which yields
the required expression for the bond stress on the
element n as follows:

τn =
φ

4δ2
Es(−0.2∆sn−2

+ 2∆sn−1 − 5∆sn + 3.2∆sb) (34)

Finally, to obtain the expression for the bar tip, i.e.
the (n+1)th element, equation 28 may be applied to
the bar tip, employing a finite difference expression
for an unequal spacing of pivotal points, which leads
to

τb =
φ

4δ2
Es

la
φn

(−1.33∆sn−1 + 12∆sn − 10.67∆sb) (35)

Equations 30, 33, 34 and 35 may be given in matrix
form as

[τ ] =
φ

4δ2
Es[CP ][∆s] + [Y ] (36)

where [CP] is the (n+1) square matrix of coefficients
for bar action and is defined by
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[CP ] =


−1 1 0 0 . . . 0 0 0 0
1 −2 1 0 . . . 0 0 0 0
0 1 −2 1 . . . 0 0 0 0
. . . . . . . . . . .
0 0 0 0 . . . −0.2 2 −5 3.2

. . . 0 −1.33t 12t −10.67t

 (37)

in which

t =
la
φn

(38)

[∆s] and [Y] are the (n+1) column matrices de-
fined by

[∆s] =


∆s1

∆s2

.
∆sn
∆sb

 (39)

[Y ] =


Pn
πφla

0
.
.
.

 (40)

Since the conditions within the concrete remain elas-
tic, the displacements of the concrete and the bar
must be compatible.
Hence

[∆s] = [∆c] (41)

From equations 14 and 26,

[τ ] =
(

[I]− φ2 Es
4δ2Ec

[CP ][CS]
)−1

[Y ] (42)

where [I] is the identity matrix. Defining

K =
Es
Ec

(43)

δ =
la
n

(44)

and

[C] = [I]− n2

4
(
la
φ

)2
K[CP ][CS] (45)

it follows that

[τ ] = [C]−1[Y ] (46)

Solution of equation 45 produces unknown bond
stress on the bar surface along the anchorage length
of base and the normal stress acting on the bar tip,
or, in the case of no end bearing, bond stresses on
the bar periphery only. Then the distribution of dis-
placement along the bar can be computed from equa-
tion 14. The elastic analysis is extended in order to
carry out elastic-plastic analysis by considering the
local bond failure between the reinforcing bar and
surrounding concrete medium.

4. Elastic-Plastic Analysis

For the development of the elastic-plastic analysis,
a uniform and constant ultimate bond strength is
considered for each bar element along the anchorage
length, and a uniform ultimate end bearing resis-
tance for the bar tip when the end bearing is pre-
sent. It is assumed that when the bond stress devel-
oped on any bar element reaches the ultimate bond
strength, local yield (i.e. bond failure) will occur in
the related concrete layer, and, therefore, displace-
ment compatibility does not exist between the bar
element and, this concrete layer, while the rest of
the concrete layers remain elastic.

Consider a bar with n elements embedded in
a concrete medium and subjected to an axial load
as shown in Figure 6a. The corresponding stresses
are indicated in Figure 6b. As the externally
applied load increases, the stresses and displace-
ments increase proportionally until the bond stress
somewhere on a bar element reaches ultimate bond
strength in the related concrete layer. Once this oc-
curs, the layer is not compatible with the bar element
concerned. The displacements and bond stresses
elsewhere in the bar now increase at a faster rate
because any increase in the applied load will cause
a redistribution of stresses and displacements in the
remaining elastic layers. The ultimate bond stress on
the element, however, preserves its value, as seen in
Figure 6c. This continues until the ultimate stresses
on all bar elements develop in the related concrete
layers as shown in Figure 6d the failure takes place
in the foundation. The steps for the elastic-plastic
analysis are given as follows:
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Figure 6. Geometric representation for elastic-plastic analysis

1- The reinforcing bar is analysed elastically once
under [C] and [Y] for an axial working load of p. The
resulting bond stresses on the bar shaft and the as-
sociated vertical displacements, or, in the case of end
bearing, the bond stresses on the bar periphery to-
gether with the normal stress on the bar tip and the
corresponding displacements are computed. For con-
venience they are stored in the column matrices [ST]
and [DEF], respectively:

[ST ] =


τ̄1
τ̄2
.
τ̄n
τ̄b

 (47)

[DEF ] =


∆̄c1
∆̄c2
.

∆̄cn
∆̄cb

 (48)

2- Every possible yield location within the con-
crete layers due to the ultimate bond stress on the re-
lated bar element is taken into consideration in turn,
and the load factor at which local yield occurs in the

concrete layer k is computed from

λk1 =
τku
τ̄k

(49)

where τku is the ultimate bond strength of the bar
in layer k and τ̄k is the bond stress on the bar el-
ement in layer k due to the applied working load.
The lowest of these predicted load factors is chosen.
This is now the load factor λ1 at which the first yield
occurs in layer k?. The current stresses on the bar
elements and displacements are obtained by scalar
multiplying the column matrices [ST] and [DEF] by
λ1. Since the layer k? has yielded, the free slip of the
bar occurs in this layer. After that, any increase in
the applied load will lead to a redistribution of stress
on the bar elements in the remaining layers. There-
fore, the displacement compatibility between the bar
and the concrete in the elastic layers must be consid-
ered. Then the resulting compatibility equations are
solved in order to obtained the distribution of stress
and displacement along the bar until the yield of the
next concrete layer takes place.

3- For a further increase ∆λ = λ − λ1 in the
load factor, the current stresses and displacements
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are calculated as

[ST ]λ = [ST ]λ1 + ∆λ[τ ] (50)

[DEF ]λ = [DEF ]λ1 + ∆λ[∆c] (51)

where [ST ]λ represents the bond stresses or bond
stresses and normal stress under the load parameter
λ, while [ST ]λ1 relates the same stresses under load
factor λ1. Similarly [DEF ]λ and [DEF ]λ1 represent
the vertical displacements under the load factors λ
and λ1 respectively. Again, each yield location in
the concrete layers is considered in turn. The load
factor at which a local yield occurs in that layer is
calculated by equating the current bond stress to the
ultimate bond strength of the layer. Thus,

λ2 = λ1 +
τu(i) − ST (i)

τ̄ (i)
(52)

The smallest of these load factors is selected as the
load factor which causes the next yield in one of
the concrete layers. The bar stiffness factor K is
very small, i.e. the bar is compressible in relation to
the surrounding concrete, and, therefore, high bond
stresses develop at the top on the surface of the first
bar element, as shown in Figure 6b. Consequently,
the yield starts at the top of the bar in the first con-
crete layer and continues progressively downward in
the remaining elastic layers towards the bottom as
the applied load is increased.

4- The current stresses on the bar elements and
the associated vertical displacements are computed
from equations 50 and 51 by substituting ∆λ =
λ2 − λ1 and ∆α = λ2. If all the concrete layers
have yielded due to the ultimate bond stress devel-
opment on the bar elements and the ultimate bearing
resistance of the concrete under the bar tip has been
attained when the end bearing is present, the pro-
cess is stopped. Otherwise, λ2 is taken as λ1 and the
steps 2 and 3 are repeated until failure takes place.
To assess the ultimate bond strength for the bar el-
ements along the anchorage length, the expressions
obtained from a regression analysis of the test re-
sults, details of which are given in a previous study
(Turan, 1983), are used.

5. Bond Stress Distribution

To simulate the conditions in the tests and for di-
rect comparison, the end bearing of the column bars
was not considered in the solutions for the predic-
tion of bond stress distribution with load. Figure
7 shows the theoretical and experimental load-bond
stress distribution curves in test SR2-1, which used 4-
25 mm ribbed bars in a plain concrete base. The bar
stiffness factor, which is the measure of compress-
ibility of the bar, is very small, i.e. K=Es/Ec=7.74,
in the test. The theoretical analysis therefore shows
that the bond stress is greatest on the first bar ele-
ment and least on the last element in the anchorage
length. This is the general trend observed experi-
mentally in tests conducted on full-scale bases (Tu-
ran, 1983), in which the bar stiffness factor K varied
between 6.76 and 9.90. In the elastic stage, the theo-
retical bond stress is slightly higher than the experi-
mental one at the top and bottom part of the anchor-
age length, while the experimental value of the bond
stress is slightly higher than the theoretical value in
the middle part up to a load of 140 kN. Beyond this
load, the discrepancy between the values at the top
and middle parts of the anchorage length gradually
increases. At a load of 360 kN, where the theoretical
bond stress has reached the ultimate value on two
bar elements, the theoretical curve indicates higher
values in the upper part and lower values in the lower
part of the anchorage length than those recorded in
the experimental curve. The mean value of the ra-
tio of the theoretical bond stress to the experimental
bond stress for all bar elements is 0.975. At a load of
490 kN, both curves indicate closer agreement and,
the mean value of ratio of the theoretical bond stress
to experimental bond stress is 0.992. Finally, at a
load of 560 kN, beyond which no more experimen-
tal data was available due to the first effective slip,
both curves are in close agreement. At the lower
part of the anchorage length, both curves agree ap-
proximately, while the experimental curve indicates
a peak at the top. It can also be seen in Figure 7
that on both curves bond stresses decrease to a very
small magnitude at approximately the same location
at the bottom part of the anchorage length. This ef-
fect was also observed by Ivering (1980) in the elastic
analysis of tube anchorage in rock.
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Figure 7. Load versus experimental and theoretical bond stress distribution in test SR 2.
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Figure 8. Load versus experimental and theoretical bond stress distribution in test SR 2-2

Figure 8 shows load versus theoretical and ex-
perimental bond stress distributions for test SR2-2,
which varies the anchorage length of column bars in
the base. The theoretical and experimental curves
indicate that the bond stress is greatest at the top
and least in the bottom region of the anchorage
length. In the elastic stage, there is close agreement
with the theoretical curve, the experimental curve
records slightly greater bond stresses in the top and

slightly smaller bond stresses at the bottom part of
the base up to a load of 160 kN. After this level
of load the theoretical values are greater in the up-
per part, while the experimental values increase at a
higher rate in the lower part of the anchorage length.
The theoretical and experimental bond stress curves
are illustrated in Figure 8 for the loads of 360 kN,
465 kN and 540 kN respectively, the final load be-
ing the load beyond which no experimental data was
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available due to the first slip. The mean ratio of
the theoretical bond stress to the experimental bond

stress is 0.977, 0.985 and 0.988 respectively for these
loads.
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Figure 9. Load versus experimental and theoretical bond stress distribution in test SR7-1
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Figure 9 shows the theoretical and experimental
load-bond stress distribution curves for test SR7-1,
which includes closely spaced links over the column
bars in the base. In the elastic stage both curves de-
scend nonlinearly towards the bottom of the base and
show similarities in shape. However, the theoretical
curve indicates higher values at the top and lower
values at the bottom part of the anchorage length
than those recorded by the experimental curves. In
the elastic-plastic stage, the theoretical and exper-
imental curves are shown at loads of 400 kN, 550
kN and 700 kN respectively, the final load being the
load stage beyond which experimental data was not
obtainable due to the first slip. The mean ratio of
the theoretical bond stress to the experimental bond
stress indicated by the curves is 0.992, 0.975 and
1.022 at loads of 400 kN, 550 kN and 700 kN respec-
tively.

Figure 10 shows a series of theoretical and ex-
perimental load-bond stress distribution curves for
test SR7-2, in which transverse reinforcement is in-
troduced. Both curves indicate that the maximum
bond stress is at the top near the column to base
interface at each load step until the first slip occurs.
Both curves also show that the maximum bond stress
at the top decreases downward and reaches the low-
est level at the bottom part of the anchorage length.
In the elastic stage, the experimental curve records
smaller values at the upper part and higher values
at the lower part of the base than those indicated by
the theoretical curve. In the elastic-plastic stage, the
theoretical and experimental bond stress curves are
also shown at loads of 500 kN and 625 kN, the latter
being the load beyond which the first slip occurred.
The mean value of the ratio of the theoretical bond
stress to the experimental bond stress for the above
loads is 0.973 and 0.978 respectively.

In the remainder of the 16 tests, the theoretical
bond stress distribution along the anchorage length
follows the same trend as that described in the pre-
ceding paragraphs. From the above observations it
is concluded that the proposed theory predicts the
bond stress distribution with reasonable accuracy by
comparison with the experimental results. The bar
stiffness factor K has a significant influence on the
distribution of bond stress and, as K decreases, the
magnitude of the bond stress at the top part of the
anchorage length increases.

By considering the end bearing of the bar, a sep-
arate series of theoretical computations were carried
out. These solutions showed that the distribution of

bond stress along the anchorage length was not mate-
rially different from that of distribution without end
bearing. This can be attributed to the low bar stiff-
ness factor K, such that only small stresses develop
at the bottom part of the bar, including the normal
stress on the bar tip. Consequently, a small propor-
tion of the load would be transferred to the concrete
by the end of the bar. This effect was also observed
by Mattes and Poulos (1969) for compressible piles.
However, to clarify this, further experimental and
theoretical studies are required.

6. Vertical Displacements

To obtain the theoretical values, the anchorage
length of the bar was divided into ten equal elements,
and then elastic-plastic analysis without end bearing
was carried out. The vertical displacement of the col-
umn bars at each yield of concrete layer in the base
was computed as

∆sv =
λip(δi + lv)

AsEs
+ (DEF )i (53)

where the first term on the right hand side indicates
the vertical displacement of the column bars itself in
axial compression at load factor λi, which comprises
the length of bar elements (δ.1) within the yielded
concrete layers and the length of the column bars lu
above the base, and (DEF)i is the vertical displace-
ment of the concrete obtained from equation 14 at
load factor λi.

Figure 11 shows the theoretical and experimen-
tal vertical displacements plotted against the applied
load for test SR2-1. It can be seen that neither curve
shows any significant change and they almost match
each other near the ultimate load. Up to a level
of two-thirds of the experimental failure load, the
experimental curve is slightly steeper than the theo-
retical one. Beyond this stage the theoretical curve
becomes steeper as the experimental curve diverges
close to the failure. However, the values indicated by
the experimental curve are insignificantly different in
numerical terms from the theoretical values. Finally,
the experimental curve records a very large amount
of slippage, indicating the failure of the test. At the
ultimate load, the theoretical curve also shows that
as the displacement compatibility is lost between the
steel and concrete, due to the ultimate bond stress
development on the bar shaft, full slip takes place in
the base.
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Figure 11. Theoretical and experimental load-vertical displacement curves for test SR2-1

A comparison of the theoretical and experimental
load-vertical displacement diagrams for test SR2-2 is
shown in Figure 12. The theoretical curve indicates
slightly overestimated values compared with the ex-
perimental curve up to approximately 60% of the
experimental load. Beyond this stage, the experi-
mental curve becomes gradually flatter with load-
ing, but the displacements are relatively small close
to the failure. Eventually, the curve shows that ma-
jor slip takes place at the ultimate load. The the-
oretical curve also shows that as the failure load is

approached full slip occurs in the anchorage length
of the base.

Figure 13 shows the theoretical and experimen-
tal load-vertical displacement curves for the column
bars in test SR7-1. Both curves almost match each
other, the experimental curve being slightly steeper
than the theoretical one, up to approximately two-
thirds of the failure load. Then the experimental
curve gradually diverges close to the failure. The
experimental curve also shows that major slip takes
place at the ultimate load. When the theoretical fail-
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ure load is approached full slip of the column bars in
the anchorage length takes place.

Figure 14 indicates the theoretical and experi-
mental vertical displacement of the column bars with
respect to the applied load for test SR7-2. It can be
seen that both curves agree without any significant
change, from zero to nearly half the ultimate load.
Then, the theoretical curve becomes steeper as the
experimental curve gradually diverges with loading.
However, the difference between the theoretical and
experimental values is not significant near to the ul-
timate load. Finally, both curves indicate that full

slip of the bars occurs in the anchorage length of the
base at the ultimate load.

7. Ultimate Loads

A comparison of the theoretical and experimental
failure loads for the foundation tests is given in Ta-
ble 1. For direct comparison with the experimental
failure loads, the end bearing of the column bars was
neglected in the analysis. The ultimate load of the
tests, which used four column bars throughout, was
computed as
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Pult = 4λp (54)

where λ is the overall load factor, at which all
concrete layers yielded due to the ultimate bond
stress development on the bar elements along the an-
chorage length, and p is the working load. It can be
seen from Table 1 that the values determined from
the theory compare favourably with the experimen-
tal results.

By considering the end bearing of the column
bars in the base, further theoretical solutions were
carried out for a number of tests. These results indi-
cate on average a mere 7% increase at the ultimate
load by comparison to the theoretical failure load
without end bearing. However, in the solutions the
ultimate end bearing resistance was taken as the con-
crete compressive strength. This is a rough estimate
somewhat on the conservative side.
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Table 1. Comparison of experimental and theoretical failure loads
Concrete Experimental Theoretical

Test Compressive Ultimate Ultimate

Specimen Strength Load Load
Ptest
Pult

No fcu Ptest Pult
N/mm2 kN kN

SR1-1 31.76 365.00 378.50 0.964
SR1-2 32.31 543.70 527.02 1.032
SR1-3 31.13 1400.00 1407.10 0.995
SR2-1 32.96 637.50 695.38 0.917
SR2-2 34.71 840.00 942.44 0.891
SR3-1 34.47 1125.00 1144.41 0.983
SR4-1 30.60 1400.00 1428.68 0.980
SR4-2 31.22 1450.00 1530.71 0.947
SR4-3 29.29 1575.00 1595.94 0.987
SR5-1 29.40 1525.00 1567.68 0.973
SR5-2 32.80 1500.00* 1656.78 0.905
SR6-2 34.70 650.00 708.68 0.917
SR6-3 31.67 680.00 755.86 0.900
SR6-4 32.02 756.20 820.02 0.922
SR7-1 32.56 725.00 780.09 0.929
SR7-2 32.67 837.50 918.97 0.911
SR8-1 25.56 525.00 616.68 0.851
SR8-2 21.90 487.50 573.18 0.881
SR8-3 27.82 575.00 631.38 0.911
SR8-4 36.30 667.50 719.58 0.928
Mean 0.936

Coefficient of variation 4.81
? : indicates no bond failure of column bars in the foundation
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8. Conclusions

On the basis of the theoretical investigation pre-
sented in this paper the following conclusions are
drawn.
1) The theoretical analysis shows that the maximum
and minimum bond stresses are at the top and bot-
tom parts of the anchorage length respectively, and
vary nonlinearly in between, which confirms the gen-
eral trend indicated by the experimental results.
2) The theoretical solutions indicate that the distri-
bution of the bond stress along the anchorage length
of the column bars in the base is significantly in-
fluenced by the bar stiffness factor K, which is the
measure of the compressibility of the bar. As K
decreases, i.e. the bar becomes more compressible,
the magnitude of the bond stress at the top part of
the anchorage length increases, which results in lo-
cal yield in the concrete at smaller loads and, the
proportion of the load transferred to the concrete
by bond by the lower part of the bar in the base is
significantly decreased. The theoretical analysis also
shows that the influence of the K on the distribution
of bond stress is more significant for greater anchor-
age lengths.
3) The proposed method predicts the distribution of
the bond stress over the anchorage length of the col-
umn bars with reasonable accuracy when compared
with the experimental results.
4) The proposed theoretical method determines the
vertical displacement of ribbed bars with good de-
gree of accuracy as can be seen by comparison with
the experimental results.
5) The failure loads obtained from the theoretical
analysis for foundations, are in very good agreement
with the test results.

8.1. Notation

a radius of bar
As cross-sectional area of bar
[C] compound matrix
[CP] matrix of coefficients for bar action
[CS] vertical displacement influence

factors matrix for concrete
[DB] sub-matrix of [CS]

(DEF)i vertical displacement of
concrete at load factor λi

Ec Young’s modulus of concrete
Es Young’s modulus of steel
Gc shear modulus of concrete
K bar stiffness factor
M grid indication number for

numerical integration
n number of cylindrical bar

elements
P axial load on column bar
p axial working load
Ptest experimental ultimate load
Pult theoretical ultimate load
wij, wib influence factors for vertical

displacement at point i due to
stresses on element j and bar
tip, respectively

wbj, wbb influence factors for
vertical displacement of bartip
due to shesses on element j
and the bartip, respectively

[Y] column matrix of constants
[∆c] vertical displacement matrix

of concrete
∆cb vertical displacement of

concrete under bar tip due to
bond stress on bar elements
and normal stress on bar tip

∆ci vertical displacement of
concrete at point i due to
bond stress on bar elements and
normal stress on bar tip

[∆s] vertical displacement matrix
of bar elements

∆sv vertical displacement of column
bars

δ length of bar element
λ overall load factor
λ1, λ2, λ

i load factors
σ normal stress in column bar
θ angle
τ bond stress
τb normal stress on bar tip
τu ultimate bond stress
vc Poisson’s ratio of concrete
φ nominal bar diameter
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