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Abstract

In nonlinear analysis of fluid mechanics problems, small amplitude oscillations near the Hopf bifurcation
point are well-described by the Ginzburg-Landau equation. The coefficients of the Ginzburg-Landau equa-
tion can be computed efficiently and conveniently by Singular Value Decomposition (SVD). In this study,
the Ginzburg-Landau equation is derived for plane Poiseuille flow problem of a Newtonian fluid and the
SVD method is applied in order to show how to find the coefficients of the Ginzburg-Landau equation. The
analysis indicates that SVD is easy to implement and straightforward; making it the method of choice for
the numerical computations of the coefficients of amplitude equations.
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Lineer Olmayan Poiseuille Akıştaki Amplitüd Denklemlerinin Katsayılarının
Nümerik Hesabı

Özet

Lineer olmayan akışkanlar mekaniği problemlerinin analizinde, Hopf çatallaşma noktası yakınındaki
düşük amplitüdlü osilasyonlar Ginzburg-Landau denklemi ile formüle edilebilirler. Ginzburg-Landau den-
kleminin katsayıları Tekil Değer Ayrışımı (TDA) metodu ile pratik ve kolay olarak hesaplanabilir. Bu
çalışmada, Ginzburg-Landau denklemi Newtoniyen bir akışkanın Poiseuille akışı için çıkarılmış ve den-
klemin katsayılarının TDA metodu uygulanarak nasıl bulunabileceği gösterilmiştir. Bu analizin sonuçları
göstermektedir ki TDA, kolay ve direkt olarak uygulanabilir olması özelliğinden dolayı, amplitüd denklem-
lerinin katsayılarının nümerik olarak hesaplanması arzulanan durumlarda tercih edilebilecek bir metoddur.

Anahtar Sözcükler: Poiseuille akış, Stabilite, Çatallaşma teorisi, Tekil Değer Ayrışımı

Introduction

It is known from the experiments of Davies and
White (1928) that in plane Poiseuille flow turbulence
of some kind can exist at Reynolds numbers, Re,
(based on half channel width and maximum veloc-
ity) as low as 1000. However, the linearized theory
of instability (Orszag, 1971) gives a value of Rec,

critical Reynolds number, of about 5772. Conse-
quently the linearized theory gives results radically
different from those of relevant experiments. A pos-
sible explanation for this discrepancy is that even for
Re<Rec, nonlinear effects might provide a threshold
amplitude above which velocity perturbations could
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grow and stimulate instabilities. Therefore, nonlin-
ear theory provides information on the following two
important questions that arise in hydrodynamic in-
stability: whether or not a flow which is stable to
infinitesimal distrubances might be unstable to dis-
turbances of some finite amplitude, and what the na-
ture of the finite amplitude equilibrium flow which
develops as a result of an initial instability would be.

The nonlinear stability analysis presented here is
based on the bifurcation theory. This theory is re-
stricted in applications to those cases in which there
is a threshold for instability, i.e. stable solutions
exist. In these cases, one may go beyond bifurca-
tion into monochromatic waves and derive amplitude
equations which allow for slow modulations of wavy
flow in space and time. This amplitude equation
is called the Ginzburg-Landau equation and is ap-
plicable to small-amplitude waves which modulate a
monochromatic wave of wavelength 2π/αc, where αc
is the critical wavenumber at the nose of the neutral
curve.

There are various ways to compute amplitude
equations of bifurcation problems. The bifurcation
parameters and the coefficient for the amplitude
equations can be determined by formulas express-
ing the requirements of the Fredholm alternative.
The Fredholm alternative requires that the inhomo-
geneous terms in he underlying system of differential
equations, which contain the unknown coefficients,
be orthogonal to the indepented eigenvectors that
span the null-space of the adjoint system of differ-
ential equations. These formulas involve many unit
operations, explicit calculation of the adjoint, and
integration over the flow domain of a multiplica-
tive composition of eigenfunctions and adjoint eigen-
functions. These operations can not usually be car-
ried out analytically and require numerical computa-
tion. This conventional solution procedure requires
too much work especially for complicated problems
like those which arise in two-fluid dynamics. There-
fore the numerical computation of bifurcation has
become increasingly popular in recent years.

In numerical computation, one works entirely
with the matrix formulations generated by the ini-
tial discretization. SVD is a natural, powerful and
practical method to carry out these numerical com-
putations. Langford (1977) who studied two-point
boundary value problems shows how SVD can be
applied to the numerical solution of perturbation
problems. He proposed an algorithm converting a
two-point boundary value problem to an initial value

problem plus a least squares problem. He solved the
best least squares problem by applying SVD. How-
ever, the solvability condition was still enforced by
evaluating a complicated integral involving the ad-
joint eigenvector. A full application of SVD to bi-
furcation problems was made by Chen and Joseph
(1991). They applied the method to compute the
coefficients of the Ginzburg-Landau equation for the
nonlinear evolution of interfacial waves arising from
axisymmetric disturbances of core-annular flow of
two fluids in a pipe.

The objective of this study is to present a general
review of the methodology of SVD and its applica-
tion to bifurcation problems. SVD method is applied
to amplitude equations resulting from the consider-
ation of small-amplitude oscillations near the Hopf
bifurcation point and the numerical computation of
the coefficients of amplitude equations for the case
of plane Poiseuille flow is considered.

Amplitude Equations

The onset of instabilities due to infinitesimal distur-
bances can be predicted accurately by linear stabil-
ity analysis in a fluid flow problem and the critical
value of the flow controlling prameter, say Reynolds
number, Rec can be determined (see, for example,
Pınarbaşı and Liakopoulos, 1995). If the amplitude
of disturbances after Rec becomes too large, a non-
linear theory is required in order to follow the evo-
lution of such perturbations. Small-amplitude oscil-
lations near the Hopf bifurcation point are generally
governed by a simple evolution equation. If such
oscillations form a field through diffusion-coupling,
the governing equation is a simple partial differen-
tial equation called the Ginzburg-Landau equation.
A brief description of the amplitude equations will be
presented here, but the derivation of the Ginzburg-
Landau equation will be given in the next section
by considering nonlinear analysis of plane Poiseuille
flow. It should be noted here that the Ginzburg-
Landau equation is not only related to a few fluid
mechanical or optical problems but that it can be
deduced from a rather general class of partial differ-
ential equations.

Many theories on the nonlinear dynamics of the
dissipative systems are based on the first-order ordi-
nary differential equations (Kuramoto, 1984)

dXi
dt

= Fi(X1 , X2, . . . , Xn;µ), i = 1, 2, . . . , n(1)

which include some control parameters represented
by µ. For some range of µ, the system may re-
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main stable in a time-independent state. In particu-
lar, this is usually the case for macroscopic physical
systems which lie sufficiently close to the thermal
equilibrium. In many systems, such a steady state
loses stability at some critical value µc of µ, and
beyond it (say µ > µc), turns into a periodic mo-
tion. In the parameter-amplitude plane, this appears
as a branching of some time-periodic solutions from
a stationary solution branch, and this phenomenon
is generally called Hopf bifurcation. As µ increases
further, the system may show more and more com-
plicated dynamics through a number of bifurcations.
It may show complicated periodic oscillations, quasi-
periodic oscillations or a variety of non-periodic be-
haviors.

Employing a multi-scale method, Eq. (1) can
be contracted to a very simple universal equation
called the Stuart-Landau equation (Eq. (2) below).
In fact, Landau (1994) was first to conjecture the
equation form, and Stuart (1960) was the first to de-
rive it through an asymptotic method. Stuart (1960)
who studied the evolution of monochromatic waves
in parallel shear flows suggested that the evolution of
disturbances near criticality can be treated by means
of an expansion in powers of (Re-Rec) or of some pa-
rameter close to that Reynolds number difference.
After some analysis, it was deduced that the time-
dependent amplitude A of the leading Fourier mode
of the expansion satisfied the nonlinear ordinary dif-
ferential equation

d

dt
|A|2 = k1|A|2 + k2|A|4 (2)

where k1 and k2 are constants.
In many physical problems, partial differential

equations describing the process in the space-time
domain prove to be a more useful mathematical tool.
Thus, it is desirable that the Stuart-Landau equation
be generalized so as to cover such circumstances. An
appropriate mathematicl model is then obtained by
simply adding diffusion terms to Eq. (1) as

∂X

∂t
= F (X) + D∇2X. (3)

Eq. (3) is called a reaction-diffusion equation (Ku-
ramoto, 1984), and D is a matrix of diffusion con-
stants. In addition to depending on time scales, Eq.
(3) now also has slow space dependence.

Fluid mechanicians have developed theories
which proved to be very useful in understanding in-
stabilities arising in systems in one or two dimen-
sions. A typical example in the Stewartson-Stuart

theory (1971) on plane Poiseuille flow. They worked
with partial differential equations throughout, not
transforming them into ordinary differential equa-
tions. They generalized the form of the Stuart-
Landau equation, thereby admitting slow spatial and
temporal modulation of the envelope of the bifur-
cating flow patterns. The amplitude equation they
derived is called the Ginzburg-Landau equation

∂A

∂τ
− a2

∂2A

∂ξ2
=

d1

d1r
A − κA|A|2 (4)

where A is the amplitude of the waves; ξ and τ are
scaled length and time, respectively; a2 and d1 are
constants that are properties of the flow obtained
from linear stability theory, and κ is the Landau con-
stant from which the effect of nonlinear interactions
is determined.

In the next section, Eq. (4) will be derived by
considering plane Poiseuille flow of a Newtonian fluid
and SVD will be applied to find the coefficients that
appear in Eq. (4).

Application of Singular Value Decomposition
to Find the Coefficients of Amplitude Equa-
tions

Consider the plane Poiseuille flow of an incompress-
ible viscous fluid in steady motion at a Reynolds
number Re close to critical value Rec, above which
small velocity perturbations may be amplified. The
governing equations in a suitably normalized form
are

∇.V = 0 (5)

∂V

∂t
+ (V.∇)V = −∇P +

1
Re
∇2V (6)

The corresponding boundary conditions are that
u = v = 0 at y = ∓1 (no-slip condition at walls). In
the undisturbed motion, the base flow is

ub = 1− y2, vb = 0, dPb/dx = −2/Re

which is the fully developed flow under a uniform
pressure gradient. Introducing a streamfunction

u =
∂Ψ
∂y

, v = −∂Ψ
∂x

,

Eq. (5) is satisfied exactly and eq. (6), after elim-
inating the pressure terms by cross-differentiation,
becomes
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∂

∂t
(∇2ψ) +

∂ψ

∂y

∂

∂x
(∇2ψ) − ∂ψ

∂x

∂

∂y
(∇2ψ) =

1
Re

(∇4ψ) (7)

where

∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
.

Imposing two-dimensional disturbances on the
base flow and denoting perturbation streamfunction
by Ψ, the governing equations take the form

∂

∂t
(∇2Ψ) + (

∂Ψ
∂y

+ ub)
∂

∂x
(∇2Ψ)

−∂Ψ
∂x

(u“
b +

∂

∂y
(∇2Ψ)) = (∇2Ψ))

1
Re

(∇4Ψ) (8)

where primes denote differentiation with respect to
y.

In the linear analysis, the nonlinear terms in Eq.
(8) are neglected and Ψ is assumed to have the form,
Ψ = θ(y)exp[iα(x − ct)]. Then the well-known Orr-
Sommerfeld equation is obtained

L(φ) = iαRe{(ub − c)(φ′′ − α2φ)− u′′bφ}
−(φIV − 2α2φ′′ + α4φ) = 0 (9)

where L is the linear Orr-Sommerfeld operator and
c = cr + ici is the wavespeed. Let L1 denote the
linear Orr-Sommerfeld operator at criticality, i.e.
Re = Rec, α = αc and c = cc = cr since ci = 0
at critical conditions. The results of this linear sta-
bility analysis give Rec=5772.2, αc=1.02 (see Fig.
1).

Figure 1. Neutral stability curve for Poiseuille flow
(Rec=5772.2, αc=1.02).

In order to perform nonlinear stability analysis
and to derive amplitude equations, the multiple-
scales method is used near critical conditions. Here,
the methodology used by Chen and Joseph (1991)
will be followed. In this method, first introduce a
small perturbation parameter ε, defined by

ε2 = |d1r(Re− Rec)| (10)

where

d1r = Real{d1}, d1 = −i{∂(αc)
∂Re

}(αc,Rec) (11)

Here, (−iαc) is the linear complex growth rate for
the linear instability of the base flow and (αc, Rec)
is the point at the nose of the neutral curve.

Next, introduce the slow spatial and time scales

ξ = ε(x− cgt), τ = ε2t (12)

where cg is the group velocity at criticality. The
scales are appropriate for a wave packet centered at
the nose of the neutral curve and the long-time be-
havior of this wavetrain is examined in the frame
moving with its group velocity. The perturbation
streamfunction, Ψ, is assumed to be slowly varying
functions of ξ and τ ;

Ψ→ Ψ(ξ, τ ; x, y, t)

then,

∂

∂t
→ ∂

∂t
− εcg

∂

∂ξ
+ ε2

∂

∂τ

∂

∂x
→ ∂

∂x
+ ε

∂

∂ξ
. (13)

Then define the travelling wave factor of the ampli-
tude

E = exp[iαc(x − crt)] (14)

where cr is the phase speed at criticality. For a wave
packet centered around the critical state, ψ can be
assumed to be of the following form:

Ψ = ψ0(y, ξ, τ) + {ψ1(y, ξ, τ)E + c.c.}+
{ψ2(y, ξ, τ)E2 + c.c.}+ h.h. (15)

where c.c. stands for complex conjugate and h.h.
for higher harmonics. Assume that the fundamental
wave ψ1(y, ξ, τ)E is of order ε and expansions in ε
yield

406



PINARBAŞI

ψ1 = εψ11(y, ξ, τ) + ε2ψ12(y, ξ, τ)
+ε3ψ13(y, ξ, τ) + O(ε4)

ψ2 = ε2ψ22(y, ξ, τ) +O(ε4)
ψ0 = ε2ψ02(y, ξ, τ) +O(ε4) (16)

Substituting the above expressions into the non-
linear systems of equations and identifying different
orders (k, n)⇔ (Ek, εn) results in a sequence of dif-
ferential equations. At order (1, 1) one obtains

iαcRec{(ub − cc)(ψ′′11 − α2ψ11)− u′′bψ11}
(ψIV11 − 2α2ψ′′11 + α4ψ11) = 0

which is in the same form as the linear eigenvalue
problem at criticality. Denoting the eigenfunction at
criticality by φ,

ψ11(y, ξ, τ) = A(ξ, τ)φ(y) (17)

where A(ξ, τ) is the slowly varying amplitude of
the fundamental wave to be found. The equations
that arise at orders (0, 2), (2, 2) and (1, 2) support
separated product solutions of the following type

ψ02(y, ξ, τ) = |A(ξ, τ)|2F (y)
ψ22(y, ξ, τ) = A2(ξ, τ)G(y)

ψ12(y, ξ, τ) =
∂A(ξ, τ)
∂ξ

H(y) + A2(ξ, τ)φ(y) (18)

Then at orders (1, 2) and (1, 3) one finds

L1(Ψ12) = Z(φ(y), cg)

L1(Ψ13) = J1
∂A

∂τ
+ J2

∂2A

∂ξ2
+ J3A +

J4A|A|2 + J5
∂A2

∂ξ
(19)

where L1 is the linear Orr-Sommerfeld operator at
criticality and Ji, i=1, 2,. . .,5 are the functions of
φ(y), F (y), G(y) and H(y). At order (1, 3), the
application of the Fredholm alternative yields the
Ginzburg-Landau equation governing the amplitude
A(ξ, τ) of the fundamental wave

∂A

∂τ
− a2

∂2A

∂ξ2
=

d1

d1r
A− κA|A|2. (20)

The coefficients a2, d1 and κ are complex in general
and can be computed using the Fredholm alterna-
tive.

The problem at order (1, 1) is spectral (linear
stability equations at criticality) while the problems
at orders (0, 2), (2, 2) are invertible and at orders (1,
2), (1, 3 are singular. Therefore, SVD can be used to
solve the problems at orders (1, 2) and (1, 3). At all
orders, a system of algebraic equations of the form

(A− cB)x = 0 (21)

or,

(A− cB)x = f (22)

arises after discretization. In Eqs. (21) and (22),
A and B are both square, N×N complex matrices.
Assume that c is an eigenvalue with multiplicity K.
Then applying SVD to the matrix (A-cB) one gets

A− cB = Udiag[σ1, σ2, . . . , σN−K , 0, 0 . . . , 0]
VH (23)

where σ1 ≥ σ2 ≥ . . . . . . ≥ σN−K ≥0 are real con-
stants,

U = [u1,u2, . . . ,uN−K,uN−K+1, . . . ,uN],
V = [v1,v2, . . . ,vN−K,vN−K+1, . . . ,vN],

where uj and vj j = 1, 2, . . .N are the column vec-
tors of orthonormal matrices U and V. Note that
UUH=UHU=VVH=VHV =I where superscript H
denotes Hermitian. A matrix A is called Hermitian
if it equals the complex conjugate of its transpose.

In order to find the solution of the homogenous
problem in Eq. (21), multiply Eq. (23) with x to get

(A − cB)x = U diag[σ1, σ2,. . . ,σN−K , 0, 0,. . . ,0]
VHx = 0 (24)

and then multiply Eq. (24) with UH from left and
let y=VHx, to find

diag[σ1, σ2, . . . , σN−K , 0, 0, . . . , 0]y = 0 (25)

since UHU=I. Eq. (25) indicates that the elements
of the vector y up to (N-K) should be zero, i.e.

y = [0, 0, . . . , 0, yN−K+1, . . . , yN ] (26)
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where yN−K+1 , . . . , yN are K arbitrary constants.
Since y=VHx, one finds x=Vy by multiplying both
sides with V. Recalling that x is an eigenvector of
(A-cB), one finds that the column vectors vj j =
N-K+1,. . . , N are K independent eigenvectors corre-
sponding to c.

Now consider the adjoint problem (A-cB)Hx=0
of Eq. (21). Following the same steps as above,

(A− cB)Hx = {U}, diag[σ1, σ2,. . . ,σN−K , 0, 0, . . . ,0]
{V}Hx = 0 (27)

V diag[σ1, σ2, . . . , σN−K, 0, 0, . . . , 0]UHx = 0. (28)

Multiplying Eq. (28) with VH ,

diag[σ1, σ2, . . . , σN−K , 0, 0, . . . , 0]y = 0

where y=UHx, or x=Uy. Since x is an eigenvector
of Eq. (27), the columns of uj, j=N-K+1,. . ., N are
the K independent eigenvectors corresponding to c
in Eq. (27).

For inhomogeneous systems, Eq. (22), the Fred-
holm alternative can be used to find the solvability
condition. The alternative requires that the inhomo-
geneous terms in the underlying system of differential
equations be orthogonal to the independent eigenvec-
tors that span the null-space of the adjoint system
of differential equations. Therefore, the solvability
condition becomes UHf=0, or

u?jifj= 0, i = N −K + 1, . . . . . . . . . , N (29)

where ? denotes complex conjugate and there is
summation over index j, i.e. j=1, 2,. . .,N. The solu-
tion to Eq. (22) can be found as follows: Use SVD
to decompose (A-cB) and then substitute it into Eq.
(22),

U diag[σ1, σ2,. . . ,σN−K , 0, 0,. . . ,0]
VHx = f . (30)

Multiplying Eq. (30) first with UH , then with the in-
verse of diag[σ1, σ2, . . . , σN−K , 0, 0, . . . , 0] and finally
with V gives

x = Vdiag[σ−1
1 , σ−1

2 ,. . . ,σ−1
N−K, 0, 0,. . . ,0]

UHf . (31)

Since K rows of Eq. (31) are in the null-space,
the solution vector consists of a particular solution
xp added to any linear combination of K vectors.
Therefore,

x = xp +
N∑

j=N−K+1

γjvj (32)

where,
xp = Vph and vp = [v1,v2, . . . ,vN−K ] with

v1, . . . ,vN−K being the column vectors,

h = [σ−1
1 u?j1fj , σ

−1
2 u?j2fj, . . . , σ

−1
N−Ku

?
jN−Kfj ].

In Eq. (32), the γ′j are constants and vj , j=N-
K+1,. . ., N are the column vectors of matrix V.

For the spectral problem, i.e. at order (1, 1), the
matrix eigenvalue problem is

(A− crB)ψ11 = 0 (33)

where the matrix (A-crB) and the vector ψ11 result
from the discretization of the Orr-Sommerfeld oper-
ator at criticality and the eigenfunction ψ(y), respec-
tively. At orders (1, 2) and (1, 3) following singular
algebraic equations exist

(A− crB)ψ12 = f (ψ11, cg) (34)

(A− crB)ψ12 =
∂A

∂τ
f1 +

∂2A

∂ξ2
f2 +

A

d1r
f3 +A|A|2f4. (35)

The problems at orders (0, 2) and (2, 2) are in-
vertible and ψ02 and ψ22 can be computed by Gaus-
sian elimination. The problem at criticality, Eq. (33)
can be solved easily by standard matrix eigenvalue
routines, QZ algorithm for example, to find the crit-
ical speed cr and the eigenvector ψ11.

Assume that at criticality, cr is an eigen-
value with multiplicity K=1. Then applying
SVD algorithm to (A-crB), it is easy to com-
pute σ1, σ2, . . . , σN−1, U and V with standard SVD
codes. Since the left-hand sides of Eqs. (33) and (34)
are the same, the right-hand side of Eq. (34) must
satisfy the solvability condition. Hence, applying the
Fredholm alternative solvability condition, Eq. (29),
to Eq. (34), the group velocity cg can be found. Once
cg is found, ψ12 can be computed with Eq. (32).
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Similarly, the left-hand sides of Eqs. (35) and
(33) are the same. Therefore, the right-hand side
of Eq. (35) has to satisfy the solvability condition.
Since K=1, Eq. (29) becomes

u?jNfj = 0, j = 1, 2, . . . , N

or,

∂A

∂τ
u?N f1 +

∂2A

∂ξ2
u?N f2 +

A

d1r
u?N f3 +A|A|2u?N f4 = 0(36)

where uN is a row vector of length N. Dividing Eq.
(36) by u?N f1

∂A

∂τ
+

u?N f2
u?N f1

∂2A

∂ξ2
+

u?N f3
u?N f1

A

d1r
+

u?N f4
u?N f1

A|A2| = 0(37)

Equating the coefficients of Eq. (37) and Eq. (20)
gives the coefficients of amplitude equations

a2 = −u?N f2
u?N f1

d1 = −u?N f3
u?N f1

κ = −u?N f4
u?N f1

The nature of bifurcation is determined by the
real part of the Landau constant κ in Eq. (20). If
κr > 0, a finite amplitude equilibrium solution ex-
ists. On the other hand, if κr < 0, the bifurcation
solution of Eq. (20) will burst in finite time and a
higher order theory is needed.

For critical point in the Poiseuille flow (αc=1.02
and Re=5772.2), the coefficients are: cg = 0.383,
d1=(0.168+i0.811)10−5, a2=0.187+i0.0275 and κ=-
30.85+i172.85. A comparison of these results with
the result of Chen and Joseph (1991) show that the
agreement is excellent.

Conclusions

In this study, SVD is applied to plane Poiseuille flow
after a brief review of amplitude equations in order

to find the coefficients of amplitude equations re-
sulting from nonlinear stability analysis of the flow.
The analysis indicates that SVD appears to be the
method of choice for the numerical of the coeffi-
cients of amplitude equations. In addition to being
straightforward and easily implemented, SVD does
not contain too many numerical approximations. As
a result, roundoff errors are minimized.

Nomenclature

a2, d1 coefficients of the
Ginzburg-Landau equation

c wavespeed
cg group velocity at criticality
p pressure
Re Reynolds number
t time
u, v x and y components of velocity

Greek Letters

κ wavenumber
ε perturbation parameter
κ Landauu constant
φ amplitude of perturbation

streamfunction
σ singular values of a matrix

τ scaled time
ξ scaled length
ψ streamfunction
Ψ perturbation streamfunction

Subscripts

b base flow
c critical condition

Superscripts

H Hermitian
T transpose
? complex conjugate
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