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A Special Quasi-Linear Mapping and its Degree

Akif Abbasov

Abstract

In this article, for the purpose of expanding to the mappings between Banach
manifolds, a degree is determined in for the mappings between Banach spaces, which
are from the obvious class.

0. Introduction

This work is related to the topological methods of global analysis and is devoted to
the theory of degree mapping of domains of Banach spaces.

In 1912, time the degree concept was introduced by L.E.Brouwer for finite dimensional
(continuous) mappings using the basic results of algebraic topology basic results. Later,
the degree concep was defined in different ways and with its help many concrete problems
were solved.

However, as is well known, it is not possible to introduce a definition of degree for
arbitrary continuous mappings of infinite - dimensional domains [1]; e have to restrict the
class of mappings.

The first such class has been defined by Leray and Schauder [6]. It consist of mappings
of the kind ”identical + compact.” Other classes have also been introduced ( [2],[3],[4],[5],
e.t.c.). One of the suitable classes for studying nonlinear (pseudo) differential equations
of smooth functions is the class of Fredholm quasi-linear mappings introduced by A. I.
Shnirelman [7]. He introduced the definition of degree for such mappings as a limit of
değrees of finite dimensional mappings.

However, the definition given by A. I. Shnirelman uses global geometrical constructions
in Banach space and so cannot be used for the definition of degree of mappings of Banach
manifolds. The definition of degree that does not have the indicated deficiency is given in
this article. For this aim the new class of FSL mappings, for which the ”local” definition
of degree is given naturally, is introduced. But FSQL mapping f is determined as a
uniform limit (in each bounded domain) of sequence of FSL mappings fnk , k = 1, 2, . . ..
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Then it is proved that in this case the degrees of FSL mappings are stabilized. So, d(f)
is determined as a limit: d(f) = limk→∞(fnk ). The coincidence of classes FQL- and
FSQL mappings is proved. In addition the main properties of degree, similar to finite-
dimensional mappings, and also equality of degrees of f , considered as a FQL or FSQL
mapping, are proved. For the sake of simplicity, constructions are conducted in Hilbert
spaces.

In later works the theories of quasi-linear manifolds (for example, the manifolds of
smooth mappings of finite- dimensional manifolds) and the degree of FSQL- mappings
between such manifolds, as well as the homological theory of degree of such mappings
will be presented.

1. FSQL-mapping

Let H1 and H2 be real Hilbert spaces, and let ‖ ‖1, ‖ ‖2 be the corresponding norm
in them. Let {Xn

α}, α ∈ Mn, be a family of pairs of disjoint closed planes in H1 of
codimension n, continuously depending on α;Mn is manifold of dimension n. Suppose

{Y nβ }, β ∈ Nn, is an analogious family in H2. Let M̃n

⋃
αX

n
α , Ñn =

⋃
βX

n
β . Let

us determine the projections πn : M̃n → Mn, pn : Ñn → Nn in the following way:
πn : x 7→ α, if x ∈ Xn

α ; pn : y =7→ β, if y ∈ Y nβ .

It is obvious that the triples ξ(πn, M̃n,Mn) and η = (pn, Ñn, Nn) are affine bundles.

Definition 1 Continuous mapping f : M̃n → Ñn is called a Fredholm Special Linear
(SFL), if ∀α ∈Mn f

n
α ≡ f |Xnα is a affine invertible mapping from Xn

α on some Y nβ , f
n
α ∈

Aff(Xn
α , Y

n
β ) and fnα depends continuously on α.

It is obvious that FSL-mapping induces bimorphism between affine bundles ξ and η.

The restriction of FSL-mapping on any domain Ω, Ω̄ ⊂ M̃n, is also called FSL-mapping.

Let ω, Ω̄ ⊂ M̃n, be a bounded domain in H1; let f : Ω→ H2 be an FSL-mapping, and∣∣∣∣∣|f |∣∣∣∣∣
Ω

= sup
xnα∩Ω 6=φ

inf
{
C|
∥∥fnα (x)

∥∥
2
≤ C(1 + ‖x‖1), ‖x‖1 ≤ C(1 +

∥∥fnα (x)
∥∥

2
), x ∈ Xn

α

}
Definition 2 Continuous mapping f : Ω → H2 is called Fredholm Special Quasi-Linear
(FSQL), if there exists a sequence of FSL-mappings fni : Ω → H2, i = 1, . . . , unifomly
approximating f on Ω and∣∣∣∣∣|f |∣∣∣∣∣

Ω
≤ C(Ω), ∀i > i(Ω). (1)
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Moreover, C(Ω) does not depend on i for i(Ω).

Definition 3 Continuous mapping f : H1 → H2 is called a FSQL mapping, if in any
bounded domain Ω ⊂ H1 unclear.

As we have already noted, FL and FQL mappings were defined by A. I. Shnirelman,
who also proved their basic properties and gave examples of FQL mappings (see[7]).

We shall prove that the classes of FSQL and FQL mappings coincide. First let us
define some notions.

Let Xm, Xn be closed planes in H1 having codimensions m and n,m > n. Let us
transfer each of them parallely to itself into the origin in H1. Let us denote the obtained
subspaces by ′Xm and ′Xn.

Definition 4 The number

sin(Xm , Xn) = sup
x∈′Xm

{ρ(x,′Xn) ∩B1(1)}

is called the sinus of the angle between the planes Xm and Xn.
Here, B1(1) is sphere in H1 with radius 1 and a centre at zero.

Theorem 5 FQL mapping f : H1 → H2 is uniformly continuous and bounded in each
bounded domain Ω ⊂ H1.

Proof. Suppose that FL mapping fn : Ω → H2 uniformly approximates f on Ω to a
precision of ∈; o; that is

∀x ∈ Ω‖f(x) − fn(x)‖2 < ε. (2)

Suppose that {Xn
α} is a family of parallely closed planes in H1 of codimension n, corre-

sponding to the EL mapping fn according to definition (see Appendix), where fnα ≡ f |Xnα
depends continuously on α. We may suppose that B = {α|Xn

α ∩ Ω 6= φ} ⊂ Rn. The com-
pactness of B implies that fnα is uniformly continuous on α ∈ B. So, for any given
Ω

∀ε > o∃δ1, δ2,∀α1, α2 ∈ B, ‖α1 − α2‖R∗ < δ, ∀x1 ∈ Xn
α1
∩ Ω, ∀x2 ∈ Xn

α2
∩ Ω,

‖x1 − x2‖1 < δ2, ‖fnα1
(x1) − fnα2

(x2)‖2 < ε.

From the parallelism of the planes Xn
α we have

∀d1 > 0 ∃d2 > o, ∀x1 ∈ Xn
α1
, ∀x2X

n
α2
, ‖x1 − x2‖1 < d2 ⇒ ‖α1 − α2‖Rn < δ1.
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That is, from the closeness of x1 and x2 implies the closeness of parameters α1 and α2.
So,

∀ε > o∃δ2 > o, ∀x1 ∈ Xn
α1
∩ Ω, ∀x2 ∈ Xn

α2
∩ Ω, ‖x1 − x2‖1 > δ2,

‖fnα1
(x1)− fnα2

‖ < ε.

Then

∀ε > o∃δ2 > o, ∀x1, x2 ∈ Ω, ‖x1− x2‖ < δ2,

‖fn(x1)− fn(x2)‖2 = ‖fnα1
(x1)− fnα2

(x2)‖2 < ε. (3)

Here, x1 ∈ Xn
α1
, x2 ∈ Xn

α2
. So, FL mapping fn is uniformly continuous on Ω. From (2)

and (3) we have
∀ε > o∃δ > o, ∀x1, x2 ∈ Ω‖x1 − x2‖ < δ,

‖f(x1) − f(x2)‖2 ≤ ‖f(x1) − fn(x1)‖2 + ‖fn(x1)− fn(x2)‖2 + ‖fn(x2)− f(x2)‖2 < 3ε.

This means that FQL mapping f is uniformly continuous on Ω.
2) Now let us prove the boundness of FQL mapping f on Ω. Let us take a δ1− net

α1,...,αk of compact B, such that

∀ε > o∀α ∈ B∃αi ∈ {α1, . . . , αk, ∃τ2 > o, ∀x1 ∈ Xn
α ∩ Ω, ∀x2 ∈ Xn

αi ∩ Ω,

‖x1 − x2‖ < δ2,
∥∥fnα (x1) − fnαi(x2)

∥∥
2
< ε. (4)

According to definition, ∀αfnα is bounded. So,

∃M > o, ∀i = 1, . . . , k∀x ∈ Xn
αi ∩ Ω

∥∥fnαi(x)
∥∥

2
≤M. (5)

From (4) and (5) we have

∀α ∈ B∃αi ∈ {α1, . . . , αk}, ∀x ∈ Xn
α ∩ Ω∃x′ ∈ Xn

αi
(x′) ∩ Ω,

‖fnα (x)‖2 ≤ ‖fnαi(x
′)‖2 + ‖fnα (x)− fnαi(x

′)‖2 ≤M + ε. (6)

That means that FL-mapping fn is bounded on Ω. From (2) and (6), we have

∀x ∈ Ω‖f(x)‖2 ≤ ‖fn(x)‖2 + ‖fn(x) − f(x)‖2 ≤M + 2ε.

This means that FQL mapping f is bounded on Ω. 2
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Theorem 6 Let fn0 : Ω→ H2 be an FL mapping. Then there exists a sequence of FSL
mappings fni : Ω→ H2, i = 1, 2, . . . , uniformly converging to fn0 on Ω.

Proof. Let {Xn0
α } be a family of parallel closed planes, having codimension n0

corresponding to FL-mapping fn0 . It is obvious that B{α|Xn0
α ∩Ω 6= φ} is compact,

as Ω is bounded. Therefore the continuous family {fn0
α |α ∈ B} of affine mappings is

uniformly continuous on B. So, the family of planes {Y n0
α |Y n0

α = fn0
α (xn0

α )} is uniformly
continuous is α. Hence ∀ε > 0 there is a final number of elements α1, . . . , αk ∈ B such
that

∀α ∈ B ∃αi ∈ {α1, . . . , αk}, sin(Y n0
α , Y n0

αi ) < ε. (7)

Let us transfer the planes of Y n0
αi , i = 1, k, parallely to itself to the origin of H2 and take

the intersection of all these subspaces. Let us denote this intersection by Y m, m ≥ n0.
Taking into account (7), let us project Y m on Y n0

α , α ∈ B orthogonally and partition
each plane Y n0

α into planes of codimension m that are parallel to the projection of Y m.

As a result we get a continuous family of planes, {Y mα,β(α, β) ∈ B×Rm−n0} having codi-

mension m, and satisfying the following conditions: 2

a) ∀α, ∀β1, β2 Y
m
α,β1

//Y mα,β2
;

b) ∀αY n0
α =

⋃
β

Y mα,β;

c) ∀a1, α2 ∈ B, ∀β1, β2 ∈ Rm−n0 sin(Yα11,β1 , Y
m
α2,β2

) < ε.

Because of affine isomorphism of mappings of fn0
α , α ∈ B, each plane of Xn0

α can be

divided into parallel subplanes Xm
α,β = (fn0

α )−1(Y mα,β) of codimension m. The obtained

family {Xm
α,β} will be continuous is (α, β) as (fn0

α )−1 is continuous in α. Let us take the

subspace Ym ⊂ H2, having dimension m, perpendicular to some Y mα0,β0
. Because of the

smallness of ε, all the planes Y nα,β will be transversal to Ym. So, ∀α, β Ymα,β ∩ Ym will

consist of one point. Let us draw the plane of ′Y mα,β over each such point, parallel to

Y mα0,β0
. As a result we is get a continuous family {′Y mα,β} of parallel planes. According to

Theorem 5, the sef f(Ω) is bounded, so it is contained in some sphere B2(R). According
to the construction

∀α, β sin(Y mα,β,
′ Y mα,β) < ε.

Because of the smallness of ε we may state that the planes Y mα,β and Y mα,β are sufficiently

close to one another in B2(R).
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Note 7. In what follows we shall make use of this construction several times.
Let ∀α, βPmα,β : Y mα,β →′ Y mα,β be an orthogonal projection. It is continuous in (α, β)

and by the construction

∥∥∥∥Pmα,β(y) − y
∥∥∥∥

2

< ε ∀α, β, ∀y ∈ B2(R) ∩ Y mα,β.

Now let us consider the mapping

fm : Ω→ H2, f
m

∣∣∣∣
Ω∩Xm

α,β

≡ fmα,β, fmα,β(x)′ = Pmα,β ◦ fn0 (x)x ∈ Ω ∩Xm
α,β. (8)

It is obvious from the construction that fm : Ω→ H2 is an FSL mapping and

∀x ∈ Ω
∥∥fm(x)− fn0 (x)

∥∥
2
< ε.

Similarly, we can of prove the following theorem is the inverse of Theorem 6.

Theorem 7 Let fn0 : Ω → H2 be an FSL-mapping. Then there exists a sequence of
FL-mappings fni : Ω→ H2, i = 1, 2, . . . , uniformly approximating fn0 on Ω.

From theorems 6 and 8 the identity of the classes of FSQL and FQL mappings follows.

Note 9. Theorem 5 is valid for FSQL mapping as well.
Making use of the above technique we may also prove the following theorem.

Theorem 8 Let f : H1 → H2, g : H2 → H3 be FSQL mappings. Then g ◦ f : H1 → H3

will also be an FSQL mappings. Here H3 is a real Hilbert space.
Making use of the coincidence of classes FQL and FSQL mappings, as an example of

FSQL mappings, we may give the following example (see [7]).

Let f : [0, 2)× R → R by a smooth function and gradxf 6= 0∀τ, x. Then the operator

f̃ : Hk(S1) → Hk(S1), k ≥ 2), defined as f̃ : x(τ ) 7→ f(τ, x(τ )), x(τ ) ∈ Hk(S−1), will be
FSQL mapping.

Here

Hk(S1) =

{
x(τ ) \ ‖x‖2k =

∫ 2π

0

k∑
l=0

∣∣x(l)τ
∣∣2dτ <∞}

is Sobolev space.
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2. The degree of an FSQL mapping

Let f : H1 → H2 be an FSQL mapping; suppose that the following apriori estimate
is satisfied

‖x‖1 ≤ φ
(
‖f(x)‖2

)
, (9)

where φ is some pozitive monotonous function. Therefore all solutions of the equation

f(x) = y0, y0 ∈ H2, (10)

will be contained in the ball Ω+
{
x|
∥∥x∥∥

1
≤ φ

(
‖y0‖2

)}
.

The degree deg(f) of mapping of f is the number of solutions of equation (10). To
give an exact definition of deg(f), we need to introduce some notions.

Let fnk , k = 1, 2, . . . , be the sequence of FSL mappings, uniformly converging of f in

the ball ΩR0 , R0φ(‖y0‖2 + 2δ), δ > 0. Let us consider the equation

fnk (x) = y0; (11)

we are looking for its solutions, contained in the ball ΩR0 . This problem may reduced to
a finite-dimensional one.

Indeed, each FSL mapping fnk being bimorphism between affine bundles ξnk and
ηnk , induces continuous mapping fnk : Mnk → Nnk between bases Mnk and Nnk of
the corresponding bundles. Here, Mnk and Nnk are nk - dimensional manifolds. S,
fnk (α) = β, where fnk (Xαnkα ) = Y nkβ .

Let y0 ∈ Y nkβ0
. Then equation (11) reduces us to the finite-dimensional equation

fnk(α) = β0. (12)

Let us prove that at sufficiently big k the finding of the solutions of the equation

(11) contained in ΩR0 is equivalent to the finding of the solutions of the equation (12),

contained in πnk(ΩR0) ⊂ Mnk , where πnk is a projection from ξnk = (M̃nkπnk ,Mnk).

Indeed, let x ∈ ΩR0 and fnk(x) = y0. Then there exists α ∈ πnk(ΩR0 such that x ∈ Xnk
α ;

therefore fnk(α) = β0.
Conversely, let fnk(α) = β0. This means, that fnk is a affine isomorphism between

the planes Xnk
α and Y nkβ0

.

Therefore, there exists unique point x ∈ Xnk
α , such that fnk (x) = y0. However, it may

be that point x will lie outside the set of ΩR0 . Let us show that this is impossible.
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Lemma 9 There exists k0 such that if k ≥ k0, x ∈ M̃nk , πnk(0) ∈ πnk(ΩR0) and fnk (x) =

y0, then x ∈ ΩR0 .

Proof. According to the condition (1), will be found such C > 0, that
∥∥|fnk |∥∥

ΩR0
< C

as sufficiently big k. Therefore, preimage of the point y0, if it is contained in the domain

π−1
nk (πnk(ωR0 )), is in sphere ΩC1 , where C1 = C(1 +

∥∥y0

∥∥
2
). Let k0 be so big that∣∣fnk − f∣∣

ΩC1
= sup

x∈ΩC1

∥∥fnk(x) − f(x)
∥∥

2
< δ, ∀k ≥ k0,

where δ is the same, as in definition R0. So, if x 6∈ ΩR0 , then R0 ≤ ‖x‖1 < C1; but then∥∥fn(x)
∥∥ ≥ ‖f(x)‖2 −

∣∣fnk − f∣∣
ΩC1

>
(
‖y0‖2 + 2δ

)
− δ = ‖y0‖2 + δ,

so that x cannot be a preimage of the point y0. Therefore ‖x‖1 < R0.
Thus, equation (11) reduces to the finite-dimensional equation (12). Therefore we can

give the following. 2

Definition 10
deg(fnk) = deg(fnk).

Theorem 11 Suppose that FSL mappings fn”, fn
′′

: Ω → H2 are sufficiently close to
each other in Ω. Then

deg(fn
′
) = deg(fn

′′
).

3. Proof of Theorem 13

Let {Xn′

α′}, {Y n
′

β′ } be continuous families of closed planes of codimension n′ correspond-

ing to FSL mapping fn
′

(see definition 1); let {Xn′′

α′′ }, {Y n
′′

β′′ } be analogous families for

fn
′′
. Similar to the proof of theorem 6, we obtain continuous families {′Xm′

α′γ′}, {Xm′′

α′′,γ′′},
satisfying to the following conditions:

a) m′ ≥ n′, m′′ ≥ n′′;
b) ∀(α′1, γ′1, (α2”, γ′2) ′Xm′

α′1γ
′
1
‖′Xα′2,γ′2 ;

c) ∀(α′′1 , γ′′1 ), (α′′2 , γ′′2 ) ′Xm′′

α′′1 γ
′′
1
‖′Xα′′2 ,γ′′2 ;

d) ∀(α′, γ′), (α′′, γ′′) sin(Xm′

α′,γ′ ,
′Xm′

α′,γ′ ) < ε, sin(Xm′′

α′′,γ′′ ,
′Xm′′

α′′,γ′′) < ε;
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e) ∀α′, γ′1, γ′2Xα′,γ′1‖X
m′

α′,γ′2
, Xm′

α′γ′2
, Xn′

α′ =
⋃
γ′

Xm′

α′,γ′ ,
′Xn′

α′ =
⋃
γ′

′
Xm′

α′γ′ is a plane of

codimension n′;

f) ∀α′′, γ′′1 , γ′′2 , Xm′′

α′′,γ′′‖Xm′′

α′′,γ′′2
, Xn′′

α′′ =
⋃
γ′

Xm′′

α′′γ′′ , X
m′′

α′′ =
⋃
γ′

′
Xm′′

α′′,γ′′ is a plane of

codimension n′′.
Let ∀α′, γ′ πm′α′,γ′ :′ Xm′

α′,γ′ → Xm′

α′,γ′ and ∀α′′, γ′′ πm′′α′′,γ′′ :′ Xm′′

α′′,γ′′ → Xm′′

α′′,γ′′ be

ortogonal projections. According to our construction they induce isomorphisms between
the corresponding bundles, and∥∥x− πm′α′,γ′(x)

∥∥
1
< δ ∀x ∈ Ω ∩′ Xm′

α′,γ′ , ∀α′, g′;∥∥x− πm′′α′′,γ′′(x)
∥∥

1
< δ ∀x ∈ Ω ∩′ Xm′′

α′′,γ′′ , ∀α′′, γ′′,

where δ > 0 is a small number, corresponding to ε > 0 (according to uniform continuity

of mappings fn
′

and fn
′′

in Ω).

fm
′

: Ω→ H2; ∀α′, γ′ fm′
∣∣∣∣
Ω∩′Xm′

α′,γ′

≡ fm′α′,γ′ , fm
′

α′,γ′(x) = fn
′ ◦ πm′α′,γ′(x), x ∈ Ω ∩′ Xm′

α′,γ′ ;

fm
′′

: Ω→ H2; ∀α′′, γ′′fm
′′
∣∣∣∣
Ω∩′′Xm′′

α′′,γ′′

≡ fm
′′

α′′,γ′′ , f
m′′

α′′,γ′′(x)=fn
′′
◦πm

′′

α′′,γ′′(x), x ∈ Ω∩′Xm′′

α′′,γ′′ ;

According to the construction,

∀x ∈ Ω
∥∥fm′ (x), fn

′
(x)
∥∥

2
< ε,

∥∥fm′′ (x)− fn′′(x)
∥∥

2
< ε

Moreover, fm
′

will be FSL mapping between the families {′Xn′

α′ } and {Y n′β′ }. Let us

denote it by fn
′

1 . Then

deg(fn
′

1 ) = deg(fn
′
), (13)

as both mappings induce one and the same finite - dimensional mapping. This is also

valid for the mapping fm
′′

, in that will be a FSL mapping (let us denote it as fn
′′

2 )

between the familes {′Xn′′

α′′ } and {Y n′′β′′ }; that is

deg(fn
′′

1 ) = deg(fn
′′
). (14)

9
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Now led us consider the intersection of families {′Xm′

α′,γ′} and {′Xm′

α′,γ′}. It will

consist of parallel planes, as the familes themselves are parallel planes. Let us denote

this intersection by {Xm
λ }, m ≥ max{m′, m′′} · fn′1 and fn

′′

2 , being considered in the
family {Xm

λ , will be FL mappings. Let us denote them accordingly by fm1 and fm2 . Let

us consider continuous families {Y m1,λ \ Y ml,λ = fm1 (Xm
λ )} and {Y2,λ \ Y m2,λ = fm2 (Xm

λ )}.
By analogy with the proof of Theorem 6, let us approximate them correspondingly with

families {′Y m+l′

1,λ,λ′} and {′Y illmi}, such that

a) ∀(λ1 , λ
′
1
′Y m+l′

1,λ1,λ′1

∥∥′Y m+l′

1,λ2,λ′2
;

b) ∀(λ1, λ
′′
1), (λ2, λ

′′
2) ′Y m+l′′

1,λ1,λ′′1

∥∥′Y m+l′′

1,λ2,λ′′2
;

c) ∀(λ1, λ
′
1) sin(′Y m+l′

1,λ1,λ′1
, Y m+1′

1,λ1,λ′1
) < ε, sin(′Y m+l′′

1,λ1,λ′′1
, Y m+1′′

1,λ1,λ′′1
) < ε,.

Making use of orthogonal projections Pm+l′

λ,λ” : Y m+l′

1,λ,λ′ →′ Y
m+l′

1,λ,λ′ and Pm+l′′

λ,λ′′ ::

Y m+l′

1,λ,λ′ →′ Y
m+l′

1,λ,λ′ we shall get the FSL mappings:

fm+l′ : Ω→ H2; ∀λ, λ′ fm+l′
∣∣∣∣
Xm+l′
λ,λ”

≡ fm+l′

λ,λ” , f
m+l′

λ,λ” (x) = Pllmb ◦ fm1 (x), x ∈ Ω ∩Xm+l′

λ,λ” ;

fm+l′′ : Ω→ H2; ∀λ, λ′′ fm+l′′
∣∣∣∣
Xm+l′′
λ,λ′′

≡ fm+l′′

λ,λ′′ , f
m+l′′

λ,λ′′ (x) = Pllmi◦fm1 (x), x ∈ Ω∩Xm+l′′

λ,λ′′ .

According to the construction,

∀x ∈ ω
∥∥fm+l′ (x)− fm1 (x)

∥∥
2
< ε,

∥∥fm+l′′ (x) − fm2 (x)
∥∥

2
< ε.

Now let us consider the intersection of the families {Y m+l′

1,λ,λ′} and {′Y m+l′′

2,λ,λ′′}. It will

consist of parallel planes, as both families themselves consist of parallel planes. Let

us denote it by {Y kµ } · fm+l′ and fm+l′′ , being regarded correspondingly as continuous

families Xk
1,µ \ Xk

1,µ = (fm+l′ )(Y kµ )} and {Xk
2,µ \ Xk

2µ = (fm+l′ )−1(Y kµ )}, will be FSL

mappings. Let us denote them correspondingly by fk1 and fk2 . It is clear from the
constructions that

∀x ∈ Ω
∥∥fk1 (x)− fk2 (x)

∥∥
2
< ε.

Lemma 12 deg(fk1 ) = deg(fn
′

1 , deg(fk2 ) = deg(fn
′′

2 ). (15)

10
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Proof. Let us prove that first equality from 515). FSL mapping fk1 induces a finite -
dimensional mapping

f1,k : M1,k → N1,k.

and the FSL mapping fn
′

1 induces a finite-dimensional mapping

fl,n′ : Mn′ → Nn′ .

According to the construction the triplet (M1,k, π1,k,Mn′) and N1,k, p1,k, Nn′ will be affine

bundles with the fibres isomorphic to the finite - dimensional space of Rk−n
′
. Here,

π1,k : M1,k →Mn′ , π1,k : (α′, τ ′) 7→ α′;

p1,k : N1,k → Nn′ , p1,k : (β′, ν ′) 7→ β′.

In this case (again according to the construction) f1,k will be-bimorphism between the
indicated bundles. So,

deg(f1,k) = deg(f1,n′,

thas is

deg(fk1 ) = deg(fn
′

1 ).

Hence (acc. to the Definition 12) we get the first equality from (15).

Now let us prove that Hausdorff distance, dist(Xk
l,µ ∩Ω, Xk

2,π∩Ω), between the planes

Xk
1,µ and Xk

2,µ, is small. Here,

dist(Xk
1,µ∩Ω, Xk

2,µ∩Ω) = max(sup
x1

inf
x1
ρ(x1, x2), sup

x1

inf
x2
ρ(x1, x2)}, x1 ∈ Xk

1,µ∩Ω, x2 ∈ Xk
2,µ∩Ω.

2

Lemma 13 Let X, Y be Banach spaces; let X1, X2 be closed planes in X and suppose
that f1, f2 : X → Y are continuous mappings satisfying the following conditions:

a) f1 → Y is an isomorphism fromX at Y1 = f1(X); moreover, ‖f1‖X ≤ C, ‖f−1
1 ‖Y1 ≤

C;
b) ∀x ∈ X ∩Bx(r)‖f1(x) − f2(x)‖2 < ε;
c) dist(f1(X1) ∩By(R), f2(X2) ∩By(R))ε.

11
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Then
dist(X1 ∩Bx(r), X2 ∩Bx(r)) ≤ 2Cε.

Here Bx(r) and By(R) are balls in X and Y radius r and R respectively.

Proof. Let x1 ∈ X1 ∩ Bx(r), , x2 ∈ X2 ∩ Bx(r). From isomorphism f1 : X → Y1 we
have ∥∥x1 − x2

∥∥ ≤ C∥∥f1(x1 − f1(x2)
∥∥⇒ ‖f1(x1) − f1(x2)

∥∥ ≥ C−1
∥∥x1 − x2

∥∥.
Hence it follows that

‖f1(x1) − f2x2)‖ = ‖f1(x1)− f1(x2)) + f1(x2)− f2(x2))‖ ≥

≥ ‖f1(x1)− f1(x2)‖ − ‖f1(x2)− f2(x2)‖ ≥ C−1‖x1 − x2‖ − ε.

Let us denote by d the distance between the X1 and X2 planes. As d < ‖x1 − x2‖, then
from the last inequality we have

ε ≥ C−1d− ε⇒ d ≤ 2Cε.

Let πk1,µ : Xk
1,µ → Xk

2,µ be the orthogonal projection. It is obvious that µk
∣∣
Xk1,µ
≡ πkµ

∀µ induces isomorphism between the families {Xk
1,µ} and {Xk

2,µ}. From the Lemma 15

it follows that πk is close on Ω to identical mapping. Then the mappings fk1 (x) and

fk2 ◦ πk(x), x ∈ {Xk
1,µ}, will also be close on Ω. So,

deg(fk1 ) = deg(fk2 ◦ πk) = deg(fk2 ) · deg(πk) = deg(fk2 . (16)

From equalities (13), (14), (15) and (16) we get:

deg(fn
′

= deg(fn
′′
).

Theorem 13 is proved.
Now we may give the following. 2

Definition 14 where fnk , k = 1, 2, . . . , is sequence FSL mappings, uniformly approxi-
mating FSQL mapping f on Ω.

12
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4. The main property of the degree

Theorem 15 Suppose that FSQL mapping f : H1 → H2 satisfies condition (9), and
deg(f) 6= 0. Then equation (10) has a solution for any y0 ∈ H2.

Theorem 16 Let {ft} be the family of FSQL mappings which depend continuously (but
in each sphere B1(r) is uniformly continuous) on parameter t ∈ [0, 1], and for all t ∈ [0, 1]
the apriori estimate (9) with the function φ, independent on t, is tasified. Then

deg(f0) = deg(f1).

Theorem 17 Sappose that the FSQL mapping f : H1 → H2 satisfies condition (9).
Then

deg(f, y1) = deg(f, y2), y1,2 ∈ H2.

Theorem 18 Let f be an FSQL (FQL) mapping, satisfying condition (9) and deg1(f)
is degree of f as FQL mapping, defined by A. I. Shnirelman (see[7]). Then

deg(f) = deg1(f).

Theorem 17 is proved analogous to the theorem given in [7] and the proofs of theorems,
18, 19 and 20 are not difficult.

5. Appendix

Let X, Y be real Banach spaces, let Ω be abound domain in X, and suppose that
πµ : X → Xµ is a linear mapping from X to a µ - dimensional space Xµ, and Xµ

α =

π−1(α), α ∈ Xµ.

Definition 19 Continuous mapping fn : ω ⇒ Y is called a Fredholm Linear (FL), if

a) some linear mapping πµ : X → Xµ is fixed;

b) on each plane Xµ
α(α ∈ Xµ), passing through Ω, fµα ≡ fµ

∣∣
Xµα

is an affine invertible

mapping from Xµ
α onto its image Y µα = f(Xµ

α ) that is, closed in Y and has codimension
µ and fµα depends continuously on α.

Definition 20 Continuous mapping f : X → Y is called Fredholm Quasi - Linear
(FQL), if there exists a sequence fµk of FL mappings, k = 1, 2, . . . , uniformly approxi-
mating f on each bounded domain Ω ⊂ X such that

13
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∥∥fµka ∥∥ < C(Ω) ,
∥∥(fµka )

∥∥ < C(Ω),

with k > k0(Ω), if α ∈ πµk(Ω) and C(Ω) does not depend on k, if k0(Ω).
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