On the Asymptotics of Fourier Coefficients for the Potential in Hill's Equation

Haskız Coşkun

Abstract

We consider Hill's equation $y^{\prime \prime}+(\lambda-q) y=0$ where $q \in L^{1}[0, \pi]$. We show that if l_{n}-the length of the $n-t h$ instability interval- is of order $O\left(n^{-k}\right)$ then the real Fourier coefficients a_{n}, b_{n} of q are of the same order $\operatorname{for}(k=1,2,3)$, which in turn implies that $q^{(k-2)}$, the $(k-2) t h$ derivative of q, is absolutely continuous almost everywhere for $k=2,3$.

1. Introduction

We consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}(t)+(\lambda-q(t)) y(t)=0 \tag{1}
\end{equation*}
$$

on $[0, \pi]$ where λ is a real parameter, $q(t)$ is integrable over the interval $[0, \pi]$ which may be extended to the real line by periodicity. We associate three types of boundary conditions with (1) over $[0, \pi]$:

- periodic boundary conditions

$$
\begin{equation*}
y(0)=y(\pi), y^{\prime}(0)=y^{\prime}(\pi), \tag{2}
\end{equation*}
$$

- semi-periodic boundary conditions

$$
\begin{equation*}
y(0)=-y(\pi), y^{\prime}(0)=-y^{\prime}(\pi) \tag{3}
\end{equation*}
$$

COSKUN

- auxiliary boundary conditions

$$
\begin{equation*}
y(\tau)=y(\tau+\pi)=0 \tag{4}
\end{equation*}
$$

where $0 \leq \tau<\pi$.

Let $\lambda_{n}(n=1,2, \ldots)$ denote the periodic eigenvalues of the problem (1) and (2), and $\mu_{n}(n=1,2, \ldots)$ the semi-periodic eigenvalues of the problem (1) and (3), and $\Lambda_{n}(\tau),(n=1,2, \ldots)$ the auxiliary eigenvalues of (1) with condition (4). It is well known that, see for example [4],

$$
\lambda_{0}<\mu_{0} \leq \mu_{1}<\lambda_{1} \leq \lambda_{2}<\mu_{2} \leq \mu_{3}<\ldots
$$

We define the instability intervals of (1) as follows:
$I_{0}=\left(-\infty, \lambda_{0}\right), I_{2 m+1}=\left(\mu_{2 m}, \mu_{2 m+1}\right), I_{2 m+2}=\left(\lambda_{2 m+1}, \lambda_{2 m+2}\right)$, and for $n \geq 1$ their lengths by l_{n}. It is shown in [10] that (1) with (4) is equivalent to the Dirichlet problem

$$
\begin{align*}
& y^{\prime \prime}(t)+(\lambda-q(t+\tau)) y(t)=0 \tag{5}\\
& y(0)=y(\pi)=0 \tag{6}
\end{align*}
$$

Some asymptotic estimates for the eigenvalues and instability intervals of (1) are provided in $[6],[7]$, respectively. We suppose without loss of generality that

$$
\int_{0}^{\pi} q(t) d t=0
$$

and let a_{n}, b_{n} denote the real Fourier coeeficients of q on $[0, \pi]$, i.e,

$$
\begin{equation*}
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} q(t) \cos (2 n t) d t, b_{n}=\frac{2}{\pi} \int_{0}^{\pi} q(t) \sin (2 n t) d t \tag{7}
\end{equation*}
$$

As a result of the needs of modern physics, inverse problems became a hot research area. One of the earliest such problems formulated and solved by Ambarzumian[1]. In 1929, he considered the following question:

$$
y^{\prime \prime}(t)+(\lambda-q(t)) y(t)=0
$$

COŞKUN

and

$$
y^{\prime \prime}+\lambda y=0
$$

subject to the boundary conditions

$$
y^{\prime}(0)=y^{\prime}(\pi)=0
$$

with the same eigenvalues. What can be said about $q(z)$? Ambarzumian's answer was that $q(z)=0$.

Borg[4] considered the general problem of what can be said about $q(z)$ from a knowledge of spectrum. Similar problems have also been investigated by Hochstadt[10] and Ungar[12]. Now, we state a result proven independently by Hochstadt and Ungar.

Theorem 1.1 [10] If $q(z)$ is real and integrable, and if all finite instability intervals vanish then $q(z)=0$ almost everwhere.

In this paper we assume that all finite instability intervals are $O\left(n^{-k}\right)$ and show that $a_{n}, b_{n}=O\left(n^{-k}\right)$, from which we deduce that $q^{(k-2)} \quad$ is absolutely continuous a.e. $(k=$ $2,3)$.

Central to our analysis is the following theorem of Hochstadt [10] which involves the auxiliary eigenvalues of (1) considered on the interval $[\tau, \tau+\pi]$ where $0 \leq \tau<\pi$ with boundary conditions

$$
y(\tau)=y(\tau+\pi)=0
$$

Theorem 1.2 [10] The ranges of $\Lambda_{2 m}(\tau)$ and $\Lambda_{2 m+1}(\tau)$, as functions of τ are $\left[\mu_{2 m}, \mu_{2 m+1}\right]$ and $\left[\lambda_{2 m+1}, \lambda_{2 m+2}\right]$ respectively.

Remark: We make use of the Theorem 1.2 in the sense that if all finite instability intervals are $O\left(n^{-k}\right)$ then $\Lambda_{n}\left(\tau_{2}\right)-\Lambda_{n}\left(\tau_{1}\right)=O\left(n^{-k}\right)$ for any $\tau_{1}, \tau_{2} \in[0, \pi)$.

We also state a sequence of Lemmas which will be used in proving our results. Let

$$
\begin{equation*}
c_{n}=\frac{1}{\pi} \int_{0}^{\pi} q(z) e^{-2 i n z} d z \tag{8}
\end{equation*}
$$

COSKUN

be the Fourier coefficient of $q(z)$ over $[0, \pi]$.

Lemma 1.1 [10] Let $q(z)$ be periodic with period π, integrable over $[0, \pi]$ and such that

$$
c_{n}=O\left(\frac{1}{n^{2}}\right)
$$

as $n \rightarrow \infty$. Then $q(z)$ is absolutely continuous almost everywhere.

Lemma 1.2 Let $q(z)$ be periodic with period π, integrable over $[0, \pi]$ and such that

$$
c_{n}=O\left(\frac{1}{n^{3}}\right)
$$

as $n \rightarrow \infty$. Then $q^{\prime}(z)$ is absolutely continuous almost everywhere.
Proof. The proof of Lemma 1.1 goes through.

Lemma 1.3 [9] For $k=1,2,3, \ldots, \tau \leq t \leq \tau+\pi$

$$
\Theta(t, \tau)-\Theta_{k}(t, \tau)=o\left(\Lambda^{-k / 2}\right)
$$

as $\Lambda \rightarrow \infty$.
Lemma 1.4 [2] For q integrable and for any x_{1}, x_{2} such that $\tau \leq x_{1}<x_{2} \leq \tau+\pi$

$$
\int_{x_{1}}^{x_{2}} q(t) \sin \left(2 \Lambda^{1 / 2} t\right) d t=o(1)
$$

as $\Lambda \rightarrow \infty$.

Now, we introduce the function $\Theta(t, \Lambda, \tau)$, the so-called modified Prüfer transformation of [2], which is defined for any given solution of (1) as

$$
\tan \Theta(t, \Lambda, \tau)=\frac{\Lambda^{1 / 2} y(t, \tau)}{y^{\prime}(t, \tau)}
$$

COŞKUN

for $\tau \leq t \leq \tau+\pi$. This fixes Θ to within additive multiples of π. For definiteness we assume that $0 \leq \Theta(t, \tau) \leq \pi$ and observe that the boundary conditions (4) correspond to

$$
\begin{equation*}
\Theta(t, \tau)=0, \Theta(t, \tau+\pi)=(n+1) \pi \tag{9}
\end{equation*}
$$

similarly the boundary conditions (6) correspond to

$$
\begin{equation*}
\Theta(t, 0)=0, \Theta(t, \pi)=(n+1) \pi \tag{10}
\end{equation*}
$$

¿From now on, we supress the dependence of Θ on Λ and write $\Theta(t, \tau)$ instead of $\Theta(t, \Lambda, \tau)$. Under the Prüfer transformation the differential equation corresponding to (1) can be written as

$$
\begin{equation*}
\Theta^{\prime}(t, \tau)=\Lambda^{1 / 2}-\frac{1}{2} \Lambda^{-1 / 2} q(t)+\frac{1}{2} \Lambda^{-1 / 2} q(t) \cos (2 \Theta(t, \tau)) \tag{11}
\end{equation*}
$$

and from (11)

$$
\begin{equation*}
\Theta(t, \tau)=\left(\Lambda^{1 / 2}\right)(t-\tau)-\frac{1}{2} \Lambda^{-1 / 2} \int_{\tau}^{t} q(s) d s+\frac{1}{2} \Lambda^{-1 / 2} q(t) \int_{\tau}^{t} q(s) \cos (2 \Theta(s, \tau)) d s \tag{12}
\end{equation*}
$$

We define a sequence of approximating functions for (12) as follows:

$$
\begin{align*}
\Theta_{1}(t, \tau) & :=\left(\Lambda^{1 / 2}\right)(t-\tau)-\frac{1}{2} \Lambda^{-1 / 2} \int_{\tau}^{t} q(s) d s \\
\Theta_{k+1}(t, \tau) & :=\Theta_{1}(t, \tau)+\frac{1}{2} \Lambda^{-1 / 2} \int_{\tau}^{t} q(s) \cos \left(2 \Theta_{k}(s, \tau)\right) d s \tag{13}
\end{align*}
$$

for $k=1,2, \ldots$, and $\tau \leq t \leq \tau+\pi$.

2. The Results

Theorem 2.1 For any integer k, the auxiliary eigenvalues of (1), as functions of τ, satisfy

$$
\begin{equation*}
(n+1) \pi=\Lambda_{n}^{1 / 2}(\tau) \pi+\frac{1}{2} \Lambda^{-1 / 2} \int_{0}^{\pi} q(t+\tau) \cos \left(2 \Theta_{k}(t, \tau)\right) d t+O\left(n^{-(k+1)}\right) \tag{14}
\end{equation*}
$$

as $n \rightarrow \infty$.

COŞKUN

Proof. We consider the differential equation (5) with the boundary conditions (6). From (11) we get

$$
\begin{equation*}
\Theta^{\prime}(t, \tau)=\Lambda^{1 / 2}-\frac{1}{2} \Lambda^{-1 / 2} q(t+\tau)+\frac{1}{2} \Lambda^{-1 / 2} q(t+\tau) \cos (2 \Theta(t, \tau)) \tag{15}
\end{equation*}
$$

We also know from Lemma 1.3 that

$$
\begin{equation*}
\Theta(t, \tau)-\Theta_{k}(t, \tau)=o\left(\Lambda^{-k / 2}\right) \tag{16}
\end{equation*}
$$

so that

$$
\begin{equation*}
\cos (2 \Theta(t, \tau))=\cos \left(2 \Theta_{k}(t, \tau)\right)+O\left(\Lambda^{-k / 2}\right) \tag{17}
\end{equation*}
$$

Substituting (17) into (15) we obtain

$$
\begin{equation*}
\Theta^{\prime}(t, \tau)=\Lambda^{1 / 2}-\frac{1}{2} \Lambda^{-1 / 2} q(t+\tau)+\frac{1}{2} \Lambda^{-1 / 2} q(t+\tau) \cos \left(2 \Theta_{k}(t, \tau)\right)+O\left(\Lambda^{-\frac{(k+1)}{2}}\right) \tag{18}
\end{equation*}
$$

Integrating (18) with respect to τ on $[0, \pi]$ and using (10) we complete the proof.

Corollary 2.1 As $n \rightarrow \infty$ the auxiliary eigenvalues of (1), as functions of τ, satisfy

$$
\begin{equation*}
\Lambda_{n}^{1 / 2}(\tau)=(n+1)+\frac{1}{(n+1)} F_{1}(n, \tau)+O\left(n^{-2}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{1}(n, \tau)=-\frac{1}{2 \pi} \int_{0}^{\pi} q(t+\tau) \cos (2(n+1) t) d t \tag{20}
\end{equation*}
$$

Proof. From (13), we see that

$$
\begin{equation*}
\cos \left(2 \theta_{1}(t, \tau)\right)=\cos \left(2 \Lambda^{1 / 2} t\right)+O\left(\Lambda^{-1 / 2}\right) \tag{21}
\end{equation*}
$$

Substituting (21) into (14) and using reversion we complete the proof.

Theorem 2.2 Let $q(t)$ be real-valued integrable function on $[0, \pi]$. If $l_{n}=O\left(n^{-1}\right)$, then $a_{n}, b_{n}=O\left(n^{-1}\right)$ as $n \rightarrow \infty$.

COSKUN

Proof. It is easily seen that

$$
\begin{equation*}
F_{1}(n, \tau)=-\frac{1}{4}\left[\cos (2(n+1) \tau) a_{n+1}+\sin (2(n+1) \tau) b_{n+1}\right] \tag{22}
\end{equation*}
$$

where a_{n+1} and b_{n+1} are defined in (7), and $F_{1}(n, \tau)$ is given by (20). From Corollary 2.1, for any $\tau_{1}, \tau_{2} \in[0, \pi)$

$$
\begin{align*}
\Lambda_{n}^{1 / 2}\left(\tau_{2}\right)-\Lambda_{n}^{1 / 2}\left(\tau_{1}\right) & =\frac{1}{4(n+1)}\left\{\left[\cos \left(2(n+1) \tau_{1}\right)-\cos \left(2(n+1) \tau_{2}\right)\right] a_{n+1}\right. \\
& \left.+\left[\sin \left(2(n+1) \tau_{1}\right)-\sin \left(2(n+1) \tau_{2}\right)\right] b_{n+1}\right\}+O\left(n^{-2}\right) \\
& =\frac{1}{2(n+1)}\left\{\sin \left((n+1)\left(\tau_{1}+\tau_{2}\right)\right) \sin \left((n+1)\left(\tau_{2}-\tau_{1}\right)\right) a_{n+1}\right. \\
& \left.+\cos \left((n+1)\left(\tau_{1}+\tau_{2}\right)\right) \sin \left((n+1)\left(\tau_{1}-\tau_{2}\right)\right) b_{n+1}\right\}+O\left(n^{-2}\right) \\
& =\frac{1}{2(n+1)} \sin \left((n+1)\left(\tau_{2}-\tau_{1}\right)\right)\left\{\sin \left((n+1)\left(\tau_{1}+\tau_{2}\right)\right) a_{n+1}\right. \\
& \left.-\cos \left((n+1)\left(\tau_{1}+\tau_{2}\right)\right) b_{n+1}\right\}+O\left(n^{-2}\right) \tag{23}
\end{align*}
$$

On the other hand, from the assumption that $l_{n}=O\left(n^{-1}\right)$ and Lemma 1.4.

$$
\Lambda_{n}\left(\tau_{2}\right)-\Lambda_{n}\left(\tau_{1}\right)=O\left(n^{-1}\right)
$$

and hence of

$$
\begin{equation*}
\Lambda_{n}^{1 / 2}\left(\tau_{2}\right)-\Lambda_{n}^{1 / 2}\left(\tau_{1}\right)=\frac{\Lambda_{n}\left(\tau_{2}\right)-\Lambda_{n}\left(\tau_{1}\right)}{\Lambda_{n}^{1 / 2}\left(\tau_{2}\right)+\Lambda_{n}^{1 / 2}\left(\tau_{1}\right)}=O\left(n^{-2}\right) \tag{24}
\end{equation*}
$$

The result follows from (23) and (24).

Corollary 2.2 As $n \rightarrow \infty$ the auxiliary eigenvalues of (1), as functions of τ, satisfy

$$
\begin{equation*}
\Lambda_{n}^{1 / 2}(\tau)=(n+1)+\frac{1}{(n+1)} F_{1}(n, \tau)+\frac{1}{(n+1)^{2}} F_{2}(n, \tau)+O\left(n^{-3}\right) \tag{25}
\end{equation*}
$$

where $F_{1}(n, \tau)$ is given by (20) and

$$
F_{2}(n, \tau)=-\frac{1}{2 \pi} \int_{0}^{\pi} q(t+\tau)\left(\int_{0}^{t} q(s+\tau) d s\right) \sin (2(n+1) t) d t
$$

$$
\begin{equation*}
+\frac{1}{2 \pi} \int_{0}^{\pi} q(t+\tau)\left(\int_{0}^{t} q(s+\tau) \cos (2(n+1) s) d s\right) \sin (2(n+1) t) d t \tag{26}
\end{equation*}
$$

Proof. From (13) we observe that for $k=1$

$$
\begin{align*}
\cos \left(2 \Theta_{2}(t, \tau)\right) & =\cos \left(2 \Lambda^{1 / 2} t\right)+\Lambda^{-1 / 2} \sin \left(2 \Lambda^{1 / 2} t\right)\left(\int_{0}^{t} q(s+\tau) d s\right) \\
& -\Lambda^{-1 / 2} \sin \left(2 \Lambda^{1 / 2} t\right)\left(\int_{0}^{t} q(s+\tau) \cos \left(2 \Lambda^{1 / 2} s\right) d s\right)+O\left(\Lambda^{-1}\right) \tag{27}
\end{align*}
$$

Substituting (27) into (14) and using reversion we complete the proof.

Theorem 2.3 Let $q(t)$ be real-valued integrable function on $[0, \pi]$. If $l_{n}=O\left(n^{-2}\right)$ then $a_{n}, b_{n}=O\left(n^{-2}\right)$ as $n \rightarrow \infty$.

Proof. Since $l_{n}=O\left(n^{-2}\right)$ by assumption, it is $O\left(n^{-1}\right)$ as well. Hence $a_{n}, b_{n}=O\left(n^{-1}\right)$ by Theorem 2.2. From this and Lemma 1.4 we observe that

$$
F_{2}(n, \tau)=O\left(n^{-1}\right)
$$

Therefore, (25) reduces to

$$
\Lambda_{n}^{1 / 2}(\tau)=(n+1)+\frac{1}{(n+1)} F_{1}(n, \tau)+O\left(n^{-3}\right)
$$

By a similar argument in Theorem 2.2, we complete the proof.
Corollary 2.3 Let $q(t)$ be a real-valued integrable function on $[0, \pi]$. If $l_{n}=O\left(n^{-2}\right)$ as $n \rightarrow \infty$ then $q(t)$ is absolutely continuous almost everywhere.
Proof. It follows from Theorem 2.3 and Lemma 1.1
Corollary 2.4 As $n \rightarrow \infty$ the auxiliary eigenvalues of (1), as functions of τ, satisfy

$$
\begin{equation*}
\Lambda_{n}^{1 / 2}(\tau)=(n+1)+\frac{1}{(n+1)} F_{1}(n, \tau)+\frac{1}{(n+1)^{2}} F_{2}(n, \tau)+\frac{1}{(n+1)^{3}} F_{3}(n, \tau)+O\left(n^{-4}\right) \tag{28}
\end{equation*}
$$

where $F_{1}(n, \tau)$ is given by (20), $F_{2}(n, \tau)$ is given by (26) and

COSKUN

$$
\begin{align*}
& F_{3}(n, \tau)=-\frac{1}{4(n+1)^{3} \pi} \int_{0}^{\pi} q(t+\tau)\left[\int_{0}^{t} q(s+\tau) d s-\int_{0}^{t} q(s+\tau) \cos (2(n+1) s) d s\right]^{2} \\
& \times \cos (2(n+1) t) d t \\
&+\frac{1}{2(n+1)^{3} \pi} \int_{0}^{\pi} q(t+\tau)\left(\int_{0}^{t} q(s+\tau)\left(\int_{0}^{s} q(l+\tau) d l\right) \sin (2(n+1) s) d s\right) \\
& \times \sin (2(n+1) t) d t \tag{29}
\end{align*}
$$

Proof. From (13) for $k=2$ we have

$$
\begin{align*}
\cos \left(2 \Theta_{3}(t, \tau)\right) & =\cos \left(2 \Lambda^{1 / 2} t\right)+\Lambda^{-1 / 2} \sin \left(2 \Lambda^{1 / 2} t\right)\left(\int_{0}^{t} q(s+\tau) d s\right) \\
& -\Lambda^{-1 / 2} \sin \left(2 \Lambda^{1 / 2} t\right)\left(\int_{0}^{t} q(s+\tau) \cos \left(2 \Lambda^{1 / 2} s\right) d s\right) \\
& -\frac{1}{2} \Lambda^{-1}\left(\int_{0}^{t} q(s+\tau) d s-\int_{0}^{t} q(s+\tau) \cos \left(2 \Lambda^{1 / 2} s\right) d s\right)^{2} \cos \left(2 \Lambda^{1 / 2} t\right) \\
& -\Lambda^{-1}\left(\int_{0}^{t} q(s+\tau)\left(\int_{0}^{s} q(l+\tau) d l\right) \sin \left(2 \Lambda^{1 / 2} s\right) d s\right) \sin \left(2 \Lambda^{1 / 2} t\right) \\
& +O\left(\Lambda^{-3 / 2}\right) \tag{30}
\end{align*}
$$

Substituting (30) into (14), and using reversion we complete the proof.
Theorem 2.4 Let $q(t)$ be real-valued integrable function on $[0, \pi]$. If $l_{n}=O\left(n^{-3}\right)$ then $a_{n}, b_{n}=O\left(n^{-3}\right)$ as $n \rightarrow \infty$.
Proof. Since $l_{n}=O\left(n^{-3}\right)$ by assumption, it is $O\left(n^{-2}\right)$ as well. Hence $a_{n}, b_{n}=O\left(n^{-2}\right)$ by Theorem 2.3. Therefore, the terms involving $F_{2}(n, \tau)$ and $F_{3}(n, \tau)$ in (28) are included in the error term by Lemma 1.4. By a similar argument in Theorem 2.2 we complete the proof.

Corollary 2.5 Let $q(t)$ be a real-valued function on $[0, \pi]$. If $l_{n}=O\left(n^{-3}\right)$ then $q^{\prime}(t)$ is absolutely continuous almost everywhere.
Proof. It follows from Theorem 2.4 and Lemma 1.2.

Acknowledgement

The author is grateful to Professor Bernard J. Harris for introducing her to the field.

COSKUN

References

[1] Ambarzumian, V: Über eine Frage der Eigenwerttheorie. Zeit. f. Physik 53, 690-695 (1929).
[2] Atkinson, F.V.: Asymptotics of an eigenvalue problem involving an interior singularity. Argonne National Laboratory Proceedings ANL-87-26 Vol.2(1988), 1-18.
[3] Atkinson, F.V and Fulton, C.T.:Asymptotics of the eigenvalues for problems on a finite interval with one limit circle singularity. Proc. Royal Soc. Edinburgh Sect. A 99, 5170(1984).
[4] Borg, G.: Eine Umkehrung der Sturm-Liouvillschen Eigenwertaufgabe. Betimmung der Differentialgleichung durch die Eigenwerte. Acta Math. 78, 1-96(1946).
[5] Coskun, H.: Topics in the Theory of Periodic Differential Equations, Ph.D. Dissertation, NIU, 1994.
[6] Coskun, H. and Harris B.J.: Estimates for the periodic and semi-periodic eigenvalues of Hill's equation. Proc. Royal Soc. Edinburgh Sect. A (to appear).
[7] Coskun, H.: Some asymptotic estimates for the instability intervals of Hill's equation. Turkish Journal of Mathematics Vol 23, 2(1999).
[8] Eastham, M.S.P: The spectral theory of periodic differential equations. Scottish Academic Press, Edingburgh, 1973.
[9] Harris, B.J.: Asymptotics of eigenvalues for regular Sturm-Liouville problems. Jour. Math. Anal. and Appl. 183, 25-36(1994).
[10] Hochstadt, H.: On the determination of a Hill's Equation from its Spectrum. Arc. Rat. Mech. Anal.19,353-362(1965).

11] Titchmarsh, E.C.: The Theory of Functions. Oxford University Press, Amen House, London, 1932.
[12] Ungar, P.: Stable Hill Equations. Comm. Pure and Applied Math. 14, 707-710 (1961).

Haskız COŞKUN

Received 02.11.1999
Department of Mathematics
Karadeniz Technical University,
Department of Mathematics
61080, Trabzon-TURKEY

