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On the Asymptotics of Fourier Coefficients for the

Potential in Hill’s Equation

Haskız Coşkun

Abstract

We consider Hill’s equation y′′ + (λ− q)y = 0 where q ∈ L1[0, π]. We show that

if ln−the length of the n− th instability interval− is of order O(n−k) then the real

Fourier coefficients an, bn of q are of the same order for(k = 1, 2, 3), which in turn

implies that q(k−2), the (k − 2)th derivative of q, is absolutely continuous almost

everywhere for k = 2, 3.

1. Introduction

We consider the differential equation

y′′(t) + (λ − q(t))y(t) = 0 (1)

on [0, π] where λ is a real parameter, q(t) is integrable over the interval [0, π] which may be
extended to the real line by periodicity. We associate three types of boundary conditions
with (1) over [0, π] :

• periodic boundary conditions

y(0) = y(π), y′(0) = y′(π), (2)

• semi-periodic boundary conditions

y(0) = −y(π), y′(0) = −y′(π), (3)
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• auxiliary boundary conditions

y(τ ) = y(τ + π) = 0, (4)

where 0 ≤ τ < π.

Let λn(n = 1, 2, . . .) denote the periodic eigenvalues of the problem (1) and (2),
and µn(n = 1, 2, . . .) the semi-periodic eigenvalues of the problem (1) and (3), and
Λn(τ ), (n = 1, 2, . . .) the auxiliary eigenvalues of (1) with condition (4). It is well known
that , see for example [4],

λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < . . .

We define the instability intervals of (1) as follows:

I0 = (−∞, λ0),I2m+1 = (µ2m, µ2m+1), I2m+2 = (λ2m+1 , λ2m+2), and for n ≥ 1 their
lengths by ln. It is shown in [10] that (1) with (4) is equivalent to the Dirichlet problem

y′′(t) + (λ − q(t + τ ))y(t) = 0, (5)

y(0) = y(π) = 0. (6)

Some asymptotic estimates for the eigenvalues and instability intervals of (1) are provided
in [6],[7], respectively. We suppose without loss of generality that

∫ π

0

q(t)dt = 0

and let an,bn denote the real Fourier coeeficients of q on [0, π], i.e,

an =
2
π

∫ π

0

q(t)cos(2nt)dt, bn =
2
π

∫ π

0

q(t)sin(2nt)dt. (7)

As a result of the needs of modern physics, inverse problems became a hot research
area. One of the earliest such problems formulated and solved by Ambarzumian[1]. In
1929, he considered the following question:

y′′(t) + (λ − q(t))y(t) = 0
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and

y′′ + λy = 0

subject to the boundary conditions

y′(0) = y′(π) = 0

with the same eigenvalues. What can be said about q(z)? Ambarzumian’s answer was
that q(z) = 0.

Borg[4] considered the general problem of what can be said about q(z) from a knowl-
edge of spectrum. Similar problems have also been investigated by Hochstadt[10] and
Ungar[12]. Now, we state a result proven independently by Hochstadt and Ungar.

Theorem 1.1 [10] If q(z) is real and integrable, and if all finite instability intervals
vanish then q(z) = 0 almost everwhere.

In this paper we assume that all finite instability intervals are O(n−k) and show that

an, bn = O(n−k), from which we deduce that q(k−2) is absolutely continuous a.e.(k =
2, 3).

Central to our analysis is the following theorem of Hochstadt [10] which involves the
auxiliary eigenvalues of (1) considered on the interval [τ, τ + π] where 0 ≤ τ < π with
boundary conditions

y(τ ) = y(τ + π) = 0.

Theorem 1.2 [10] The ranges of Λ2m(τ ) and Λ2m+1(τ ), as functions of τ are [µ2m, µ2m+1]
and [λ2m+1, λ2m+2] respectively.

Remark: We make use of the Theorem 1.2 in the sense that if all finite instability

intervals are O(n−k) then Λn(τ2) − Λn(τ1) = O(n−k) for any τ1, τ2 ∈ [0, π).

We also state a sequence of Lemmas which will be used in proving our results. Let

cn =
1
π

∫ π

0

q(z)e−2inzdz (8)
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be the Fourier coefficient of q(z) over [0, π].

Lemma 1.1 [10] Let q(z) be periodic with period π, integrable over [0, π] and such that

cn = O(
1
n2

)

as n→∞. Then q(z) is absolutely continuous almost everywhere.

Lemma 1.2 Let q(z) be periodic with period π, integrable over [0, π] and such that

cn = O(
1
n3

)

as n→∞. Then q′(z) is absolutely continuous almost everywhere.

Proof. The proof of Lemma 1.1 goes through.

Lemma 1.3 [9] For k = 1, 2, 3, . . . , τ ≤ t ≤ τ + π

Θ(t, τ )− Θk(t, τ ) = o(Λ−k/2)

as Λ→∞.

Lemma 1.4 [2] For q integrable and for any x1, x2 such that τ ≤ x1 < x2 ≤ τ + π

∫ x2

x1

q(t)sin(2Λ1/2t)dt = o(1)

as Λ→∞.

Now, we introduce the function Θ(t,Λ, τ ), the so-called modified Prüfer transforma-
tion of [2], which is defined for any given solution of (1) as

tanΘ(t,Λ, τ ) =
Λ1/2y(t, τ )
y′(t, τ )

,
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for τ ≤ t ≤ τ + π. This fixes Θ to within additive multiples of π. For definiteness we
assume that 0 ≤ Θ(t, τ ) ≤ π and observe that the boundary conditions (4) correspond to

Θ(t, τ ) = 0, Θ(t, τ + π) = (n+ 1)π, (9)

similarly the boundary conditions (6) correspond to

Θ(t, 0) = 0, Θ(t, π) = (n+ 1)π. (10)

¿From now on, we supress the dependence of Θ on Λ and write Θ(t, τ ) instead of
Θ(t,Λ, τ ). Under the Prüfer transformation the differential equation corresponding to (1)
can be written as

Θ′(t, τ ) = Λ1/2 − 1
2

Λ−1/2q(t) +
1
2

Λ−1/2q(t)cos(2Θ(t, τ )), (11)

and from (11)

Θ(t, τ ) = (Λ1/2)(t − τ )− 1
2

Λ−1/2

∫ t

τ

q(s)ds+
1
2

Λ−1/2q(t)
∫ t

τ

q(s)cos(2Θ(s, τ))ds. (12)

We define a sequence of approximating functions for (12) as follows:

Θ1(t, τ ) := (Λ1/2)(t − τ ) − 1
2

Λ−1/2

∫ t

τ

q(s)ds,

Θk+1(t, τ ) := Θ1(t, τ ) +
1
2

Λ−1/2

∫ t

τ

q(s)cos(2Θk(s, τ))ds (13)

for k = 1, 2, . . . , and τ ≤ t ≤ τ + π.

2. The Results

Theorem 2.1 For any integer k, the auxiliary eigenvalues of (1), as functions of τ,
satisfy

(n+ 1)π = Λ1/2
n (τ )π +

1
2

Λ−1/2

∫ π

0

q(t+ τ )cos(2Θk(t, τ ))dt+ O(n−(k+1)) (14)

as n→∞.
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Proof. We consider the differential equation (5) with the boundary conditions (6).
From (11) we get

Θ′(t, τ ) = Λ1/2 − 1
2

Λ−1/2q(t+ τ ) +
1
2

Λ−1/2q(t+ τ )cos(2Θ(t, τ )). (15)

We also know from Lemma 1.3 that

Θ(t, τ )− Θk(t, τ ) = o(Λ−k/2), (16)

so that

cos(2Θ(t, τ )) = cos(2Θk(t, τ )) + O(Λ−k/2). (17)

Substituting (17) into (15) we obtain

Θ′(t, τ ) = Λ1/2 − 1
2

Λ−1/2q(t+ τ ) +
1
2

Λ−1/2q(t + τ )cos(2Θk(t, τ )) + O(Λ−
(k+1)

2 ). (18)

Integrating (18) with respect to τ on [0, π] and using (10) we complete the proof.

Corollary 2.1 As n→∞ the auxiliary eigenvalues of (1), as functions of τ, satisfy

Λ1/2
n (τ ) = (n+ 1) +

1
(n+ 1)

F1(n, τ ) +O(n−2) (19)

where

F1(n, τ ) = − 1
2π

∫ π

0

q(t+ τ )cos(2(n+ 1)t)dt. (20)

Proof. From (13), we see that

cos(2θ1(t, τ )) = cos(2Λ1/2t) + O(Λ−1/2). (21)

Substituting (21) into (14) and using reversion we complete the proof.

Theorem 2.2 Let q(t) be real-valued integrable function on [0, π]. If ln = O(n−1), then

an, bn = O(n−1) as n→∞.
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Proof. It is easily seen that

F1(n, τ ) = −1
4

[cos(2(n+ 1)τ )an+1 + sin(2(n + 1)τ )bn+1], (22)

where an+1 and bn+1 are defined in (7), and F1(n, τ ) is given by (20). From Corollary
2.1, for any τ1, τ2 ∈ [0, π)

Λ1/2
n (τ2)− Λ1/2

n (τ1) =
1

4(n+ 1)
{[cos(2(n + 1)τ1)− cos(2(n+ 1)τ2)] an+1

+ [sin(2(n + 1)τ1)− sin(2(n + 1)τ2)]bn+1}+O(n−2)

=
1

2(n+ 1)
{sin((n + 1)(τ1 + τ2)) sin((n + 1)(τ2 − τ1))an+1

+ cos((n + 1)(τ1 + τ2))sin((n + 1)(τ1 − τ2))bn+1}+ O(n−2)

=
1

2(n+ 1)
sin((n + 1)(τ2 − τ1)) {sin((n + 1)(τ1 + τ2))an+1

− cos((n + 1)(τ1 + τ2))bn+1}+O(n−2). (23)

On the other hand, from the assumption that ln = O(n−1) and Lemma 1.4.

Λn(τ2) − Λn(τ1) = O(n−1)

and hence of

Λ1/2
n (τ2) − Λ1/2

n (τ1) =
Λn(τ2) − Λn(τ1)

Λ1/2
n (τ2) + Λ1/2

n (τ1)
= O(n−2). (24)

The result follows from (23) and (24).

Corollary 2.2 As n→∞ the auxiliary eigenvalues of (1), as functions of τ, satisfy

Λ1/2
n (τ ) = (n+ 1) +

1
(n+ 1)

F1(n, τ ) +
1

(n+ 1)2
F2(n, τ ) + O(n−3), (25)

where F1(n, τ ) is given by (20) and

F2(n, τ ) =− 1
2π

∫ π

0

q(t + τ )(
∫ t

0

q(s+ τ )ds)sin(2(n + 1)t)dt
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+
1

2π

∫ π

0

q(t + τ )(
∫ t

0

q(s+ τ )cos(2(n+ 1)s)ds)sin(2(n + 1)t)dt.

(26)

Proof. From (13) we observe that for k = 1

cos(2Θ2(t, τ )) = cos(2Λ1/2t) + Λ−1/2sin(2Λ1/2t)(
∫ t

0

q(s+ τ )ds)

− Λ−1/2sin(2Λ1/2t)(
∫ t

0

q(s+ τ )cos(2Λ1/2s)ds) +O(Λ−1). (27)

Substituting (27) into (14) and using reversion we complete the proof.

Theorem 2.3 Let q(t) be real-valued integrable function on [0, π]. If ln = O(n−2) then

an, bn = O(n−2) as n→∞.

Proof. Since ln = O(n−2) by assumption, it is O(n−1) as well. Hence an, bn = O(n−1)
by Theorem 2.2. From this and Lemma 1.4 we observe that

F2(n, τ ) = O(n−1).

Therefore, (25) reduces to

Λ1/2
n (τ ) = (n+ 1) +

1
(n + 1)

F1(n, τ ) + O(n−3).

By a similar argument in Theorem 2.2, we complete the proof.

Corollary 2.3 Let q(t) be a real-valued integrable function on [0, π]. If ln = O(n−2) as
n→∞ then q(t) is absolutely continuous almost everywhere.

Proof. It follows from Theorem 2.3 and Lemma 1.1

Corollary 2.4 As n→∞ the auxiliary eigenvalues of (1), as functions of τ, satisfy

Λ1/2
n (τ )=(n+ 1)+

1
(n+ 1)

F1(n, τ )+
1

(n + 1)2
F2(n, τ )+

1
(n + 1)3

F3(n, τ )+O(n−4), (28)

where F1(n, τ ) is given by (20), F2(n, τ ) is given by (26) and
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F3(n, τ ) =− 1
4(n+ 1)3π

∫ π

0

q(t+ τ )[
∫ t

0

q(s+ τ )ds−
∫ t

0

q(s+ τ )cos(2(n + 1)s)ds]2

×cos(2(n + 1)t)dt

+
1

2(n+ 1)3π

∫ π

0

q(t+ τ )(
∫ t

0

q(s+ τ )(
∫ s

0

q(l+ τ )dl)sin(2(n + 1)s)ds)

×sin(2(n + 1)t)dt. (29)

Proof. From (13) for k = 2 we have

cos(2Θ3(t, τ )) = cos(2Λ1/2t) + Λ−1/2sin(2Λ1/2t)(
∫ t

0

q(s+ τ )ds)

− Λ−1/2sin(2Λ1/2t)(
∫ t

0

q(s+ τ )cos(2Λ1/2s)ds)

− 1
2

Λ−1

(∫ t

0

q(s+ τ )ds−
∫ t

0

q(s+ τ )cos(2Λ1/2s)ds
)2

cos(2Λ1/2t)

− Λ−1(
∫ t

0

q(s+ τ )(
∫ s

0

q(l+ τ )dl)sin(2Λ1/2s)ds)sin(2Λ1/2t)

+ O(Λ−3/2). (30)

Substituting (30) into (14),and using reversion we complete the proof.

Theorem 2.4 Let q(t) be real-valued integrable function on [0, π]. If ln = O(n−3) then

an, bn = O(n−3) as n→∞.
Proof. Since ln = O(n−3) by assumption, it is O(n−2) as well. Hence an, bn = O(n−2)
by Theorem 2.3. Therefore, the terms involving F2(n, τ ) and F3(n, τ ) in (28) are included
in the error term by Lemma 1.4. By a similar argument in Theorem 2.2 we complete the
proof.

Corollary 2.5 Let q(t) be a real-valued function on [0, π]. If ln = O(n−3) then q′(t) is
absolutely continuous almost everywhere.
Proof. It follows from Theorem 2.4 and Lemma 1.2.
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