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On the Metabelian Local Artin Map I: Galois
Conjugation Law

Kazm Tlhan Ikeda*

Abstract
It is proved that, for a (henselian) local field K and for a fixed Lubin-Tate split-
ting ¢ over K, the metabelian local Artin map (7, K)¢ : €(K, qﬁ)%Gal(K(“b)Q/K)

satisfies the Galois conjugation law

(6’+(Oé), U(K))5¢5*1 = &|K(ab)2 (Oé, K)¢&_1 |5(K(ab)2)

for any a € &(K,¢), and for any embedding o : K — K°°?, where 6 € Aut (K°°P)

is a fixed extension to K*°P of the embedding o : K — K*°P.
Key words and phrases. local fields, metabelian extensions, metabelian local
Artin map, non-abelian local class field theory.

§1. Introduction

Recall that a Galois extension F/K is called a metabelian (or 2-abelian) extension,
if the double-commutator group (Gal(F/K)') = Gal(F/K)'(? is trivial. More generally,
F/K is called an n-abelian extension if the n-th commutator group Gal(F/K) (™ is
trivial. Recently, H. Koch and E. de Shalit constructed a class field theory for 2-abelian
extensions of local fields [4]. The remarkable fact is that it seems to be possible to recover
non-abelian local class field theory by inductively extending the results in [4] to n-abelian
extensions of local fields for 2 < n € Z. Let K be a (non-archimedean) local field with
finite residue class field kx = Ok / Fi of g elements. Here as usual, O and Fx denote

the ring of integers of K and the maximal ideal in Og, respectively. Let K™ denote

1991 Mathematics Subject Classification. 11S37.
*This work had been carried out and completed in the frame of the project “GL(n)” at Tiibitak-Feza
Giirsey Institute, Istanbul-Turkey.
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the maximal unramified extension of K in a fixed seperable closure K¢ of K, K the

completion K" of K™ and let K (@) denote the maximal 2-abelian extension of K (in
K*°P). Following the terminology of [4], fix a Lubin-Tate splitting (K, ¢) once and for
all. Let K, be the fixed field of ¢ in K*°?. Recall that Lubin-Tate theory states that
K% = K" K(W), where K (W) is a maximal totally ramified extension of K defined by
adjoining the set of torsion points W defined by a Lubin-Tate polynomial fx € Og[[X]],
and by the compositions ¢" fx o-- 0 ¢fx o fx for 0 < n € Z. The idea of Koch and de
Shalit in [4] is based on the following observation: if L runs through the finite extensions
of K contained in Ko, = Kg N K%, then UL7d(LKg’“)“b = K@) (for a generalization,
cf. [1]), so that passing to the projective limits (defined over the canonical connecting

morphisms)

lim Gal (LK;")™/K) = lim Gal (KooKj")"/K) = Gal (K" /K).
L.d d

Hence if it can be found, (for each 1 < d € Z) a compact group G4(K) topologically

isomorphic to Gal((K.K}7)®/K) together with canonical topological isomorphisms

ta: Ga(K) > Gal (Ko KJ7)™/K)

satisfying the functoriality condition, then K — G(K) = lim G4(K) will be the “non-
d

abelian” field formation of a class field theory for 2-abelian extensions of the local field

K. Indeed, Koch and de Shalit have defined such topological groups G4(K) (depending

on the choice of the Lubin-Tate splitting (K, ¢)) in the form of d-Koch-de Shalit vectors
B,4(K, ¢), and succeeded in building the metabelian (2-abelian) local class field theory

via constructing a canonical isomorphism

tpa: Ba(K,¢) > Gal (Ko Kj")™/K),

and consequently establishing the 2-abelian local Artin map

(7.K)g =1 : B(K,¢) = lim Gy(K,¢) > Gal (K™ /K). (1.1)
d
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However in [4], Koch and de Shalit neither discussed the behaviour of the morphism (1.1)
under Galois conjugation, nor discussed the "metabelian transfer law” (Verlagerung) of
the morphism (1.1). The aim of this work, and its continuation, is to discuss these two
properties of the 2-abelian local Artin map, and to complete [4] in that respect. Thus in
the first part, we will review the metabelian local class field theory following [4]. This
part is included, since [4] is a very important and technical theory and will form the basis
for our future investigation on non-abelian local class field theory. Then in the second
part, after some preliminary observations on the group of Koch-de Shalit vectors & (K, ¢),

we will state and prove the Galois conjugation law of the metabelian local Artin map.
The third part is devoted to the “metabelian transfer law” of the 2-abelian local Artin
map. As we intend to include the necessary Galois cohomological tools in part III, we
decided to split up our paper into two, and part II] will appear elsewhere as the natural
continuation of this paper which consists of part I and II.

PART I: METABELIAN LOCAL CrLASS FIELD THEORY

§2. Koch-de Shalit Vectors

Following [4], let L be a local field with finite residue class field k1 of g1, elements,
¢r, € Gal(L™" /L) the Frobenius automorphism over L, and 7 a prime element of L (the

completion Ln" of L™").

Definition 2.1. A formal power series h(X) € O;[[X]] is called a Lubin-Tate power

series belonging to 7 for L, if

h(X) =7nX + (higher-degree terms)

and

h(X) = X% (mod 7).
Let F. denote the collection of all Lubin-Tate formal power series belonging to 7
for L. If h(X) € F’, then there exists a unique 1-dimensional formal group law*
Fr(X,Y) € O;[[X, Y]] satisfying

*Let R be a commutativering with unity 1. Recall that F(X,Y) € R[[X,Y]] is called a (commutative
1-dimensional) formal group law over R if the following axioms are satisfied: (a) F(X,Y) = F(Y, X);
(b) F(X,Y) Z X +Y (mod deg. 2); (c) F(X,0) = X = F(0,X); (d) F(F(X,Y),2) = F(X,F(Y,2)).

Moreover, if R is a complete d.v.r and F the maximal ideal of R, then for o, 3 € F, define a[—ﬁt—],@ =

F(a,B) € F, which defines a new abelian group structure on F, called the group of F-valued points of
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(¢LFh)(h(X)a h(Y)) = h(Fh(Xa Y))a

which is called the Lubin-Tate formal group law over O; attached to the Lubin-Tate

series h(X). The endomorphism ring (over Oj)

Endo, (Fa(X,Y)) = {f(X) € XOp[[X]] : f(Fn(X,Y)) = Fn(f(X), f(Y))}

is isomorphic to the ring of integers Oy of the local field L under the isomorphism
a — [a]p, for every a € Or, where [a]y, : F, — F}, is the unique endomorphism of the form
[a]p, = aX+ (higher-degree terms) € XO; [[X]]. Now, suppose that 7" is another prime
clement of L, and h'(X) € F.,. If 0 # a € O; satisfies ¢LTW = ”7', then there exists
a unique homomorphism [a]p n : F, — Fj of the form [a]n = aX+ (higher-degree
terms) € XOj; [[X]] such that (¢lalnn) o h = h' o [a]p,n and [ab]ppr = [l w7 © [a]hns
where 7 is a prime element in L, possibly different than the prime elements = and 7’ of
L,k € F.,, and 0 # b € O; chosen to satisfy ¢LT(b) = 7;—',’
Definition 2.2. For1<i € Z,z € F;.., is called a torsion point of level i on Fy, if
qb’]':_lh o---0¢rhoh(xz)=0. The set of all torsion points of level i on F}, is denoted by
W};, and any z € W}L - Wf;_l = W}L is called a primitive torsion point of level ¢ on Fj,.
Observe that,

Wi={x€Fp,: lala(z) =0 acF,}.

Let L' denote the abelian extension over L which is class field to the subgroup U*(L)
of L*. Clearly, L™ C Lt since L™" is the abelian extension over L which is class field
to U(L), and passing to completion, L C Li = L since (LH)"" = L*. Lubin-Tate theory
states that Li = L(w) for any w € W}L (where h € F. is chosen arbitrarily for any prime
element 7 of L). In the special case 7 € O, and h(X) € F.NOL[[X]], L; = L(w) for any

F(X,Y). Given formal group laws F'(X,Y) and G(X,Y) over R, a formal power series f(X) € X R[[X]]
is called a homomorphism from F(X,Y) to G(X,Y) (over R), and denoted by f: F(X,Y) — G(X,Y),
if f(F(X,Y))=G(f(X),f(Y)). The set Hompg(F,G) of all homomorphisms F' — G over R is a group

under the law of composition (f,g) — f[—ct]g € XR[[X]] for every f,g € Hompg(F,G), and in the

special case F = G, Hompg(F, F) = Endg(F) is a ring under the addition [—pt] defined previously and

composition as the multiplication.
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w € W}L is the abelian extension over L which is class field to the subgroup < © > U*(L)
of L*, which is a totally-ramified extension over L of degree [L; : L] = (¢, — 1)¢% ', and
Li = L"L; = L' (w). For h(X) € F., let

Qp ={w = (w1, w2, ws, ...) w; € Wél{% and (7 "h)(w;) = wi_1}.

The main result of Lubin-Tate theory states that

(u, )™ (@) = [l gr-on (1) (2.1)

for every u € U(L) and for every (w;)i<iez € Q5. A formal power series h € F is called
a normic Lubin-Tate formal power series, if w € )}, are norm-compatible sequences.
Following the terminology introduced in [4], fix a Lubin-Tate splitting (K, ¢) (that is
a fixed extension of the Frobenius ¢ € Gal(K™"/K) over K to a K-automorphism ¢
of K*°P) and let K4 be the fixed field of ¢ in K**P(K,, is totally-ramified over K'). Then,

the following facts (proved in [4]) listed below are crucial in what follows:

Lemma 2.3 (Koch-de Shalit).

(a) There exists a unique norm-compatible sequence of primes

pp={mp e L* : K CLC Ky;[L: K] <oo};

that is, the Lubin-Tate splitting (K, ®) canonically determines a Lubin-Tate labelling
Py ={mL € L*: K CLCK*P;[L:K]<oo};

(b) For any L C Ky, [L : K| < oo, there exists a unique Lubin-Tate formal power
series fo. 1, € OL[[X]] belonging to wr, (chosen as in (a)) for L, such that fy r(7r,) =
L, for everyn > 2, fo 1 (mr,) = 0. Here, L,, denotes the class-field to the subgroup
< mw, > U™(L) of L, which is a totally-ramified abelian extension over L of degree
[Ly, : L] = (¢ — 1)g" %, and explicitly given by L, = L(w) for any w € W};L (actually
L, = L(w) for any w € WJ? and for any f € F}. N OL[[X]], where F. s the set of all
Lubin-Tate formal power series belonging to w1, for L and WJ? is the set of all primitive
torsion points of level n in the unique Lubin-Tate formal group law Fy associated to
[ € F,, NOL[[X]], which is defined over O, and satisfies Fyo (f x f) = f o Fy);

(¢) in particular, there exists a unique Lubin-Tate formal group law Fy, , = Fy 1 defined

over Oy, associated to the unique Lubin-Tate formal power series f4 1, € OL[[X]] satisfying
F¢7L o (fqﬁ,L X fqﬁ,L) = fqﬁ,L o F¢7L fO?” each K C L C K¢ with [L : K] < 00y
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(d) for a € Oy, there exists a unique endomorphism [aly, , : Fg 1 — Fg 1 over Op of
the Lubin-Tate formal group law Fy 1 of the form [a]y, , = aX+ (higher degree terms)
€ XOL[[X]] for each K C L C Ky with [L : K] < oo. Let {a}y, , = [a]y,, (mod
FL) € XkL[[X]] be the reduction modulo ¥, of [a]y, , € XOL[[X]];

e) every w = (wy,wa, w3, ...) € Q 18 norm-compatible.
y f¢K

For each 1 < d € Z, define a topological group structure on d-Koch-de Shalit vectors
(with respect to (K, ¢))

a:mry(ei/(;s.tuEU(K),y eZ }

£ = £(X) e mr[[X]]* st = DHasx

de(Ka ¢) = {(aag) :
1

(where K is the profinite completion of the multiplicative group K*) by the law of

composition defined as

(a1,&1)(az, &) = (a1.a2,&1.07 " (§2) o {ur} s, x)

where a1 = w1y}, az = ugmy? € KX with uy,us € U(K) and vy,v5 € Z (=the profinite

completion of Z); and in which a basis of neighborhoods of the identity element of

B ,(K, ¢) is given by

Bu(K, ¢)7) = {(a,€) € ©u(K, ) :a € U'(K),§ = 1(mod X7)}
for 0 < 4,7 € Z. By the results of paper [2], $4(K,¢) is a non-void set. Note that,
the identity element of &4(K, ¢) is (1x,1(X)), and the inverse of (a,&) € G4(K, ¢) is
(a,&)"t = (a7t m) For two positive integers dy and da such that dy|dz, there

exists transition morphism T(qb)jf 18y, (K, ¢) — By, (K, ¢) defined by

T(@)F (a6, &) — [a, J[ ") (2:2)

._do
0<i<g2 —

for every (a,&) € G4, (K, ). Let B(K,¢) denote the projective limit lim B, (K, ¢)
d

defined over the transition morphisms eq. no. (2.2). In this paper, & (K, ¢) will be called
the group of Koch-de Shalit vectors (with respect to (K, ¢)).
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Now, suppose that L is a local field with finite residue class field k1 of q; elements,
¢ € Gal (L /L) the Frobenius automorphism over L and 7 a prime element of L = L™,

For h(X) € F, there exists a unique mapping
N Op((X))" — O (X))~
called as the Coleman norm operator, satisfying

Nagoh(X) = T o(X[+)e)

wew}
for every g € O;((X))*, where X[—}‘,L—]w € F;..,[[X]] is defined by the addition on the
F;..,-valued points of the formal group Fj,(X,Y).
Lemma 2.4 (Coleman).
(a) Ni: O ((X))* — O3 ((X))* is a multiplicative group homomorphism.
(b) Nng = ¢rg (mod w), for every g € Oz ((X))*.
(¢) C(L,h) = {g € O;: ((X))* : Nng = ¢1.g} is a subgroup of Oz (X)), called the group

of Coleman power series.

(d) Reduction modulo 7 induces an isomorphism

Vi : C(L,h) S Fy, ((X))*
defined by
Voen:g— g(mod )
for every g € C(L, h).
(e) For w € Qp,,g € C(L,h),
{8 = (917" 9)(wi) h<iez

s a norm-compatible sequence in the tower {ﬁ}lgieZ of field extensions over L, which

in return defines an isomorphism (depending on w)

Aw:C(L,h) = lim (L7)*

%
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given by

Aw: g (67 "g(wi))i<iez

for every g € C(L, h), where the projective limit lim (E)>< is defined with respect to the
i

norm maps %/F : (E)>< — (E)>< for1 <i<jeZ.

(f) The isomorphism Aw : C(L,h) = lim (Li)* constructed in part (e) reduces to an

isomorphism Aw|co(f p) C°(L,h) 5 lim U(L*) = U(L) on the subgroup C°(L,h) =

C(L,h) N Oz [[X]]* of Coleman power series of degree 0 in C(L, h).

Suppose that K’ is a compatible estension over K with respect to the fixed Lubin-
Tate splitting (K, ¢) (that is, K’ is a finite extension over K and K’ C K ys(x'/x)). Thus,

¢ = pf (K '/K) is a Lubin-Tate splitting for K’ that will be fixed in the remaining of the
text. There exists a natural morphism

My ki : O(K' ¢') — O(K, ¢)

called the 2-abelian norm map from G (K’ ¢') to G(K,$), which is defined by the

commutative squares
v Mg, rer k¢
B(K',¢) L G(K,¢)
pri [ [ pr1 (2_3)

K=o N Rx

and

B(K',¢) KK B(K, )

pr2 [ [ pr2 (24)

RellX] T .
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Here, the bottom horizontal arrow N(f%?;”}?" s B [[ X)) — Rx[[X]]* is defined via

Coleman theory (Lemma 2.4) by the commutative diagram

UK _ Nowryx U(K)
Awl ‘ Aw
CoK', fr i) Co(K, fox) (2.5)
v""KlyfqblyKl [ v""vaqj,K
N}C(;}l&;{man
R X)) Er[[X]]™,

where U(K) is defined to be the projective limit lim U(K""K;) (recall that, K" K; =

7

K is the abelian extension of K which is class field to U*(K)) taken over the norm maps

NKTIQ/KTIQ t KvK; — KK, for i < j,CO(IN(, fo.x) denotes the Coleman power

series of degree 0, the vertical arrows in the commutative diagram (2.5)

vﬂ'K7f¢yK

UK) 22 CO(K, f4.x) [ X])"

are the isomorphisms of Coleman theory (here w € Qy, ., which is norm-compatible by

part (e) of Lemma 2.3, is in particular chosen as w; = 7, for every 1 < i € Z by part
(b) of Lemma 2.3), and

is the mapping defined by

N,k /i {tig, } = {un},
with

Up = H (be(NK;n/KW (u,))
0<e<f(K//K)—1

for m > n (that is, m is chosen sufficiently larger than n to ensure that K, C KJ,).

The 2-abelian norm map My k//x : B(K’, ¢') — B(K, ¢) has the following properties:
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Lemma 2.5 (Koch-de Shalit).
(a) My rer e (B(K', @) = My(K'/K) is a closed subgroup of finite index in &(K, $);
(b) if K C K' C K" is a tower of compatible extensions over K with respect to (K, ),
the 2-abelian norm map

My gen i B(K”, ! KK — B(K, ¢)

factors through

My sy = @K, /701Ky ORI e o770y MmN @ g),

If K'/K is an infinite algebraic extension defined as a union of compatible extensions
E/K with respect to the Lubin-Tate splitting (K, ¢), then put

My (K'/K) = (| My(E/K)

which is a closed subgroup of (K, ).

83. 2-abelian local class field theory.
The 2-abelian local class field theory states the following :

2-abelian local class field theory (Koch-de Shalit). Let K be a (non-archimedean,)
local field, and with fived Lubin-Tate splitting ¢ over K.

1° There exists an order preserving (equivalently, inclusion reversing) bijection

L/K « My(L/K)
between the set of all 2-abelian extensions of K and the set of all closed subgroups of
B (K, ¢).
2° (2-abelian local Artin map) There exists a canonical isomorphism
(7, K)p =14 : B(K,¢) > Gal (K"’ /K)
such that, for any 2-abelian extension L over K, the surjective homomorphism

resK(ab)Q /L

(?2,L/K)g : B(K, ¢) 2 (Gal (K°/K) Gal (L/K)
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has kernel My(L/K), and thereby induces a canonical isomorphism

o s O(K,¢)/My(L/K) > Gal (L/K).

3° (Functoriality) If K' is a compatible extension of K with respect to (K, ), then the
square

Qj(K', ) Lyt Gal (K/(ab)2/K/)

T

Myr )k €S gr(ab)2 g (ab)?

G (K, ¢) “” Gal (K" /K)
18 commutative

Note that, projection on the 1%*-component recovers the classical (abelian) local class
field theory for K. That is, for a 2-abelian extension L/K, proj; (My(L/K)) = N(L/K),
and the abelian extension of K which is class field to N(L/K) is the maximal abelian

sub-extension in L/K.

The 2-abelian Artin map ¢4 : (K, ¢) = Gal(K(“b)2/K) is constructed in two steps.

Step 1. Let L be a finite Galois extension over K, ¢y € Gal (L""/L) the Frobenius

automorphism over L, and let 7 be a fixed prime element in L such that vr(m) = 1, where

vy, is the normalized valuation on L. Introduce the group

G(L/K,7) = {(7, b): v € Gal(L™ /K),b e U(f)s.t.¢LT(()) = @}

with the law of composition defined by

(71, 01) (72, b2) = (7172, b171(b2)) (3.1)

for every (y1,b1), (2, b2) € G(L/K, ). The inverse (y,b) ! of (v,b) € G(L/K,7) is given
by (v,0)"" = ("L 0T).
Suppose that (K C L C)L’ is a finite Galois extension over K. Since NE'/Z L)X — L¥

is a surjection, there exists a prime element 7’ € L’ such that N~ ~(n') = x. There exists

L'/L
a surjective group homomorphism

rp: G(L /K, n") — G(L/K, ) (3.2)
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defined by

ron: (8 e (Ao T 6LV 7 00)

0<i<d
for (v/,v) € G(I'/K,n’), where d = [L’ N L™ : L]. The homomorphism (3.2) is
compatible in towers of finite Galois extensions over K. That is, if the tower K C
L C L' C L” is all finite and Galois over K, and if 7’ is a prime element in L' such that

NE,’,/E,(W”) = 7', then the homomorphism ry./;, : G(L"/K,7") — G(L/K,n) factors

through
" 1" Cpomype , , Trip
rp GIL" /K, ©") G(L'/K,n") G(L/K,r).
Given a norm-compatible sequence of prime elements w = {w; € Li : Ny /Z(wl) =}

in the tower {ﬁhgiez of extensions over E, there exists a normic Lubin-Tate power series
h(X) € O7[[X]] belonging to 7 for L such that w € . Let F,(X,Y) € Oz[[X, Y]] be the
unique Lubin-Tate formal group law over O3 attached to h(X). If (v,0) € G(L/K, 7), then
¢LT(b) = @, so there exists a unique isomorphism 7 = [b]s 5 : F 5 .}, over OZ of the
form n(X) = bX+ (higher-degree terms) € XO7[[X]] (note that, yh(X) € XOW(Z)[[XH
is a Lubin-Tate power series belonging to () for V(Z)) Note that, since w € Qy, (that

is, w; € W;“*h and (qb}:_ih)(wi) = wi_1),w, = qb}:_in(wi) € Fj:;; is a primitive torsion
L

point of level 7 on F¢1fwh; that is, w} € W;l because for any a € F,
L L

.
[a] g1, (W) = al g1, (81 Bl (wi)
o1 " ([alyn([Blnan(wi))

or, ([ba]nqn(wi))

= o1 '([ab]nn(wi))
¢
¢

L (
1
(
'([b]nn([aln(w:)))
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which proves that [a],1-: , (w;) = 0 for every a € Fi and [c]1-i_, (w;) # 0 for some
L L

c€ Fi_l (since b € U(L)). Moreover,

L (W) = op (e (W)
= op V(oL [blnn(wi)
= ¢ (YA([b]nn (wi)))
= ¢ (Yh o [D]nyn(wi))
= ¢ (L [b]nn 0 h)(wi)

=61 B (0r (W)

1-(i—1
=L . )[b]h,'yh(wi—l) = Wj_1,
proving that w' = (w))i<icz € Q. Now, there exists a unique extension of v €
Gal(L""/K) to a K-automorphism ~' : U Li — U L satisfying 7w = «’. In fact,
1<i€Z 1<i€Z
Li = E(wi) = E(w;), so the unique K-automorphism ' of the field U Li is defined by
1<i€Z

the conditions

YL =7
and

Y wi e wp = ¢ blan(wi)

forl1<ieZ

The following result (Proposition 2.4 in [4]) is the 1%! fundamental fact, which is

utilized in the construction of the metabelian local Artin map.

Proposition 3.1 (Koch-de Shalit).  Fiz a norm-compatible sequence of prime ele-
ments

w = {w; EE:NF/E(wl) =}

in the tower {ﬁhgiez of extensions over E, where L' denotes the abelian extension of

L which is class field to U*(L) and L its completion. Then, there exists an isomorphism

(depending on w)
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w:G(L/K,m¢1) = Gal(L™/K),
where 1w(7,b) € Gal(L*/K) is uniquely defined by the conditions
(7, b)|Lnr =
and

(7, 0)(wi) = ¢p ' [b]nyn(wi)

for 1 <i € Z (here, h € Oz[[X]] is the unique normic Lubin-Tate formal power series

belonging to m for L such that w € O ), which makes the following diagram commutative:

1 — U(L) — G(L/K,m;¢) — Gal(L"/K) — 1

(?,L)~ 1 Lyw

1 — Gal(L®/L™) —  Gal(L**/K) — Gadl(L"/K) — 1.

Proof. For a proof, look at (Proposition 2.4, [4]). O

Remark 3.2. Since we have fixed a Lubin-Tate splitting ¢ over K, we have a
unique prime element 7, € L (such that 71, € ©,) by part (a) of Lemma 2.3 satisfying
vi(rg) = Z/K(NZ/IA(:(TFL)) = vig(mk) = 1, and the norm-compatible sequence of prime
elements w considered in Proposition 3.1 is uniquely determined by w; = 7, since
L'/L; is an unramified extension and by part (a) of Lemma 2.3 (that is, w C §). Thus,

by Proposition 3.1, the isomorphism

w:G(L/K,m) 5 Gal(L*/K)

is uniquely determined by the Lubin-Tate splitting (K, ¢), which is then denoted by
wor i G(L/K,m) & Gal(L’/K).
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Suppose that K € L C L’ are finite Galois extensions over K, then the following square

G(L/K,my) — 2" G(L/K, )

oLl K Lo.L/K (3.3)

res

Gal((L/)eb/K) D™/ Gal(La/K)
is commutative.

Step 2. The second step consists of constructing a canonical isomorphism

tp.a: Ga(K,9) = Gal(KKy")"/K)
which will be defined below as follows. Consider for 1 < 7 € Z, the field K;K]". For
(a,6) € B4(K, ), let v; = (a, K) |k, nr € Gal(K?/K) (recall that K; K™ = K*), and
let Bie =!IV, ! . (&)(mki) € U(KT), where V! o (€) = ge € C°(K, fy ) is the

unique Coleman power series of degree 0 lifting £ € R [[X]]* (c.f part (d) of Lemma 2.4),
and {Bi¢}1<icz is a norm-compatible sequence in the tower {U(K?)}1<icz (c.f parts (e)
and (f) of Lemma 2.4). Observe that, v; € Gal((K;K}")""/K) and (¢ € U(KfK/g’“)

(note that (K;K73")"" = K* and KTKZ”“ = K') satisfies

oy (Bie) ¢ (Bie)
Bie Bie
_ 910 (i)
O ge (T i)

_ i ((bdgg (qu,)>

9e(mxci)

=¢%(%?wm0=¢kfg%ﬁwmﬁ

by the fact that %5 = % (where a = un’, € K* for some u € U(K) and v € Z)

and by part (d) of Lemma 2.4. Therefore (recall that mx: = Tx, knr = 7K, = w;),
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i ([U]ﬂp,x (m«)) [u] g1 1y 1 (&' 'wi)

X ¢ w;
Wi
_ (U’_l’ K)(w’t) o ’Yi(ﬂqung)
Wi ﬂquK;,,,.

by the fact that K; C Ky and by eq. no. (2.1), proving that (v;, 8i¢) € G(IGK]" /K,
TK; Knr ) .
The following result (Proposition 2.13 in [4]) is the 2"¢ fundamental fact that is utilized

in the construction of the metabelian local Artin map.
Proposition 3.3 (Koch-de Shalit).  The mapping

tpa: Bu(K,¢) — Gal(KuKj")"/K)
defined by

tg.d : (a,&) — lim L¢,K7,ng'/K(%5i,g)
i
for every (a,&) € By(K,p), where v; = (a7, K)|g,gnr € Gal(K'/K) and Bi¢ =
priv-t &) (mgi) € U(F) for 1 <i€Z, is an isomorphism. Here, the map

7K, fo, K

lim e/ lim GUGKG /K, mx,) = lim Gal((K; K}")™ ) K)

i i i

Gal((Koo K1) /K)

is the isomorphism defined via the commutative square eq. no. (3.3).

Proof. For a proof, look at (Proposition 2.13, [4]). O

Note that, the square
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By (K,¢) — 22 Gal(KoKj)™/K)
(6)32 TS oo Kb (oo KT (3.4)
Gy (K, ) — 2 Gal(KoK})®/K)

is commutative for dy|d2. Now, the 2-abelian local Artin map

Lo B(K,¢) > Gal(K@’/K)

is defined by passing to the projective limits defined via the commutative square eq. no.
(3.4) as

= lim tpa: lim Gy(K,¢) = B(K,¢) = Gal(K(* /K) = lim  Gal(Keo K§")™ /K).
d d d

PART II: GALOIS CONJUGATION LAw

§4. Preliminaries
Let 0 : K — K?*° be any embedding of K into K*° and fix once and for all an
extension o € Aut(K*?) of 0 : K — K*®? to K*?. Let K’ be a finite extension over

K, always assumed to be a subfield of K*?. Since o(K'™") = (¢ K’)"", by continuity,

F(K') = 3(7(/’). Thus, there is an isomorphism

~

7: 0 (X)) = O (X)),

which is defined by the application of & on the coefficients of the formal Laurent series
in O E'((X ), and there exists a unique isomorphism ¢ : Kx/ — Eg( K7) extending to

7 Fr (X)) SR

;(K,)((X))

and making the square

41



IKEDA

modF ~
O (X)) = R ((X))
o Elat
! (4.1)
modF -
O;’(T(/,)((X)) 7 E;(K/)((X))

—~ se
!

commutative. Moreover, (K')seP = K$°P is algebraically closed, so K P C Ks#¢p, which

shows that & € Aut(K*°?) has a unique extension to an automorphism of Ks¢P (and

hence to K’ sep) by continuity, which will again be denoted by & : Ks¢? — Ks¢P. The

following simple observation is fundamental in what follows:

Basic Observation.  If ¢’ is a Lubin-Tate splitting over K'; that is, ¢’ is a fizved
automorphism of K'°P such that ¢'|mr is the Frobenius automorphism ¢ over K';
then odro ' is the Frobenius automorphism over ¢K' and 6¢'c—' is a Lubin-Tate

splitting over o (K').

In view of this basic observation, there exists a bijection between the set of all Lubin-
Tate splittings over K’ and the set of all Lubin-Tate splittings over o(K’) defined by
¢/ - &(b/&—l.
If 7’ is a prime element in K’ , then & (') is a prime element in 5(;5’ )= 3(3\(/’). Moreover,
if vg/(n') = 1, where v is the normalized valuation on K’, then V;(K,)(a"(ﬂ'l)) =1,
since V;(K,)(a"(ﬂ'l)) = vi/('). If h(X) € O, [[X]] is a Lubin-Tate power series belonging
to 7' for K’, then Gh(X) € ONG(/)[[X]] is a Lubin-Tate power series belonging to the

prime o(n’) for o(K'); that is, o F., = .7-%(77,). Furthermore, 0 Fp,(X,Y) = F5, (X,Y) €

ONG(/)[[X , Y]] is the unique Lubin-Tate formal group law over ONG(/) attached to the

Lubin-Tate power series oh(X), which clearly satisfies

((ﬁ'g(K!)th)(a'h(X)a a:h(Y)) = (&h)(F;h(X, Y)).

In fact,
(@h)(F (X,Y)) = (ch)(0 Fr(X,Y))
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=o(h(Fr(X,Y)))
(@ Fn) (h(X), h(Y)))
(G0 Fy,) (Gh(X), 5h(Y))

%(K')th)(gh(X)a ah(Y)),

=0

proving the desired equality. The endomorphism ring Endo_— (F%, (X,Y")) over ON?I?)
o(K') o (K’

is isomorphic to the ring of integers O;( K1) of ¢(K’) under the isomorphism
(a) — [o(a)l;, = dlaln,

for every a € Og-. In fact,

): [aln(Y)))
= I, (alaln(X), ala]n(Y)),
and ola], = daX+ (higher-degree terms) € X O;G(/’)HX 1], proving that cla], = [oa]5,

by the uniqueness. Now, suppose that 7 is another prime element of K’ yho(X) € FL,

and 0 # a € O, such that %«') = :—‘,,) (therefore, there exists a unique homomorphism
[aln,h,  Fn — Fp, of the form [a]pp,(X) = aX+ (higher-degree terms) € XO [[X]]);
then

oo (22 -o(3) -1

and a’i[a]}hho = [&a];h,;h,,

of the form caX+ (higher-degree terms) € X O~G(/)HX ]]. In particular, if z € W}, then

0 = 5([alu(x)) = 5lala(G2) = [5al, (50)

DB — F;h,, is the unique homomorphism from F~, to F;h,,

for every a € FzK,, proving that 3W}; = Wih; and if w = (w1, wa, ...) € Qp, then
(o8

o N NNi = Ni/\./ ~ ~
owi € UWQ%;,”L W(U¢K,071)177,0h

and
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(Fora 1) "5h) (Fw;) = Gwi_

for 1 <i € Z, proving that o€2), = Q, .

The following observation will be central in what follows.

Lemma 4.1.  Consider the Lubin-Tate splittingo¢o ! over o K. Clearly, (UK);¢;71 =

oKy, and

(a) the unique norm-compatible sequence of primes
Orgs—1 = {rg e E* 10K CEC (aK);qg,l; [E:0K] < oo}

is given by oz = 1 = (p4);
(b) for any E C (JK);¢~ [E : 0K] < oo, the unique Lubin-Tate formal power

0.71 b
series fsps-1 p € Og[[X]] belonging to wg (chosen as in (a)) for E, and satisfying
fogs-1.6(7E,) =7E, | forn > 2, fs55-1 p5(TE,) =0 is given by fsps-1.5 =0 fps-11;
(c) the unique Lubin-Tate formal group law ngs;fl p defined over Op associated to the

unique Lubin-Tate formal power series f5,~ \ , € Og[[X]] satisfying

F o1 50 Usgomr 0% psm18) = Fogs 50 Fror i
for each oK C E C (UK);(b;,l with [E : 0 K] < oo is given by F;¢;,17E = 5F¢7;71E;

P~ ~ of the

(d) for a € Og, the unique endomorphism [a]p ~ Frpsin = Pz g

aqba*l,E :
Lubin-Tate formal group law Fs =,  for each oK € E C (0K)3 =, with[E : 0 K] < o0

— =1 _ a1
=olo a]fq;;—l,g and {a}f;q;ilﬂ =o"{octa}y ~

is given by [a) ;
¢,0"1E

Frre

(e) 0Qy, = Qf;q;fl and every ocw € Q‘f;q;;—l . for w € Qy, . is norm-compatible.

K

Proof.  The assertion (0K); ~ , = 6K follows from the fact that

(0K)z551 = {z € K*7[p(G " (2)) = 5" (2)}.

(a) Let pp = {mr, € L* : K C L C Ky;[L: K] < oo} be the unique norm-compatible
sequence of prime elements corresponding to the Lubin-Tate splitting (K, ¢). Consider
K CLCMC K, with [M: K] < co. Let e,(M, K°P) denote the (finite) set of all
L-embeddings M — K®°P. Then, clearly

5 ez, (M), K*)G = e (M, K*).
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Thus, computing the norm NM/Z(T('M) (which is equal to m, € L*),

T = NM/Z(TI'M)
= Nuyyr(mar)

= H (67 175) (mar) (7 runs over Eg(L)(&(M)a K*°P))

=5 ' [[7E(rm))

= &_IN;(M)/;(L)(&(T('M))

~_1 ~
=0 N— —(o(mp)),
Sons )
it follows that o(rp) = No—~— ——(d(mar)), and the assertion follows.
o(M)/o(L)

(b) For E C (UK);¢;71 with [E : 0 K] < oo, it suffices to prove that ¢~ }(E),, = ¢ 1(E,)
for 1 <n € Z. Infact, Ng, /pE) =< mg > U"(E), since E,, is class-field to the subgroup
< 7w >U"(E) of EX. Thus,

Ny gy jsim)?  (Bn)* =6 'Ng, /5B,

=<5 'rg >U"(c'E)
=< > UNGTE) = Noupy s )@ (B)a
by part (a). Hence, by the local class field theory, ¢~ 1(E,) = ¢~ }(E),.
(c) Let oK C E C (0K);,5 1 with [E: 0K] < oco. Let F, =, ;, be the unique Lubin-Tate

formal group law defined over O~ associated to the Lubin-Tate formal power series

EO;

“H(E)

f(]ﬁ,;’l (E) -1(E) [[X]] Satisfying

F

Fysim) © Uosim X Jog1m) = Jo g1 ° Fos1(my

Then, o F P is a Lubin-Tate formal group law over Op = 6O

o-1(E) satisfying

“H(E)
TFy 51y © O 5m10m) X 0Ly 5m1m) = 0 510y 0 TFy 51y
Since &f¢7;,1(E) = f g by part (b), it follows that F;¢;,17E =0F

$.0-1(E)’
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(d) Let oK CE C (UK);¢~ with [E : 0K] < oo. For a € Og, there exists a unique

0.71
endomorphism
[ a; F, ~ — F, ~
POt e 102 R 102
of the Lubin-Tate formal group law F, 5 over O;,l(E) of the form [&_la]fq;;—l(g) =
6 'aX+ (higher degree terms). Then, o6 'a]f ~ . =aX+ (higher degree terms) is
¢,0 T H(E)
an endomorphism of the Lubin-Tate formal group law o F so-1(m) = P~ $o-1.p OVer Og,
since
~r—1 ~p o~ ~r—1 ~r—1
olo™ " d] S oim © oFy gy =0F, 5 1p° (ol a]fq;;—l(g) x olo” " a] )
_ =1 _ w1
Thus, [a]f;z;ilﬂ =olo a]fq;;—l(g) and {a}f;q;ilﬂ =o*{o a}fq;;—l(g)'

(e) The first equality follows from part (b), and the second assertion follows from a norm

computation similar as in the proof of part (a). O

The group of d-Koch-de Shalit vectors with respect to the Lubin-Tate splitting c¢o !
over oK is explicitely described by

de(UKa 5(]55—1)

b=vrl, € 0(7(\)>< stveU(oK), mox = o(nk), p € Z
= A sl
1= n(X) € Rorcl[X]]< 4 CEED 0 - oo

and the group of Koch-de Shalit vectors with respect to the Lubin-Tate splitting o¢o !

over oK is then the projective limit & (oK, 7¢po 1) = lim B ,(cK,5¢5 1) taken over
d

the connecting morphisms T(&qﬁ_l)jf Gy, (0K, 55 ) — Gy, (0K,5¢5 1) defined for

any positive integers dy, ds with dy|ds.

Remark 4.2. If K’ is a compatible extension over K with respect to the Lubin-
Tate splitting (K, ¢), then o(K’) is compatible over o K with respect to the Lubin-Tate
splitting (0 K, 55 1).

46



IKEDA

Lemma 4.3.
(a) Let ©' be a prime element of K', and let h(X) € Fl,. Then the square

0 (X))~ A O ((X))"
O— (XN — " 0— (X))
() - ()

18 commutative.

(b) C(I?/’, h) is mapped isomorphically onto C(c(K'),ch) under the isomorphism

~ X X :) o X
55 O ((X))* = O ((X)
(¢) The following diagram
lim (B 2 (&) Vaton F,,., (X))~
. — —X AZW TN~ v;(‘fr’),;h = x
lm GO (R, 5h) B (X))

is commutative for any choice of w € Q.
(d) Suppose that K' is a compatible extension over K with respect to the Lubin-Tate
splitting (K, ¢). Then

NG ETR™ e [[ X)) — R [[X])7
satisfies

Coleman Coleman

a:*]\fqﬁ,K’/K (gl) = N;¢;717;(K/)/U(K)(a:*(§l))

for every & € R/ [[X]]*.

Proof. (a) Recall that, there exists a unique multiplicative homomorphism
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N1 O ((X)" = O (X))

K’

satisfying

Nagoh=T] o(X[+]e)

wew}

for g € O I?,((X ))*. Now, direct computation

d(Nwgoh) = T a(g(X[+]w))

I
X
=2
&
Ia
£

[T #(Fs, (X, 5w))
wew}

= 11 59(X[j;]5)

seW~
ah

=N~3Ggoah

yields G(Nwg) o h = N5, g 0 h for g € O, ((X))*. The fact that og +— (Npg) for
g € Oz ((X))* is an endomorphism on O~G(/’)((X ))* now proves the commutativity of
the square.

(b) Directly follows from part (a) and by the definition of C (I?/’ h).
(¢) The commutativity of the right-hand square follows from the commutativity of eq.

no. (4.1), and the commutativity of the left-hand square follows from the definition of
the isomorphism A, : C(I?/’, h) = lim (K'1)* for any choice of w € Q.

i
(d) let ger € Co(K', f¢ k) be the Coleman power series lifting &' € R/ [[X]]*". Clearly

NGE%?;”I?"(&I) = Virw for © Aal{“n}ISHE%
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where {un}1<nez € lim U(K?) = U(K) and
i

w= ]I Ng g Oxge (i)
0<e<f(K'/K)~1 "

for any choice of m > n. By part (c),

(Go Aal{“n}lﬁnez)
-1l oK

5 NS €) = v

;(WK)J;Q;

—1 ~
~ o AT oiu
o(mi).f~_, sw? ttnhisnez

opo ,o K

Col ~ %
= N&;&ET%TEK')/U(K)(U ¢)
which completes the proof. O
If K’ is a finite Galois extension over K and 7’ a fixed prime element in K’ (such that

vi(m') = 1), then the group G((K')/o(K),c(n")) is defined by
G(o(K')/o(K),a(x"))

- {(5’ 05 € GallG(K')" [o(K)),c € UG(R) st 2287 () _ 20() }

¢ o(n’)
§5. Action of 7 € Aut (K*?) on O(K, ¢).

As in the previous section, let ¢ : K «— K*°P be an embedding of K into K*°?, and
let o : K°P — K*¢P be a fixed extension of o : K «— K*°P to K*°P,

Lemma 5.1.  Suppose that K' is a finite extension over K (inside K°°?), and ¢’ a
Lubin-Tate splitting for K'. Then,

(a’) fO?” (ala gl) € de(Kla ¢I);

55(d. &) = (3(a),5°¢) € Bu(G(K'), 565 "),
where
Qﬁd(g(K’),ﬁqb’ﬁ_l)

—

b= Uﬂg(K,) €o(K)* stveU(a(K")), 75y =0 (TK), €L

=q(bn):

~ ~ {v}~
_ U* rd U* —1 of ., ,
0= () € e [[X]] s (omtih =i — e
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(b) suppose further that K' is a finite Galois extension over K, and 7' a fized prime

element in K' such that vi(m') = 1, where vk, is the normalized valuation on K'.
Then, for (v,b) € G(K'/K, '

Ty (1:0) = (6951, 5(b)) € G(3(K') /o (K),5(n")),

where

G(o(K')/o(K),a(x"))

{0 5e GaE)y o). € UETERY) sa 2T TEEDY,

¢ o(n’)

Proof. (a) Suppose that (a’,¢&") € Gy(K',¢') with o' = u'nY, € K'* for some

W € UK'), v el and ¢ € Fr[[X]]* such that ¢Z,€’ = {U}f%. Put v = o(u)

and 7~ SN = = o(mk). It suffices to prove that

!
(c*¢'(c*)"1)a+¢ _ {v }f?qa'?*l;(x')
e X :

In fact, by part (d) of Lemma 4.1, {¢/ }f~ - =o"{u'}y,, ., and thereby

o1 a(K’)

(@ ') )5*¢ <¢’d§’>

— =7
o*¢!

="

{’U,I} ¢, 5! . U*{’U/I}fqblyK/ B {U }faqy —1:;(}(/)
X X

proving that (o(a’),5*(¢")) € By(a(K'), 54’5 1).
(b) Note that 745! € Gal(G(K")/o(K)),5(b) € UFK')), and

5o E0) _ (o)) _ < (1) _ 595 (3())
o (M) () -
proving that (6yo1,5(b)) € G(6(K')/o(K),a(r")). O

Following Lemma 5.1 (a), define the map
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7p :Ga(K',¢') — Gy(K',5¢'57)
by
ol (d,¢) — (cd,5°¢)
for every (a/,¢") € ©4(K’, ¢'). Since

5 H (bldli(gl) — (&*¢Id1i(&*)_1)(&*§l)

0<i<dz g 0<i<

—=d; -1

S

for positive integers dy, d2 with dy|dz, the square

ot
de2 (Kla ¢I) 2 de2 (&Kla&¢1&_1)
UCOMH L
P
G4, (K', ') = 6y, (7K',5¢'57)

is commutative. Thus, passing to the projective limits, there exists a map

lim 65 =57 lim Gy(K',¢) — lim Gu(GK',5¢'57")
d d d

e(K',¢") ¢(0K',od'a—1)
defined by
ot (d {&}) — (Gd’ {776}
for every (a’,{¢}}) € B(K', ¢'). Furthermore, note that,

Lemma 5.2.

ot O(K',¢)— B(GK 54’5

is an isomorphism of topological groups.

Proof. In fact, it suffices to prove that,

51



IKEDA

g; 1 Ga(K',¢') = Ba(aK', 59’57}

is a topological isomorphism: For (a/,¢’), (V,4') € G4(K’, ¢'), with o’ = u'ﬂf(’,, where
v € UK') and v/ € Z,

Gy ((a, )V, W) =51 (@b, 68" (W) o {u'}s, )
= (F(a'b), 5" (" (W) o {u'}s, )
= (5(a)F (), 5 (€)-(F ¢ (7)) (5" () 0 7 {u'} s, er)
= (3(a"3()),5"(€).7"¢'(6") )" (@ (W) o (5()} p= ~

a*l,;(K')

)

by Lemma 4.1, proving that o ((a/,&)(V',¢")) = &4 (a’,&)5 S (b',1'). Moreover, the

kernel and the image of the homomorphism 5} : 84(K', ¢') — G4(cK’',5¢'c~1) are

kero | =< (1x/, 1(X)) >,

and
74 (Ga(K',8") = Ba(aK',5¢'c™")
with
54 (Ba(’,¢))) = Ga(GK' 59517,
since & : (K')* — 3(7(7)>< and 0" : K [[x]] = %5 ) [[X]] are isomorphisms, proving
that 5; is a topological isomorphism. O

Lemma 5.3. Suppose that K' is a compatible extension over K with respect to the

Lubin-Tate splitting (K, ¢). The following square is commutative

M~ ~  ~
GG(K'), 5057 0o LoD B(o(K), 5o L)

ot ot

G(K', ) Mourersx &(K, $).
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That s, the 2-abelian norm map

M3 51 5k fo (k) *

BG(K'),5657") — B(o(K),5¢5 ")
satisfies
My = 50 o) (@ (@) = 57 My iy (o)

for every o € G(K', ¢').

Proof. Suppose that o/ = (a',¢') € B(K’,¢). Then, by the definition of the
metabelian norm map (look at eq. no. (2.3) and (2.4)),

My gk (') = (Nieryic(a'), NS R T™M(ED).

Thus
Gt My k(@)

= (&NK’/K(al)a &*ng%?;nl?n (51)) = (N;(K,)/U(K)(g(al)), &*ng%?;nlgn (51))

: ~x nfColeman (¢1\ _ p7Coleman k() :
Hence, it suffices to prove that ™ Ny 3773 &)= N;¢;717;(K,)/U(K)(U (&) since, then

ot My i ()

_ - ~( ! Coleman ~x% (&) _ s ~+t/ 7
= (N3 50y o) (@), NS (T D)) = Mz 5000y o) (0T ().

Now, the proof follows from part (d) of Lemma 4.3 O
If K’ is finite Galois over K, following Lemma 5.1 (b), define the map
Trryi P GK' /K, 7'") — G(G(K')Jo(K), 5 (n"))
&;—(’/K : (% b) = (&Vg_la&(b))
for every (v,b) € G(K'/K, 7).
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Lemma 5.4.
Tt it GUK K, 7') — G(E(K) fo(K), 5(x'))

18 an isomorphism.

Proof. For (v1,b1), (72,b2) € G(K' /K, ")

T (0, 01) (72, b2)) = 5}:/;((7172, biv1(b2))

= (071720, 5 (b171(b2)))
= (010 oyea 1,5 (b1)ana (T (b2)))
= (151, 5(01)) (07201, 5(b2))

= &K'/K(’Yla 51)3}'/1(('72’ b2)

by the definition of the law of composition on G(K’/K, ') (cf. eq. no. (3.1)). Moreover,

the kernel and the image of the homomorphism 5}, /K Are
keraf, o =< (idgr, 1xr) >
and
T i (GE' /K. 7)) = G((K') o (K),5(n"))
which completes the proof. O
Suppose that K C K’ C K" is a tower of finite Galois extensions over K, and 7" a

prime element in K" such that ]\NTKH/K, (7"") = 7. Observe that, for b € U(K") and for
d — [K” N KInT . KI],

& [ ok Wi @) = [[ 56%c " GNkr /i (b))

0<i<d 0<i<d

= I Gord™ V' (N, sen) /3001, FB"))

0<i<d

and d = [0(K")No(K')™ : (K")]. Thus, the following square
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G(K" /K, ") LA G(K'/K, )
P -
K" /K K'/K

GEE")/o(K),5(x") S0 GG fo(K), o))

is commutative.

§6. Statement of the Galois conjugation law.

However in [4], Koch and de Shalit did neither discuss the behaviour of the 2-abelian
local Artin map under Galois conjugation, nor the “transfer” law (Verlagerung) of the
2-abelian local Artin map. The aim of this work (and its continuation) is to complete
[4], and present the Galois conjugation law of the 2-abelian local Artin map (resp. the
“transfer” law of the 2-abelian local Artin map). We postpone the “transfer” law of the

2-abelian local Artin map to another discussion as explained before. The main theorem
of this paper is the following

Theorem A (Galois conjugation). Let o : K — K*? be any embedding of K into
K*P and 7 € Aut(K*P) be a fived extension of the embedding o : K — K*° to an
automorphism of K°°P. Then,

(@ (a), U(K));qg}l =0l gan2 (o, K)¢&_1|5(K<ab)2)

for every a € B(K, ¢).

In particular, if o € Aut (K), then
(6" (), K)o = 5| am2 (0, K)o | e amy2

for every a € G(K, ¢). Moreover, if o0 = id x and 5¢o ' = ¢, then necessarily o = ¢"
for some n € Z, since the normalizer of < ¢ > in Gal (K*?/K) is < ¢ >. If this is the

case, then

((¢n)+(a)a K)y = ¢n|K<ab>2 (a, K)¢¢_n|K(ab)2

for every a € &(K, ¢). These special cases of Theorem A will turn out to be useful in a

future investigation on non-abelian local class field theory.
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§7. Proof of Theorem A.

The following proposition will be fundamental in the proof of Theorem A.

Proposition 7.1.  Suppose that L/K is a finite Galois extension, ¢, € Gal(L™ /L) the

Frobenius automorphism over L, and w a fized prime element in L such that vi(m) =1,

where vy is the normalized valuation on L. Fix a norm-compatible squence of prime
elements

w={w; EE:NF/E(wl) =7}

i the tower {ﬁ}lgieZ; where L' denotes the abelian extension over L which is class field
to UY(L) and Li its completion. Then,
(a) 5(L") =5 (L)" for every 1 <i € Z, and

ow ={o(wi) € 7(L)" : N3 11 /5y (0(w1)) =0 (m)}

is a norm-compatible sequence of prime elements in o(L)* for 1 <i € Z.

(b) For the norm-compatible sequence ow, the isomorphism

i GE(L)/0(K), 5(m); 5615 ") ™ GallF(L)™ /o (K))

defined as in Proposition 3.1 satisfies

L;w(a:Z/K(,ya b)) = a’ib“’(,ya b)a:_la

for every (v,b) € G(L/K, 5 ér).

Proof.  We leave the proof of part (a) to the reader, and we will directly prove part
(b). For (v,b) € G(L/K, ),

@ 1 (1)) = 1, (951, 5())
is defined by the following two conditions:

1 1

=@y ", 0(b)) L = dv0

and
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15(070 1, 5(0))(Gwi) = 561 ' [Gbl5), r-1ysn(Owi)
=507 [blnn(wi)
= 0w (7, b)(wi)
= Glw(7,b)5  (Gw;)
for 1 < i € Z, proving the assertion. O

Note that, for ag = (agq,&q) € B4(K,¢), by part (a) of Lemma 5.1, 5;(0@) =
(o(aq),*(&4)), and by Proposition 3.3

L;¢;717d(a’; (ad)) = L;¢;717d(0(ad)a " (gd))

. —1
= Mm Gs 000y /000 (0(ad) ™ 0 (F)) (o)
%

L S DI TR)
= 1 G o0/ (900 VT e sy 70 TVl g (€)ie))
i
by the Galois conjugation law of abelian local class field theory, by part (c) of Lemma
4.3, and by parts (a) and (b) of Lemma 4.1. Thus,

LZ¢F*1,d(&;(O‘d)) =
. ~t 1 l—ig—1
W 0550 o) o5 (i) oy fore) (Ga s B acikenrs 67N g, (8a) (o))
i
by part (b) of Lemma 5.1. Now, applying Proposition 7.1 for each 1 < i € Z,

Uspo-1,d (&:j’_ (aa))

= Jim Flrangrosg ((ag" K)o, 0 VEE (€ (mie) )
3

= 0lraryriod(@a)d ok Kom)
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for every 1 < d € Z. Now, passing to the projective limits (with respect to eq. no. (3.4)),

L;¢;,1(3+(a)) = lim L;¢;717d(53(0¢d))

= lim | rpresa(@a)d ooy
d

= 0| jean2 1o ()T 5 a2

for every a = {a4} € G(K, ¢), which is the Galois conjugation law, since 14(a) = (a, K)g
for every a € B(K, ¢).
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