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On the Metabelian Local Artin Map I: Galois

Conjugation Law

Kazım İlhan İkeda∗

Abstract

It is proved that, for a (henselian) local field K and for a fixed Lubin-Tate split-

ting φ over K , the metabelian local Artin map (?, K)φ : (K,φ)→̃Gal(K(ab)2/K)

satisfies the Galois conjugation law

(σ̃+(α), σ(K))σ̃φσ̃−1 = σ̃|
K(ab)2 (α,K)φσ̃

−1|
σ̃(K(ab)2 )

for any α ∈ (K,φ), and for any embedding σ : K ↪→Ksep, where σ̃ ∈ Aut (Ksep)

is a fixed extension to Ksep of the embedding σ : K ↪→Ksep.
Key words and phrases. local fields, metabelian extensions, metabelian local

Artin map, non-abelian local class field theory.

§1. Introduction

Recall that a Galois extension F/K is called a metabelian (or 2-abelian) extension,

if the double-commutator group (Gal(F/K)′)′ = Gal(F/K)′(2) is trivial. More generally,

F/K is called an n-abelian extension if the n-th commutator group Gal(F/K)′(n) is
trivial. Recently, H. Koch and E. de Shalit constructed a class field theory for 2-abelian
extensions of local fields [4]. The remarkable fact is that it seems to be possible to recover
non-abelian local class field theory by inductively extending the results in [4] to n-abelian
extensions of local fields for 2 < n ∈ Z. Let K be a (non-archimedean) local field with

finite residue class field κK = OK/ K of qK elements. Here as usual, OK and K denote
the ring of integers of K and the maximal ideal in OK , respectively. Let Knr denote
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İKEDA

the maximal unramified extension of K in a fixed seperable closure Ksep of K, K̃ the

completion Knr of Knr, and let K(ab)2
denote the maximal 2-abelian extension of K (in

Ksep). Following the terminology of [4], fix a Lubin-Tate splitting (K, φ) once and for
all. Let Kφ be the fixed field of φ in Ksep. Recall that Lubin-Tate theory states that

Kab = KnrK(W ), where K(W ) is a maximal totally ramified extension of K defined by
adjoining the set of torsion points W defined by a Lubin-Tate polynomial fK ∈ OK [[X]],
and by the compositions φnfK ◦ · · · ◦ φfK ◦ fK for 0 ≤ n ∈ Z. The idea of Koch and de
Shalit in [4] is based on the following observation: if L runs through the finite extensions

of K contained in K∞ = Kφ ∩Kab, then
⋃

L,d(LKnr
d )ab = K(ab)2

(for a generalization,

cf. [1]), so that passing to the projective limits (defined over the canonical connecting
morphisms)

lim←−
L,d

Gal ((LKnr
d )ab/K) = lim←−

d

Gal ((K∞Knr
d )ab/K) = Gal (K(ab)2

/K).

Hence if it can be found, (for each 1 ≤ d ∈ Z) a compact group Gd(K) topologically

isomorphic to Gal((K∞Knr
d )ab/K) together with canonical topological isomorphisms

ιd : Gd(K) ∼→ Gal ((K∞Knr
d )ab/K)

satisfying the functoriality condition, then K 7→ G(K) = lim←−
d

Gd(K) will be the “non-

abelian” field formation of a class field theory for 2-abelian extensions of the local field
K. Indeed, Koch and de Shalit have defined such topological groups Gd(K) (depending
on the choice of the Lubin-Tate splitting (K, φ)) in the form of d-Koch-de Shalit vectors

d(K, φ), and succeeded in building the metabelian (2-abelian) local class field theory
via constructing a canonical isomorphism

ιφ,d : d(K, φ) ∼→ Gal ((K∞Knr
d )ab/K),

and consequently establishing the 2-abelian local Artin map

(?.K)φ = ιφ : (K, φ) = lim←−
d

d(K, φ) ∼→ Gal (K(ab)2
/K). (1.1)
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However in [4], Koch and de Shalit neither discussed the behaviour of the morphism (1.1)
under Galois conjugation, nor discussed the ”metabelian transfer law” (Verlagerung) of
the morphism (1.1). The aim of this work, and its continuation, is to discuss these two
properties of the 2-abelian local Artin map, and to complete [4] in that respect. Thus in
the first part, we will review the metabelian local class field theory following [4]. This
part is included, since [4] is a very important and technical theory and will form the basis
for our future investigation on non-abelian local class field theory. Then in the second

part, after some preliminary observations on the group of Koch-de Shalit vectors (K, φ),
we will state and prove the Galois conjugation law of the metabelian local Artin map.
The third part is devoted to the “metabelian transfer law” of the 2-abelian local Artin
map. As we intend to include the necessary Galois cohomological tools in part III, we
decided to split up our paper into two, and part III will appear elsewhere as the natural
continuation of this paper which consists of part I and II.

Part I: Metabelian Local Class Field Theory

§2. Koch-de Shalit Vectors

Following [4], let L be a local field with finite residue class field κL of qL elements,

φL ∈ Gal(Lnr/L) the Frobenius automorphism over L, and π a prime element of L̃ (the

completion Lnr of Lnr).

Definition 2.1. A formal power series h(X) ∈ OL̃[[X]] is called a Lubin-Tate power

series belonging to π for L̃, if

h(X) = πX + (higher-degree terms)

and

h(X) ≡ XqL(mod π).

Let F ′π denote the collection of all Lubin-Tate formal power series belonging to π

for L̃. If h(X) ∈ F ′π, then there exists a unique 1-dimensional formal group law∗

Fh(X, Y ) ∈ OL̃[[X, Y ]] satisfying
∗Let R be a commutative ring with unity 1R. Recall that F (X,Y ) ∈ R[[X,Y ]] is called a (commutative

1-dimensional) formal group law over R if the following axioms are satisfied: (a) F (X, Y ) = F (Y,X);
(b) F (X, Y ) ≡ X + Y (mod deg. 2); (c) F (X, 0) = X = F (0,X); (d) F (F (X,Y ), Z) = F (X,F (Y, Z)).

Moreover, if R is a complete d.v.r and the maximal ideal of R, then for α,β ∈ , define α[+
F

]β =

F (α, β) ∈ , which defines a new abelian group structure on , called the group of -valued points of
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(φLFh)(h(X), h(Y )) = h(Fh(X, Y )),

which is called the Lubin-Tate formal group law over OL̃ attached to the Lubin-Tate

series h(X). The endomorphism ring (over OL̃)

EndOL̃
(Fh(X, Y )) = {f(X) ∈ XOL̃[[X]] : f(Fh(X, Y )) = Fh(f(X), f(Y ))}

is isomorphic to the ring of integers OL of the local field L under the isomorphism
a 7→ [a]h for every a ∈ OL, where [a]h : Fh → Fh is the unique endomorphism of the form
[a]h = aX+ (higher-degree terms) ∈ XOL̃[[X]]. Now, suppose that π′ is another prime

element of L̃, and h′(X) ∈ F ′π′ . If 0 6= a ∈ OL̃ satisfies φL(a)
a = π′

π , then there exists

a unique homomorphism [a]h,h′ : Fh → Fh′ of the form [a]h,h′ = aX+ (higher-degree

terms) ∈ XOL̃[[X]] such that (φ[a]h,h′) ◦ h = h′ ◦ [a]h,h′ and [ab]h,h′′ = [b]h′,h′′ ◦ [a]h,h′ ,

where π′′ is a prime element in L̃, possibly different than the prime elements π and π′ of

L̃, h′′ ∈ F ′π′′ , and 0 6= b ∈ OL̃ chosen to satisfy φL(b)
b = π′′

π′ .

Definition 2.2. For 1 ≤ i ∈ Z, x ∈ L̃sep is called a torsion point of level i on Fh, if

φi−1
L h ◦ · · · ◦ φLh ◦ h(x) = 0. The set of all torsion points of level i on Fh is denoted by

W i
h, and any x ∈W i

h −W i−1
h = W̃ i

h is called a primitive torsion point of level i on Fh.
Observe that,

W i
h = {x ∈ L̃sep : [a]h(x) = 0,∀ a ∈ i

L}.

Let Li denote the abelian extension over L which is class field to the subgroup U i(L)

of L×. Clearly, Lnr ⊆ Li, since Lnr is the abelian extension over L which is class field

to U(L), and passing to completion, L̃ ⊆ Li = L̃i since (Li)nr = Li. Lubin-Tate theory

states that Li = L̃(ω) for any ω ∈ W̃ i
h (where h ∈ F ′π is chosen arbitrarily for any prime

element π of L̃). In the special case π ∈ OL and h(X) ∈ F ′π ∩OL[[X]], Li = L(ω) for any

F (X, Y ). Given formal group laws F (X, Y ) and G(X, Y ) over R, a formal power series f(X) ∈ XR[[X ]]
is called a homomorphism from F (X,Y ) to G(X,Y ) (over R), and denoted by f : F (X,Y )→ G(X, Y ),
if f(F (X,Y )) = G(f(X), f(Y )). The set HomR(F,G) of all homomorphisms F → G over R is a group

under the law of composition (f, g) 7→ f [+
G

]g ∈ XR[[X ]] for every f, g ∈ HomR(F,G), and in the

special case F = G, HomR(F, F ) = EndR(F ) is a ring under the addition [+
F

] defined previously and

composition as the multiplication.
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ω ∈ W̃ i
h is the abelian extension over L which is class field to the subgroup < π > U i(L)

of L×, which is a totally-ramified extension over L of degree [Li : L] = (qL − 1)qi−1
L , and

Li = LnrLi = Lnr(ω). For h(X) ∈ F ′π, let

Ωh = {ω = (ω1, ω2, ω3, ...) : ωi ∈ W̃ i
φ1−i
L

h
and (φ1−i

L h)(ωi) = ωi−1}.

The main result of Lubin-Tate theory states that

(u, L)−1(ωi) = [u]φ1−ih(ωi) (2.1)

for every u ∈ U(L) and for every (ωi)1≤i∈Z ∈ Ωh. A formal power series h ∈ F ′π is called
a normic Lubin-Tate formal power series, if ω ∈ Ωh are norm-compatible sequences.

Following the terminology introduced in [4], fix a Lubin-Tate splitting (K, φ) (that is
a fixed extension of the Frobenius φK ∈ Gal(Knr/K) over K to a K-automorphism φ

of Ksep) and let Kφ be the fixed field of φ in Ksep(Kφ is totally-ramified over K). Then,

the following facts (proved in [4]) listed below are crucial in what follows:

Lemma 2.3 (Koch-de Shalit).
(a) There exists a unique norm-compatible sequence of primes

℘φ = {πL ∈ L× : K ⊆ L ⊆ Kφ; [L : K] <∞};

that is, the Lubin-Tate splitting (K, φ) canonically determines a Lubin-Tate labelling

℘φ = {πL ∈ L̃× : K ⊆ L ⊂ Ksep; [L : K] <∞};
(b) For any L ⊆ Kφ, [L : K] < ∞, there exists a unique Lubin-Tate formal power

series fφ,L ∈ OL[[X]] belonging to πL (chosen as in (a)) for L, such that fφ,L(πLn) =

πLn−1 for every n ≥ 2, fφ,L(πL1) = 0. Here, Ln denotes the class-field to the subgroup

< πL > Un(L) of L×, which is a totally-ramified abelian extension over L of degree

[Ln : L] = (q − 1)qn−1, and explicitly given by Ln = L(ω) for any ω ∈ W̃n
fφ,L

(actually

Ln = L(ω) for any ω ∈ W̃n
f and for any f ∈ F ′πL ∩OL[[X]], where F ′πL is the set of all

Lubin-Tate formal power series belonging to πL for L̃ and W̃n
f is the set of all primitive

torsion points of level n in the unique Lubin-Tate formal group law Ff associated to
f ∈ F ′πL ∩OL[[X]], which is defined over OL and satisfies Ff ◦ (f × f) = f ◦ Ff );

(c) in particular, there exists a unique Lubin-Tate formal group law Ffφ,L = Fφ,L defined

over OL associated to the unique Lubin-Tate formal power series fφ,L ∈ OL[[X]] satisfying

Fφ,L ◦ (fφ,L × fφ,L) = fφ,L ◦ Fφ,L for each K ⊆ L ⊆ Kφ with [L : K] <∞;
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(d) for a ∈ OL, there exists a unique endomorphism [a]fφ,L : Fφ,L → Fφ,L over OL of

the Lubin-Tate formal group law Fφ,L of the form [a]fφ,L = aX+ (higher degree terms)

∈ XOL[[X]] for each K ⊆ L ⊆ Kφ with [L : K] < ∞. Let {a}fφ,L = [a]fφ,L (mod

L) ∈ XκL[[X]] be the reduction modulo L of [a]fφ,L ∈ XOL[[X]];

(e) every ω = (ω1, ω2, ω3, ...) ∈ ΩfφK
is norm-compatible.

For each 1 ≤ d ∈ Z, define a topological group structure on d-Koch-de Shalit vectors
(with respect to (K, φ))

d(K, φ) =

{
(a, ξ) :

a = uπν
K ∈ K̂× s.t u ∈ U(K), ν ∈ Ẑ

ξ = ξ(X) ∈ κK [[X]]× s.t.φdξ
ξ =

{u}fφ,K
X

}

(where K̂× is the profinite completion of the multiplicative group K×) by the law of
composition defined as

(a1, ξ1)(a2, ξ2) = (a1.a2, ξ1.φ
−ν1(ξ2) ◦ {u1}fφ,K )

where a1 = u1π
ν1
K , a2 = u2π

ν2
K ∈ K̂× with u1, u2 ∈ U(K) and ν1, ν2 ∈ Ẑ (=the profinite

completion of Z); and in which a basis of neighborhoods of the identity element of

d(K, φ) is given by

d(K, φ)(i,j) = {(a, ξ) ∈ d(K, φ) : a ∈ U i(K), ξ ≡ 1(mod Xj)}

for 0 ≤ i, j ∈ Z. By the results of paper [2], d(K, φ) is a non-void set. Note that,

the identity element of d(K, φ) is (1K , 1(X)), and the inverse of (a, ξ) ∈ d(K, φ) is

(a, ξ)−1 = (a−1, 1
φν (ξ)◦{u}fφ,K

). For two positive integers d1 and d2 such that d1|d2, there

exists transition morphism τ (φ)d2
d1

: d2 (K, φ)→ d1 (K, φ) defined by

τ (φ)d2
d1

: (a, ξ) 7→

a,
∏

0≤i≤d2d1 −1

φd1i(ξ)

 (2.2)

for every (a, ξ) ∈ d2 (K, φ). Let (K, φ) denote the projective limit lim←−
d

d(K, φ)

defined over the transition morphisms eq. no. (2.2). In this paper, (K, φ) will be called
the group of Koch-de Shalit vectors (with respect to (K, φ)).
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Now, suppose that L is a local field with finite residue class field κL of qL elements,

φL ∈ Gal (Lnr/L) the Frobenius automorphism over L and π a prime element of L̃ = Lnr.
For h(X) ∈ F ′π, there exists a unique mapping

Nh : OL̃((X))× → OL̃((X))×

called as the Coleman norm operator, satisfying

Nhg ◦ h(X) =
∏

ω∈W1
h

g(X[+
h

]ω)

for every g ∈ OL̃((X))×, where X[+
h

]ω ∈ L̃sep [[X]] is defined by the addition on the

L̃sep -valued points of the formal group Fh(X, Y ).

Lemma 2.4 (Coleman).

(a) Nh : OL̃((X))× → OL̃((X))× is a multiplicative group homomorphism.

(b) Nhg ≡ φLg (mod π), for every g ∈ OL̃((X))×.

(c) C(L̃, h) = {g ∈ OL̃((X))× : Nhg = φLg} is a subgroup of OL̃((X))×, called the group
of Coleman power series.
(d) Reduction modulo π induces an isomorphism

∇π,h : C(L̃, h) ∼→ FqL((X))×

defined by

∇π,h : g 7→ g(mod π)

for every g ∈ C(L̃, h).

(e) For ω ∈ Ωh, g ∈ C(L̃, h),

{βi = (φ1−i
L g)(ωi)}1≤i∈Z

is a norm-compatible sequence in the tower {Li}1≤i∈Z of field extensions over L̃, which
in return defines an isomorphism (depending on ω)

∆ : C(L̃, h) ∼→ lim←−
i

(Li)×
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given by

∆ : g 7→ (φ1−i
L g(ωi))1≤i∈Z

for every g ∈ C(L̃, h), where the projective limit lim←−
i

(Li)× is defined with respect to the

norm maps N
Lj/Li

: (Lj)× → (Li)× for 1 ≤ i ≤ j ∈ Z.

(f) The isomorphism ∆ : C(L̃, h) ∼→ lim←−
i

(Li)× constructed in part (e) reduces to an

isomorphism ∆ |C◦(L̃,h) : C◦(L̃, h) ∼→ lim←−
i

U(Li) = U(L̃) on the subgroup C◦(L̃, h) =

C(L̃, h) ∩OL̃[[X]]× of Coleman power series of degree 0 in C(L̃, h).

Suppose that K′ is a compatible extension over K with respect to the fixed Lubin-
Tate splitting (K, φ) (that is, K′ is a finite extension over K and K′ ⊂ Kφf(K′/K)). Thus,

φ′ = φf(K′/K) is a Lubin-Tate splitting for K′ that will be fixed in the remaining of the
text. There exists a natural morphism

Mφ,K′/K : (K′, φ′)→ (K, φ)

called the 2-abelian norm map from (K′, φ′) to (K, φ), which is defined by the
commutative squares

(K′, φ′)
Mφ,K′/K (K, φ)

pr1 pr1

K̂′×
NK′/K

K̂×

(2.3)

and

(K′, φ′)
Mφ,K′/K (K, φ)

pr2 pr2

κK′ [[X]]×
NColeman
K′/K

κK [[X]]×.

(2.4)
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Here, the bottom horizontal arrow NColeman
φ,K′/K : κK′ [[X]]× → κK [[X]]× is defined via

Coleman theory (Lemma 2.4) by the commutative diagram

U(K̃′)
Nφ,K′/K U(K̃)

∆ω′ ∆ω

C◦(K̃′, fφ′,K′) C◦(K̃, fφ,K)

∇π
K′ ,fφ′,K′ ∇πK,fφ,K

κK′ [[X]]×
NColeman
K′/K

κK [[X]]×,

(2.5)

where U(K̃) is defined to be the projective limit lim←−
i

U(KnrKi) (recall that, KnrKi =

Ki is the abelian extension of K which is class field to U i(K)) taken over the norm maps

NKnrKj/KnrKi
: KnrKj → KnrKi for i ≤ j, C◦(K̃, fφ,K) denotes the Coleman power

series of degree 0, the vertical arrows in the commutative diagram (2.5)

U(K̃) ∆ω←− C◦(K̃, fφ,K)
∇πK ,fφ,K

κK [[X]]×

are the isomorphisms of Coleman theory (here ω ∈ Ωfφ,K , which is norm-compatible by

part (e) of Lemma 2.3, is in particular chosen as ωi = πKi , for every 1 ≤ i ∈ Z by part
(b) of Lemma 2.3), and

Nφ,K′/K : U(K̃′)→ U(K̃)

is the mapping defined by

Nφ,K′/K : {u′m} 7→ {un},

with

un =
∏

0≤`≤f(K′/K)−1

φ`(ÑK′m/Kn
(u′m))

for m� n (that is, m is chosen sufficiently larger than n to ensure that Kn ⊆ K′m).

The 2-abelian norm map Mφ,K′/K : (K′, φ′)→ (K, φ) has the following properties:
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Lemma 2.5 (Koch-de Shalit).

(a) Mφ,K′/K( (K′, φ′)) = Mφ(K′/K) is a closed subgroup of finite index in (K, φ);

(b) if K ⊆ K′ ⊆ K′′ is a tower of compatible extensions over K with respect to (K, φ),
the 2-abelian norm map

Mφ,K′′/K : (K′′, φf(K′′/K))→ (K, φ)

factors through

Mφ,K′′/K : (K′′, φ′f(K′′/K′))
Mφ′,K′′/K′

(K′, φf(K′/K))
Mφ,K′/K

(K, φ).

If K′/K is an infinite algebraic extension defined as a union of compatible extensions
E/K with respect to the Lubin-Tate splitting (K, φ), then put

Mφ(K′/K) =
⋂
E

Mφ(E/K)

which is a closed subgroup of (K, φ).

§3. 2-abelian local class field theory.

The 2-abelian local class field theory states the following :

2-abelian local class field theory (Koch-de Shalit). Let K be a (non-archimedean)
local field, and with fixed Lubin-Tate splitting φ over K.
1◦ There exists an order preserving (equivalently, inclusion reversing) bijection

L/K ↔Mφ(L/K)

between the set of all 2-abelian extensions of K and the set of all closed subgroups of

(K, φ).
2◦ (2-abelian local Artin map) There exists a canonical isomorphism

(?, K)φ = ιφ : (K, φ) ∼→ Gal (K(ab)2
/K)

such that, for any 2-abelian extension L over K, the surjective homomorphism

(?, L/K)φ : (K, φ)
ιφ→ (Gal (K(ab)2

/K)
res

K(ab)2 /L
Gal (L/K)
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has kernel Mφ(L/K), and thereby induces a canonical isomorphism

ιφ,L : (K, φ)/Mφ(L/K) ∼→ Gal (L/K).

3◦ (Functoriality) If K′ is a compatible extension of K with respect to (K, φ), then the
square

(K′, φ′)
ιφ′ Gal (K′(ab)2

/K′)

MK′/K
res

K′(ab)2 /K(ab)2

(K, φ)
ιφ Gal (K(ab)2

/K)

is commutative

Note that, projection on the 1st-component recovers the classical (abelian) local class
field theory for K. That is, for a 2-abelian extension L/K, proj1 (Mφ(L/K)) = N(L/K),
and the abelian extension of K which is class field to N(L/K) is the maximal abelian
sub-extension in L/K.

The 2-abelian Artin map ιφ : (K, φ) ∼→ Gal(K(ab)2
/K) is constructed in two steps.

Step 1. Let L be a finite Galois extension over K, φL ∈ Gal (Lnr/L) the Frobenius

automorphism over L, and let π be a fixed prime element in L̃ such that νL(π) = 1, where
νL is the normalized valuation on L. Introduce the group

G(L/K, π) =
{

(γ, b) : γ ∈ Gal(Lnr/K), b ∈ U(L̃)s.t.
φL(b)

b
=

γ(π)
π

}
with the law of composition defined by

(γ1 , b1)(γ2 , b2) = (γ1γ2 , b1γ1(b2)) (3.1)

for every (γ1, b1), (γ2, b2) ∈ G(L/K, π). The inverse (γ, b)−1 of (γ, b) ∈ G(L/K, π) is given

by (γ, b)−1 = (γ−1, γ−1(b−1)).

Suppose that (K ⊆ L ⊆)L′ is a finite Galois extension over K. Since N
L̃′/L̃

: L̃′× → L̃×

is a surjection, there exists a prime element π′ ∈ L̃′ such that N
L̃′/L̃

(π′) = π. There exists

a surjective group homomorphism

rL′/L : G(L′/K, π′)→ G(L/K, π) (3.2)
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defined by

rL′/L : (γ′, b′) 7→

γ′|Lnr ,
∏

0≤i�d

φi
L(N

L̃′/L̃
(b′))


for (γ′, b′) ∈ G(L′/K, π′), where d = [L′ ∩ Lnr : L]. The homomorphism (3.2) is
compatible in towers of finite Galois extensions over K. That is, if the tower K ⊆
L ⊆ L′ ⊆ L′′ is all finite and Galois over K, and if π′′ is a prime element in L̃′′ such that
N

L̃′′/L̃′
(π′′) = π′, then the homomorphism rL′′/L : G(L′′/K, π′′) → G(L/K, π) factors

through

rL′′/L : G(L′′/K, π′′)
rL′′/L′

G(L′/K, π′)
rL′/L

G(L/K, π).

Given a norm-compatible sequence of prime elements ω = {ωi ∈ Li : N
L1/L̃

(ω1) = π}

in the tower {Li}1≤i∈Z of extensions over L̃, there exists a normic Lubin-Tate power series

h(X) ∈ O
L̃
[[X]] belonging to π for L̃ such that ω ∈ Ωh. Let Fh(X, Y ) ∈ O

L̃
[[X, Y ]] be the

unique Lubin-Tate formal group law over O
L̃

attached to h(X). If (γ, b) ∈ G(L/K, π), then
φL(b)

b = γ(π)
π , so there exists a unique isomorphism η = [b]h,γh : Fh

∼→ Fγh over O
L̃

of the

form η(X) = bX+ (higher-degree terms) ∈ XO
L̃
[[X]] (note that, γh(X) ∈ XO

γ(L̃)
[[X]]

is a Lubin-Tate power series belonging to γ(π) for γ(L̃)). Note that, since ω ∈ Ωh (that

is, ωi ∈ W̃ i
φ1−i
L

h
and (φ1−i

L h)(ωi) = ωi−1), ω′i = φ1−i
L η(ωi) ∈ L̃sep

is a primitive torsion

point of level i on Fφ1−i
L

γh; that is, ω′i ∈ W̃ i
φ1−i
L

γh
, because for any a ∈ L,

[a]φ1−i
L

γh(ω′i) = [a]φ1−i
L

γh(φ1−i
L [b]h,γh(ωi))

= φ1−i
L ([a]γh([b]h,γh(ωi)))

= φ1−i
L ([ba]h,γh(ωi))

= φ1−i
L ([ab]h,γh(ωi))

= φ1−i
L ([b]h,γh([a]h(ωi)))

= φ1−i
L [b]h,γh([a]φ1−i

L
h(ωi)),
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which proves that [a]φ1−i
L

γh(ω′i) = 0 for every a ∈ i

L and [c]φ1−i
L

γh(ω′i) 6= 0 for some

c ∈ i−1

L (since b ∈ U(L̃)). Moreover,

φ1−i
L γh(ω′i) = φ1−i

L γh(φ1−i
L η(ωi))

= φ1−i
L γh(φ1−i

L [b]h,γh(ωi))

= φ1−i
L (γh([b]h,γh(ωi)))

= φ1−i
L (γh ◦ [b]h,γh(ωi))

= φ1−i
L ((φL[b]h,γh ◦ h)(ωi))

= φ
1−(i−1)
L [b]h,γh(φ1−i

L h(ωi))

= φ
1−(i−1)
L [b]h,γh(ωi−1) = ω′i−1,

proving that ω′ = (ω′i)1≤i∈Z ∈ Ωγh. Now, there exists a unique extension of γ ∈

Gal(Lnr/K) to a K-automorphism γ′ :
⋃

1≤i∈Z
Li →

⋃
1≤i∈Z

Li satisfying γ′ω = ω′. In fact,

Li = L̃(ωi) = L̃(ω′i), so the unique K-automorphism γ′ of the field
⋃

1≤i∈Z
Li is defined by

the conditions

γ′|Lnr = γ

and

γ′ : ωi 7→ ω′i = φ1−i
L [b]h,γh(ωi)

for 1 ≤ i ∈ Z
The following result (Proposition 2.4 in [4]) is the 1st fundamental fact, which is

utilized in the construction of the metabelian local Artin map.

Proposition 3.1 (Koch-de Shalit). Fix a norm-compatible sequence of prime ele-
ments

ω = {ωi ∈ Li : N
L1/L̃

(ω1) = π}

in the tower {Li}1≤i∈Z of extensions over L̃, where Li denotes the abelian extension of

L which is class field to U i(L) and Li its completion. Then, there exists an isomorphism
(depending on ω)
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İKEDA

ι : G(L/K, π; φL) ∼→ Gal(Lab/K),

where ι (γ, b) ∈ Gal(Lab/K) is uniquely defined by the conditions

ι (γ, b)|Lnr = γ

and

ι (γ, b)(ωi) = φ1−i
L [b]h,γh(ωi)

for 1 ≤ i ∈ Z (here, h ∈ O
L̃
[[X]] is the unique normic Lubin-Tate formal power series

belonging to π for L̃ such that ω ∈ Ωh), which makes the following diagram commutative:

1 −→ U(L) −→ G(L/K, π; φL) −→ Gal(Lnr/K) −→ 1

(?,L)−1 ι,ω

1 −→ Gal(Lab/Lnr) −→ Gal(Lab/K) −→ Gal(Lnr/K) −→ 1.

Proof. For a proof, look at (Proposition 2.4, [4]). 2

Remark 3.2. Since we have fixed a Lubin-Tate splitting φ over K, we have a

unique prime element πL ∈ L̃ (such that πL ∈ ℘φ) by part (a) of Lemma 2.3 satisfying

νL(πL) = νK(N
L̃/K̃

(πL)) = νK(πK) = 1, and the norm-compatible sequence of prime

elements ω considered in Proposition 3.1 is uniquely determined by ωi = πLi , since

Li/Li is an unramified extension and by part (a) of Lemma 2.3 (that is, ω ⊆ ℘φ). Thus,

by Proposition 3.1, the isomorphism

ι : G(L/K, πL) ∼→ Gal(Lab/K)

is uniquely determined by the Lubin-Tate splitting (K, φ), which is then denoted by

ιφ,L/K : G(L/K, πL) ∼→ Gal(Lab/K).
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Suppose that K ⊆ L ⊆ L′ are finite Galois extensions over K, then the following square

G(L′/K, πL′)
rL′/L

G(L/K, πL)

ιφ,L′/K ιφ,L/K

Gal((L′)ab/K)
res(L′)ab/Lab Gal(Lab/K)

(3.3)

is commutative.

Step 2. The second step consists of constructing a canonical isomorphism

ιφ,d : d(K, φ) ∼→ Gal((K∞Knr
d )ab/K)

which will be defined below as follows. Consider for 1 ≤ i ∈ Z, the field KiK
nr
d . For

(a, ξ) ∈ d(K, φ), let γi = (a, K)−1|KiKnr ∈ Gal(Ki/K) (recall that KiK
nr = Ki), and

let βi,ξ = φ1−i∇−1
πK ,fφ,K

(ξ)(πKi ) ∈ U(Ki), where ∇−1
πK ,fφ,K

(ξ) = gξ ∈ C◦(K̃, fφ,K) is the

unique Coleman power series of degree 0 lifting ξ ∈ κK [[X]]× (c.f part (d) of Lemma 2.4),

and {βi,ξ}1≤i∈Z is a norm-compatible sequence in the tower {U(Ki)}1≤i∈Z (c.f parts (e)

and (f) of Lemma 2.4). Observe that, γi ∈ Gal((KiK
nr
d )nr/K) and βi,ξ ∈ U( ˜KiKnr

d )

(note that (KiK
nr
d )nr = Ki and ˜KiKnr

d = Ki) satisfies

φKiKnr
d

(βi,ξ)
βi,ξ

=
φd(βi,ξ)

βi,ξ

=
φd(φ1−igξ(πKi))

φ1−igξ(πKi)

= φ1−i

(
φdgξ(πKi)
gξ(πKi)

)

= φ1−i

(
φdgξ

gξ
(πKi)

)
= φ1−i

(
[u]fφ,K

X
(πKi)

)

by the fact that φdξ
ξ =

{u}fφ,K
X (where a = uπν

K ∈ K̂× for some u ∈ U(K) and ν ∈ Ẑ)

and by part (d) of Lemma 2.4. Therefore (recall that πKi = πKiKnr
d

= πKi = ωi),
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φ1−i

(
[u]fφ,K

X
(πKi)

)
=

[u]φ1−ifφ,K (φ1−iωi)
φ1−iωi

=
[u]φ1−ifφ,K (ωi)

ωi

=
(u−1, K)(ωi)

ωi
=

γi(πKiKnr
d

)
πKiKnr

d

,

by the fact that Ki ⊂ Kφ and by eq. no. (2.1), proving that (γi, βi,ξ) ∈ G(KiK
nr
d /K,

πKiKnr
d

).

The following result (Proposition 2.13 in [4]) is the 2nd fundamental fact that is utilized
in the construction of the metabelian local Artin map.

Proposition 3.3 (Koch-de Shalit). The mapping

ιφ,d : d(K, φ)→ Gal((K∞Knr
d )ab/K)

defined by

ιφ,d : (a, ξ) 7→ lim←−
i

ιφ,KiKnr
d

/K(γi, βi,ξ)

for every (a, ξ) ∈ d(K, φ), where γi = (a−1, K)|KiKnr ∈ Gal(Ki/K) and βi,ξ =

φ1−i∇−1
πK ,fφ,K

(ξ)(πKi) ∈ U(Ki) for 1 ≤ i ∈ Z, is an isomorphism. Here, the map

lim←−
i

ιφ,KiKnr
d

/K : lim←−
i

G(KiK
nr
d /K, πKi)

∼→ lim←−
i

Gal((KiK
nr
d )ab/K)

︸ ︷︷ ︸
Gal((K∞Knr

d
)ab/K)

is the isomorphism defined via the commutative square eq. no. (3.3).

Proof. For a proof, look at (Proposition 2.13, [4]). 2

Note that, the square
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d2(K, φ)
ιφ,d2 Gal((K∞Knr

d2
)ab/K)

τ(φ)
d2
d1

res(K∞Knrd2
)ab/(K∞Knrd1

)ab

d1(K, φ)
ιφ,d1 Gal((K∞Knr

d1
)ab/K)

(3.4)

is commutative for d1|d2. Now, the 2-abelian local Artin map

ιφ : (K, φ) ∼→ Gal(K(ab)2
/K)

is defined by passing to the projective limits defined via the commutative square eq. no.
(3.4) as

ιφ = lim←−
d

ιφ,d : lim←−
d

d(K, φ) = (K, φ) ∼→ Gal(K(ab)2
/K) = lim←−

d

Gal((K∞Knr
d )ab/K).

Part II: Galois Conjugation Law

§4. Preliminaries

Let σ : K ↪→ Ksep be any embedding of K into Ksep, and fix once and for all an
extension σ̃ ∈ Aut(Ksep) of σ : K ↪→ Ksep to Ksep. Let K′ be a finite extension over
K, always assumed to be a subfield of Ksep. Since σ̃(K′nr) = (σ̃K′)nr, by continuity,

σ̃(K̃′) = ˜σ̃(K′). Thus, there is an isomorphism

σ̃ : O
K̃′

((X)) ∼→ O ˜̃σ(K′)
((X)),

which is defined by the application of σ̃ on the coefficients of the formal Laurent series

in O
K̃′

((X)), and there exists a unique isomorphism σ̃∗ : κK′
∼→ κ

σ̃(K′)
extending to

σ̃∗ : κK′((X)) ∼→ κ
σ̃(K′)

((X))

and making the square
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O
K̃′

((X))
mod

K̃′ κK′((X))

σ̃ ∃!
σ̃∗

O ˜̃σ(K′)
((X))

mod ˜̃
σ(K′)

κ
σ̃(K′)

((X))

(4.1)

commutative. Moreover, (K′)sep = Ksep is algebraically closed, so K̃′
sep
⊆ Ksep, which

shows that σ̃ ∈ Aut(Ksep) has a unique extension to an automorphism of Ksep (and

hence to K̃′
sep

) by continuity, which will again be denoted by σ̃ : Ksep → Ksep. The
following simple observation is fundamental in what follows:

Basic Observation. If φ′ is a Lubin-Tate splitting over K′; that is, φ′ is a fixed
automorphism of K′sep such that φ′|K′nr is the Frobenius automorphism φK′ over K′;

then σ̃φK′ σ̃
−1 is the Frobenius automorphism over σ̃K′ and σ̃φ′σ̃−1 is a Lubin-Tate

splitting over σ̃(K′).

In view of this basic observation, there exists a bijection between the set of all Lubin-
Tate splittings over K′ and the set of all Lubin-Tate splittings over σ̃(K′) defined by

φ′ ←→ σ̃φ′σ̃−1.

If π′ is a prime element in K̃′, then σ̃(π′) is a prime element in σ̃(K̃′) = ˜σ̃(K′). Moreover,
if νK′(π′) = 1, where νK′ is the normalized valuation on K′, then ν

σ̃(K′)
(σ̃(π′)) = 1,

since ν
σ̃(K′)

(σ̃(π′)) = νK′(π′). If h(X) ∈ O
K̃′

[[X]] is a Lubin-Tate power series belonging

to π′ for K̃′, then σ̃h(X) ∈ O ˜̃σ(K′)
[[X]] is a Lubin-Tate power series belonging to the

prime σ̃(π′) for ˜σ̃(K′); that is, σ̃F ′π′ = F ′
σ̃(π′)

. Furthermore, σ̃Fh(X, Y ) = F
σ̃h

(X, Y ) ∈

O˜̃σ(K′)
[[X, Y ]] is the unique Lubin-Tate formal group law over O ˜̃σ(K′)

attached to the

Lubin-Tate power series σ̃h(X), which clearly satisfies

(φ
σ̃(K′)

F
σ̃h

)(σ̃h(X), σ̃h(Y )) = (σ̃h)(F
σ̃h

(X, Y )).

In fact,

(σ̃h)(F
σ̃h

(X, Y )) = (σ̃h)(σ̃Fh(X, Y ))
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= σ̃(h(Fh(X, Y )))

= σ̃((φK′Fh)(h(X), h(Y )))

= ((σ̃φK′ σ̃
−1)F

σ̃h
)(σ̃h(X), σ̃h(Y ))

= (φ
σ̃(K′)

F
σ̃h

)(σ̃h(X), σ̃h(Y )),

proving the desired equality. The endomorphism ring EndO˜̃
σ(K′)

(F
σ̃h

(X, Y )) over O ˜̃σ(K′)

is isomorphic to the ring of integers O
σ̃(K′)

of σ̃(K′) under the isomorphism

σ̃(a) 7→ [σ̃(a)]
σ̃h

= σ̃[a]h,

for every a ∈ OK′ . In fact,

σ̃[a]h(F
σ̃h

(X, Y )) = σ̃([a]h(Fh(X, Y )))

= σ̃(Fh([a]h(X), [a]h(Y )))

= F
σ̃h

(σ̃[a]h(X), σ̃[a]h(Y )),

and σ̃[a]h = σ̃aX+ (higher-degree terms) ∈ XO˜̃σ(K′)
[[X]], proving that σ̃[a]h = [σ̃a]

σ̃h

by the uniqueness. Now, suppose that π′o is another prime element of K̃′, ho(X) ∈ F ′π′o
and 0 6= a ∈ O

K̃′
such that φK′ (a)

a
= π′0

π′
(therefore, there exists a unique homomorphism

[a]h,ho : Fh → Fho of the form [a]h,ho(X) = aX+ (higher-degree terms) ∈ XO
K̃′

[[X]]);

then

(σ̃φK′ σ̃
−1)(σ̃a)

σ̃(a)
= σ̃

(
φK′a

a

)
= σ̃

(
π′o
π′

)
=

σ̃(π′o)
σ̃(π′)

,

and σ̃[a]h,ho = [σ̃a]
σ̃h,σ̃ho

: F
σ̃h
→ F

σ̃ho
is the unique homomorphism from F

σ̃h
to F

σ̃ho

of the form σ̃aX+ (higher-degree terms) ∈ XO˜̃σ(K′)
[[X]]. In particular, if x ∈W i

h, then

0 = σ̃([a]h(x)) = σ̃[a]h(σ̃x) = [σ̃a]
σ̃h

(σ̃x)

for every a ∈ i

K′ , proving that σ̃W i
h = W i

σ̃h
; and if ω = (ω1, ω2, ...) ∈ Ωh, then

σ̃ωi ∈ σ̃W̃ i
φ1−i
K′ h

= W̃ i

(σ̃φK′ σ̃
−1)1−iσ̃h

and
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((σ̃φK′ σ̃
−1)1−iσ̃h)(σ̃ωi) = σ̃ωi−1

for 1 ≤ i ∈ Z, proving that σ̃Ωh = Ω
σ̃h

.

The following observation will be central in what follows.

Lemma 4.1. Consider the Lubin-Tate splitting σ̃φσ̃−1 over σK. Clearly, (σK)
σ̃φσ̃−1 =

σ̃Kφ, and

(a) the unique norm-compatible sequence of primes

℘
σ̃φσ̃−1 = {πE ∈ E× : σK ⊆ E ⊆ (σK)

σ̃φσ̃−1 ; [E : σK] <∞}

is given by ℘
σ̃φσ̃−1 = σ̃(℘φ);

(b) for any E ⊆ (σK)
σ̃φσ̃−1 , [E : σK] < ∞, the unique Lubin-Tate formal power

series fσ̃φσ̃−1,E ∈ OE [[X]] belonging to πE (chosen as in (a)) for E, and satisfying

fσ̃φσ̃−1,E(πEn) = πEn−1 for n ≥ 2, fσ̃φσ̃−1,E(πE1 ) = 0 is given by fσ̃φσ̃−1,E = σ̃fφ,σ̃−1E;

(c) the unique Lubin-Tate formal group law F
σ̃φσ̃−1,E

defined over OE associated to the

unique Lubin-Tate formal power series f
σ̃φσ̃−1,E

∈ OE[[X]] satisfying

F
σ̃φσ̃−1,E

◦ (f
σ̃φσ̃−1,E

× f
σ̃φσ̃−1,E

) = f
σ̃φσ̃−1,E

◦ F
σ̃φσ̃−1,E

for each σK ⊆ E ⊆ (σK)
σ̃φσ̃−1 with [E : σK] <∞ is given by F

σ̃φσ̃−1,E
= σ̃F

φ,σ̃−1E
;

(d) for a ∈ OE , the unique endomorphism [a]f
σ̃φ̃σ−1 ,E

: F
σ̃φσ̃−1,E

→ F
σ̃φσ̃−1,E

of the

Lubin-Tate formal group law F
σ̃φσ̃−1,E

for each σK ⊆ E ⊆ (σK)
σ̃φσ̃−1 with [E : σK] <∞

is given by [a]f
σ̃φ̃σ−1 ,E

= σ̃[σ̃−1a]f
φ,̃σ−1,E

and {a}f
σ̃φ̃σ−1 ,E

= σ̃∗{σ̃−1a}f
φ,̃σ−1E

;

(e) σ̃Ωfφ,K = Ωf
σ̃φ̃σ−1 ,K

and every σ̃ω ∈ Ωf
σ̃φ̃σ−1 ,K

for ω ∈ Ωfφ,K is norm-compatible.

Proof. The assertion (σK)
σ̃φσ̃−1 = σ̃Kφ follows from the fact that

(σK)
σ̃φσ̃−1 = {x ∈ Ksep|φ(σ̃−1(x)) = σ̃−1(x)}.

(a) Let ℘φ = {πL ∈ L× : K ⊆ L ⊆ Kφ; [L : K] < ∞} be the unique norm-compatible
sequence of prime elements corresponding to the Lubin-Tate splitting (K, φ). Consider
K ⊆ L ⊆ M ⊆ Kφ with [M : K] < ∞. Let εL(M, Ksep) denote the (finite) set of all
L-embeddings M ↪→ Ksep. Then, clearly

σ̃−1ε
σ̃(L)

(σ̃(M), Ksep)σ̃ = εL(M, Ksep).
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Thus, computing the norm N
M̃/L̃

(πM ) (which is equal to πL ∈ L×),

πL = N
M̃/L̃

(πM )

= NM/L(πM )

=
∏

σ̃−1τσ̃

(σ̃−1τ σ̃)(πM ) (τ runs over ε
σ̃(L)

(σ̃(M), Ksep))

= σ̃−1
∏
τ

τ (σ̃(πM ))

= σ̃−1N
σ̃(M)/σ̃(L)

(σ̃(πM))

= σ̃−1N ˜̃σ(M)/˜̃σ(L)
(σ̃(πM)),

it follows that σ̃(πL) = N ˜̃σ(M)/˜̃σ(L)
(σ̃(πM )), and the assertion follows.

(b) For E ⊆ (σK)
σ̃φσ̃−1 with [E : σK] <∞, it suffices to prove that σ̃−1(E)n = σ̃−1(En)

for 1 ≤ n ∈ Z. In fact, NEn/EE×n =< πE > Un(E), since En is class-field to the subgroup

< πE > Un(E) of E×. Thus,

N
σ̃−1(En)/σ̃−1(E)

σ̃−1(En)× = σ̃−1NEn/EE×n

= < σ̃−1πE > Un(σ̃−1E)

= < π
σ̃−1E

> Un(σ̃−1E) = N
σ̃−1(E)n/σ̃−1(E)

σ̃−1(E)×n

by part (a). Hence, by the local class field theory, σ̃−1(En) = σ̃−1(E)n.
(c) Let σK ⊆ E ⊆ (σK)

σ̃φσ̃−1 with [E : σK] <∞. Let F
φ,σ̃−1E

be the unique Lubin-Tate

formal group law defined over O
σ̃−1(E)

associated to the Lubin-Tate formal power series

f
φ,σ̃−1(E)

∈ O
σ̃−1(E)

[[X]] satisfying

F
φ,σ̃−1(E)

◦ (f
φ,σ̃−1(E)

× f
φ,σ̃−1(E)

) = f
φ,σ̃−1(E)

◦ F
φ,σ̃−1(E)

.

Then, σ̃F
φ,σ̃−1(E)

is a Lubin-Tate formal group law over OE = σ̃O
σ̃−1(E)

satisfying

σ̃F
φ,σ̃−1(E)

◦ (σ̃f
φ,σ̃−1(E)

× σ̃f
φ,σ̃−1(E)

) = σ̃f
φ,σ̃−1(E)

◦ σ̃F
φ,σ̃−1(E)

.

Since σ̃f
φ,σ̃−1(E)

= f
σ̃φσ̃−1,E

by part (b), it follows that F
σ̃φσ̃−1,E

= σ̃F
φ,σ̃−1(E)

.
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(d) Let σK ⊆ E ⊆ (σK)
σ̃φσ̃−1 with [E : σK] < ∞. For a ∈ OE , there exists a unique

endomorphism

[σ̃−1a]f
φ,̃σ−1(E)

: F
φ,σ̃−1(E)

→ F
φ,σ̃−1(E)

of the Lubin-Tate formal group law F
φ,σ̃−1(E)

over O
σ̃−1(E)

of the form [σ̃−1a]f
φ,̃σ−1(E)

=

σ̃−1aX+ (higher degree terms). Then, σ̃[σ̃−1a]f
φ,̃σ−1(E)

= aX+ (higher degree terms) is

an endomorphism of the Lubin-Tate formal group law σ̃F
φ,σ̃−1(E)

= F
σ̃φσ̃−1,E

over OE,

since

σ̃[σ̃−1a]f
φ,̃σ−1(E)

◦ σ̃F
φ,σ̃−1(E)

= σ̃F
φ,σ̃−1(E)

◦ (σ̃[σ̃−1a]f
φ,̃σ−1(E)

× σ̃[σ̃−1a]f
φ,̃σ−1(E)

).

Thus, [a]f
σ̃φ̃σ−1 ,E

= σ̃[σ̃−1a]f
φ,̃σ−1(E)

and {a}f
σ̃φ̃σ−1 ,E

= σ̃∗{σ̃−1a}f
φ,̃σ−1(E)

.

(e) The first equality follows from part (b), and the second assertion follows from a norm
computation similar as in the proof of part (a). 2

The group of d-Koch-de Shalit vectors with respect to the Lubin-Tate splitting σ̃φσ̃−1

over σK is explicitely described by

d(σK, σ̃φσ̃−1)

=

(b, η) :
b = νπµ

σK ∈ ̂σ(K)× s.t ν ∈ U(σK), πσK = σ(πK), µ ∈ Ẑ

η = η(X) ∈ κσK [[X]]× s.t (σ̃∗φd(σ̃∗)−1)η
η

=
{ν}f

σ̃φ̃σ−1 ,σK

X

 ,

and the group of Koch-de Shalit vectors with respect to the Lubin-Tate splitting σ̃φσ̃−1

over σK is then the projective limit (σK, σ̃φσ̃−1) = lim←−
d

d(σK, σ̃φσ̃−1) taken over

the connecting morphisms τ (σ̃φσ̃−1)d2
d1

: d2 (σK, σ̃φσ̃−1)→ d1 (σK, σ̃φσ̃−1) defined for

any positive integers d1, d2 with d1|d2.

Remark 4.2. If K′ is a compatible extension over K with respect to the Lubin-
Tate splitting (K, φ), then σ̃(K′) is compatible over σK with respect to the Lubin-Tate

splitting (σK, σ̃φσ̃−1).
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İKEDA

Lemma 4.3.
(a) Let π′ be a prime element of K̃′, and let h(X) ∈ F ′π′ . Then the square

O
K̃′

((X))× Nh O
K̃′

((X))×

σ̃ σ̃

O ˜̃σ(K′)
((X))×

N
σ̃h O˜̃σ(K′)

((X))×

is commutative.

(b) C(K̃′, h) is mapped isomorphically onto C( ˜σ̃(K′), σ̃h) under the isomorphism

σ̃ : O
K̃′

((X))× ∼→ O ˜̃σ(K′)
((X))×

(c) The following diagram

lim←−
i

(K′i)× ∆ω C(K̃′, h)
∇π′,h FqK′ ((X))×

σ̃ σ̃ σ̃∗

lim←−
i

(σ̃(K′)i)
× ∆

σ̃ω C( ˜σ̃(K′), σ̃h)
∇
σ̃(π′),̃σh Fq

σ̃(K′)
((X))×

is commutative for any choice of ω ∈ Ωh.
(d) Suppose that K′ is a compatible extension over K with respect to the Lubin-Tate
splitting (K, φ). Then

NColeman
φ,K′/K : κK′ [[X]]×→ κK [[X]]×

satisfies

σ̃∗NColeman
φ,K′/K (ξ′) = NColeman

σ̃φσ̃−1,σ̃(K′)/σ(K)
(σ̃∗(ξ′))

for every ξ′ ∈ κK′ [[X]]×.

Proof. (a) Recall that, there exists a unique multiplicative homomorphism
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Nh : O
K̃′

((X))× → O
K̃′

((X))×

satisfying

Nhg ◦ h =
∏

ω∈W1
h

g(X[ +
h

]ω)

for g ∈ O
K̃′

((X))×. Now, direct computation

σ̃(Nhg ◦ h) =
∏

ω∈W1
h

σ̃(g(X[ +
h

]ω))

=
∏

ω∈W1
h

σ̃(g(Fh(X, ω)))

=
∏

ω∈W1
h

σ̃g(F
σ̃h

(X, σ̃ω))

=
∏

δ∈W
σ̃h

σ̃g(X[ +
σ̃h

]δ)

= N
σ̃h

σ̃g ◦ σ̃h

yields σ̃(Nhg) ◦ σ̃h = N
σ̃h

σ̃g ◦ σ̃h for g ∈ O
K̃′

((X))× . The fact that σ̃g 7→ σ̃(Nhg) for

g ∈ O
K̃′

((X))× is an endomorphism on O ˜̃σ(K′)
((X))× now proves the commutativity of

the square.

(b) Directly follows from part (a) and by the definition of C(K̃′, h).

(c) The commutativity of the right-hand square follows from the commutativity of eq.
no. (4.1), and the commutativity of the left-hand square follows from the definition of

the isomorphism ∆ω : C(K̃′, h) ∼→ lim←−
i

(K′i)× for any choice of ω ∈ Ωh.

(d) let gξ′ ∈ C◦(K̃′, fφ′,K′) be the Coleman power series lifting ξ′ ∈ κK′ [[X]]×.. Clearly

NColeman
φ,K′/K (ξ′) = ∇πK ,fφ,K ◦∆−1{un}1≤n∈Z,
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where {un}1≤n∈Z ∈ lim←−
i

U(Ki) = U(K̃) and

un =
∏

0≤`≤f(K′/K)−1

φ`N
K̃′m/K̃n

(φK′gξ′(πK′m
))

for any choice of m� n. By part (c),

σ̃∗NColeman
φ,K′/K (ξ′) = ∇

σ̃(πK),f
σ̃φ̃σ−1 ,σK

(σ̃ ◦∆−1{un}1≤n∈Z)

= ∇
σ̃(πK),f

σ̃φ̃σ−1 ,σK

◦∆−1

σ̃ω
σ̃{un}1≤n∈Z

= NColeman
σ̃φσ̃−1,σ̃(K′)/σ(K)(σ̃

∗ξ′)

which completes the proof. 2

If K′ is a finite Galois extension over K and π′ a fixed prime element in K̃′ (such that
νK′(π′) = 1), then the group G(σ̃(K′)/σ(K), σ̃(π′)) is defined by
G(σ̃(K′)/σ(K), σ̃(π′))

=
{

(δ, c) : δ ∈ Gal(σ̃(K′)nr/σ(K)), c ∈ U( ˜σ̃(K′)) s.t
σ̃φK′ σ̃

−1(c)
c

=
δ(σ̃(π′))
σ̃(π′)

}
.

§5. Action of σ̃ ∈ Aut (Ksep) on (K, φ).

As in the previous section, let σ : K ↪→ Ksep be an embedding of K into Ksep, and
let σ̃ : Ksep → Ksep be a fixed extension of σ : K ↪→ Ksep to Ksep.

Lemma 5.1. Suppose that K′ is a finite extension over K (inside Ksep), and φ′ a
Lubin-Tate splitting for K′. Then,

(a) for (a′, ξ′) ∈ d(K′, φ′),

σ̃+
d (a′, ξ′) = (σ̃(a′), σ̃∗ξ′) ∈ d(σ̃(K′), σ̃φ′σ̃−1),

where

d(σ̃(K′), σ̃φ′σ̃−1)

=

(b, η) :
b = vπµ

σ̃(K′)
∈ σ̃ ̂(K′)× s.t v ∈ U(σ̃(K′)), π

σ̃(K′)
= σ̃(πK′), µ ∈ Ẑ

η = η(X) ∈ κ
σ̃(K′)

[[X]]× s.t (σ̃∗φ′d(σ̃∗)−1)η
η =

{v}̃
σf
φ′,K′

X

 ;
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(b) suppose further that K′ is a finite Galois extension over K, and π′ a fixed prime

element in K̃′ such that νK′(π′) = 1, where νK′ is the normalized valuation on K′.
Then, for (γ, b) ∈ G(K′/K, π′),

σ̃+
K′/K(γ, b) = (σ̃γσ̃−1, σ̃(b)) ∈ G(σ̃(K′)/σ(K), σ̃(π′)),

where
G(σ̃(K′)/σ(K), σ̃(π′))

=
{

(δ, c) : δ ∈ Gal(σ̃(K′)nr/σ(K)), c ∈ U( ˜σ̃(K′)) s.t
σ̃φK′ σ̃

−1(c)
c

=
δ(σ̃(π′))
σ̃(π′)

}
.

Proof. (a) Suppose that (a′, ξ′) ∈ d(K′, φ′) with a′ = u′πν
K′ ∈ K̂′× for some

u′ ∈ U(K′), ν ∈ Ẑ, and ξ′ ∈ κK′ [[X]]× such that φ′dξ′

ξ′ =
{u′}f

φ′,K′
X . Put v′ = σ̃(u′)

and π
σ̃(K′)

= σ̃(πK′). It suffices to prove that

(σ̃∗φ′d(σ̃∗)−1)σ̃∗ξ′

σ̃∗ξ′
=
{v′}f

σ̃φ′ σ̃−1 ,̃σ(K′)

X
.

In fact, by part (d) of Lemma 4.1, {v′}f
σ̃φ′ σ̃−1 ,̃σ(K′)

= σ̃∗{u′}fφ′,K′ and thereby

(σ̃∗φ′d(σ̃∗)−1)σ̃∗ξ′

σ̃∗ξ′
= σ̃∗

(
φ′dξ′

ξ′

)

= σ̃∗
({u′}fφ′,K′

X

)
=

σ̃∗{u′}fφ′,K′
X

=
{v′}f

σ̃φ′ σ̃−1 ,̃σ(K′)

X

proving that (σ̃(a′), σ̃∗(ξ′)) ∈ d(σ̃(K′), σ̃φ′σ̃−1).

(b) Note that σ̃γσ̃−1 ∈ Gal(σ̃(K′)/σ(K)), σ̃(b) ∈ U( ˜σ̃(K′)), and

σ̃φK′ σ̃
−1(σ̃(b))

σ̃(b)
= σ̃

(
φK′(b)

b

)
= σ̃

(
γ(π′)

π′

)
=

σ̃γσ̃−1(σ̃(π′))
σ̃(π′)

proving that (σ̃γσ̃−1, σ̃(b)) ∈ G(σ̃(K′)/σ(K), σ̃(π′)). 2

Following Lemma 5.1 (a), define the map
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σ̃+
d : d(K′, φ′)→ d(K′, σ̃φ′σ̃−1)

by

σ̃+
d : (a′, ξ′) 7→ (σ̃a′, σ̃∗ξ′)

for every (a′, ξ′) ∈ d(K′, φ′). Since

σ̃∗
∏

0≤i≤d2d1 −1

φ′d1i(ξ′) =
∏

0≤i≤ d2d1−1

(σ̃∗φ′d1i(σ̃∗)−1)(σ̃∗ξ′)

for positive integers d1, d2 with d1|d2, the square

d2 (K′, φ′)
σ̃+
d2

d2(σ̃K′, σ̃φ′σ̃−1)

τ(φ′)
d2
d1

τ(σ̃φ′σ̃−1)
d2
d1

d1 (K′, φ′)
σ̃+
d1

d1(σ̃K′, σ̃φ′σ̃−1)

is commutative. Thus, passing to the projective limits, there exists a map

lim←−
d

σ̃+
d = σ̃+ : lim←−

d

d(K′, φ′)︸ ︷︷ ︸
(K′,φ′)

→ lim←−
d

d(σ̃K′, σ̃φ′σ̃−1)

︸ ︷︷ ︸
(σ̃K′,σ̃φ′σ̃−1)

defined by

σ̃+ : (a′, {ξ′d}) 7→ (σ̃a′, {σ̃∗ξ′d})

for every (a′, {ξ′d}) ∈ (K′, φ′). Furthermore, note that,

Lemma 5.2.

σ̃+ : (K′, φ′)→ (σ̃K′, σ̃φ′σ̃−1)

is an isomorphism of topological groups.
Proof. In fact, it suffices to prove that,
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σ̃+
d : d(K′, φ′)→ d(σ̃K′, σ̃φ′σ̃−1)

is a topological isomorphism: For (a′, ξ′), (b′, ψ′) ∈ d(K′, φ′), with a′ = u′πν′

K′ , where

u′ ∈ U(K′) and ν ′ ∈ Ẑ,

σ̃+
d ((a′, ξ′)(b′, ψ′)) = σ̃+

d (a′b′, ξ′.φ′ν
′
(ψ′) ◦ {u′}fφ′,K′ )

= (σ̃(a′b′), σ̃∗(ξ′.φ′ν
′
(ψ′) ◦ {u′}fφ′,K′ ))

= (σ̃(a′)σ̃(b′), σ̃∗(ξ′).(σ̃∗φ′(σ̃∗)−1)ν′(σ̃∗(ψ′)) ◦ σ̃∗{u′}fφ′,K′ )

= (σ̃(a′)σ̃(b′), σ̃∗(ξ′).(σ̃∗φ′(σ̃∗)−1)ν′(σ̃∗(ψ′)) ◦ {σ̃(u′)}f
σ̃φ′ σ̃−1 ,̃σ(K′)

)

by Lemma 4.1, proving that σ̃+
d ((a′, ξ′)(b′, ψ′)) = σ̃+

d (a′, ξ′)σ̃+
d (b′, ψ′). Moreover, the

kernel and the image of the homomorphism σ̃+
d : d(K′, φ′)→ d(σ̃K′, σ̃φ′σ̃−1) are

kerσ̃+
d =< (1K′ , 1(X)) >,

and

σ̃+
d ( d(K′, φ′)) = d(σ̃K′, σ̃φ′σ̃−1)

with

σ̃+
d ( d(K′, φ′)(i,j)) = d(σ̃K′, σ̃φ′σ̃−1)(i,j),

since σ̃ : ̂(K′)× → ̂σ̃(K′)× and σ̃∗ : κK′ [[x]] → κ
σ̃(K′)

[[X]] are isomorphisms, proving

that σ̃+
d is a topological isomorphism. 2

Lemma 5.3. Suppose that K′ is a compatible extension over K with respect to the
Lubin-Tate splitting (K, φ). The following square is commutative

(σ̃(K′), σ̃φ′σ̃−1)
M
σ̃φ̃σ−1 ,̃σ(K′)/σ(K) (σ(K), σ̃φσ̃−1)

σ̃+ σ̃+

(K′, φ′)
Mφ,K′/K (K, φ).
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That is, the 2-abelian norm map

M
σ̃φσ̃−1,σ̃(K′)/σ(K)

: (σ̃(K′), σ̃φ′σ̃−1)→ (σ(K), σ̃φσ̃−1)

satisfies

M
σ̃φσ̃−1,σ̃(K′)/σ(K)

(σ̃+(α′)) = σ̃+Mφ,K′/K(α′)

for every α′ ∈ (K′, φ′).

Proof. Suppose that α′ = (a′, ξ′) ∈ (K′, φ′). Then, by the definition of the
metabelian norm map (look at eq. no. (2.3) and (2.4)),

Mφ,K′/K(α′) = (NK′/K(a′), NColeman
φ,K′/K (ξ′)).

Thus
σ̃+Mφ,K′/K(α′)

= (σ̃NK′/K(a′), σ̃∗NColeman
φ,K′/K (ξ′)) = (N

σ̃(K′)/σ(K)
(σ̃(a′)), σ̃∗NColeman

φ,K′/K (ξ′)).

Hence, it suffices to prove that σ̃∗NColeman
φ,K′/K (ξ′) = NColeman

σ̃φσ̃−1,σ̃(K′)/σ(K)
(σ̃∗(ξ′)) since, then

σ̃+Mφ,K′/K(α′)

= (N
σ̃(K′)/σ(K)

(σ̃(α′)), NColeman

σ̃φσ̃−1,σ̃(K′)/σ(K)
(σ̃∗(ξ′))) = M

σ̃φσ̃−1,σ̃(K′)/σ(K)
(σ̃+(α′)).

Now, the proof follows from part (d) of Lemma 4.3 2

If K′ is finite Galois over K, following Lemma 5.1 (b), define the map

σ̃+
K′/K : G(K′/K, π′)→ G(σ̃(K′)/σ(K), σ̃(π′))

by

σ̃+
K′/K : (γ, b) 7→ (σ̃γσ̃−1, σ̃(b))

for every (γ, b) ∈ G(K′/K, π′).
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Lemma 5.4.
σ̃+

K′/K : G(K′/K, π′)→ G(σ̃(K′)/σ(K), σ̃(π′))

is an isomorphism.

Proof. For (γ1, b1), (γ2, b2) ∈ G(K′/K, π′),

σ̃+
K′/K

((γ1 , b1)(γ2, b2)) = σ̃+
K′/K

(γ1γ2, b1γ1(b2))

= (σ̃γ1γ2σ̃
−1, σ̃(b1γ1(b2)))

= (σ̃γ1σ̃
−1σ̃γ2σ̃

−1, σ̃(b1)σ̃γ1σ̃
−1(σ̃(b2)))

= (σ̃γ1σ̃
−1, σ̃(b1))(σ̃γ2σ̃

−1, σ̃(b2))

= σ̃+
K′/K(γ1 , b1)σ̃+

K′/K(γ2, b2)

by the definition of the law of composition on G(K′/K, π′) (cf. eq. no. (3.1)). Moreover,

the kernel and the image of the homomorphism σ̃+
K′/K are

kerσ̃+
K′/K =< (idK′ , 1K′) >,

and

σ̃+
K′/K(G(K′/K, π′)) = G(σ̃(K′)/σ(K), σ̃(π′))

which completes the proof. 2

Suppose that K ⊆ K′ ⊆ K′′ is a tower of finite Galois extensions over K, and π′′ a

prime element in K̃′′ such that ÑK′′/K′ (π′′) = π′. Observe that, for b′′ ∈ U(K̃′′) and for

d = [K′′ ∩K′nr : K′],

σ̃
∏

0≤i�d

φi
K′(ÑK′′/K′ (b′′)) =

∏
0≤i�d

σ̃φi
K′ σ̃

−1(σ̃ÑK′′/K′(b′′))

=
∏

0≤i�d

(σ̃φK′ σ̃
−1)i(Ñ

σ̃(K′′)/σ̃(K′)
(σ̃(b′′)))

and d = [σ̃(K′′) ∩ σ̃(K′)nr : σ̃(K′)]. Thus, the following square
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G(K′′/K, π′′)
rK′′/K′

G(K′/K, π′)

σ̃+
K′′/K

σ̃+
K′/K

G(σ̃(K′′)/σ(K), σ̃(π′′))
r
σ̃(K′′)/̃σ(K′)

G(σ̃(K′)/σ(K), σ(π′))

is commutative.

§6. Statement of the Galois conjugation law.

However in [4], Koch and de Shalit did neither discuss the behaviour of the 2-abelian
local Artin map under Galois conjugation, nor the “transfer” law (Verlagerung) of the
2-abelian local Artin map. The aim of this work (and its continuation) is to complete
[4], and present the Galois conjugation law of the 2-abelian local Artin map (resp. the
“transfer” law of the 2-abelian local Artin map). We postpone the “transfer” law of the
2-abelian local Artin map to another discussion as explained before. The main theorem
of this paper is the following

Theorem A (Galois conjugation). Let σ : K ↪→ Ksep be any embedding of K into
Ksep, and σ̃ ∈ Aut(Ksep) be a fixed extension of the embedding σ : K ↪→ Ksep to an
automorphism of Ksep. Then,

(σ̃+(α), σ(K))
σ̃φσ̃−1 = σ̃|K(ab)2 (α, K)φσ̃−1|σ̃(K(ab)2 )

for every α ∈ (K, φ).

In particular, if σ ∈ Aut (K), then

(σ̃+(α), K)
σ̃φσ̃−1 = σ̃|K(ab)2 (α, K)φσ̃−1|K(ab)2

for every α ∈ (K, φ). Moreover, if σ = id K and σ̃φσ̃−1 = φ, then necessarily σ̃ = φn

for some n ∈ Z, since the normalizer of < φ > in Gal (Ksep/K) is < φ >. If this is the
case, then

((φn)+(α), K)φ = φn|K(ab)2 (α, K)φφ−n|K(ab)2

for every α ∈ (K, φ). These special cases of Theorem A will turn out to be useful in a
future investigation on non-abelian local class field theory.
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§7. Proof of Theorem A.

The following proposition will be fundamental in the proof of Theorem A.

Proposition 7.1. Suppose that L/K is a finite Galois extension, φL ∈ Gal(Lnr/L) the

Frobenius automorphism over L, and π a fixed prime element in L̃ such that νL(π) = 1,
where νL is the normalized valuation on L. Fix a norm-compatible squence of prime
elements

ω = {ωi ∈ Li : N
L1/L̃

(ω1) = π}

in the tower {Li}1≤i∈Z, where Li denotes the abelian extension over L which is class field

to U i(L) and Li its completion. Then,

(a) σ̃(Li) = σ̃(L)i for every 1 ≤ i ∈ Z, and

σ̃ω = {σ̃(ωi) ∈ ˜̃σ(L)i : Ñ
σ̃(L)1/σ̃(L)

(σ̃(ω1)) = σ̃(π)}

is a norm-compatible sequence of prime elements in ˜̃σ(L)i for 1 ≤ i ∈ Z.

(b) For the norm-compatible sequence σ̃ω, the isomorphism

ι
σ̃

: G(σ̃(L)/σ(K), σ̃(π); σ̃φLσ̃−1) ∼→ Gal(σ̃(L)ab/σ(K))

defined as in Proposition 3.1 satisfies

ι
σ̃

(σ̃+
L/K(γ, b)) = σ̃ι (γ, b)σ̃−1,

for every (γ, b) ∈ G(L/K, π; φL).

Proof. We leave the proof of part (a) to the reader, and we will directly prove part
(b). For (γ, b) ∈ G(L/K, π),

ι
σ̃

(σ̃+
L/K(γ, b)) = ι

σ̃
(σ̃γσ̃−1, σ̃(b))

is defined by the following two conditions:

ι
σ̃

(σ̃γσ̃−1, σ̃(b))|Lnr = σ̃γσ̃−1

and
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ι
σ̃

(σ̃γσ̃−1, σ̃(b))(σ̃ωi) = σ̃φ1−i
L σ̃−1[σ̃b]

σ̃h,(σ̃γσ̃−1)σ̃h
(σ̃ωi)

= σ̃φ1−i
L [b]h,γh(ωi)

= σ̃ι (γ, b)(ωi)

= σ̃ι (γ, b)σ̃−1(σ̃ωi)

for 1 ≤ i ∈ Z, proving the assertion. 2

Note that, for αd = (ad, ξd) ∈ d(K, φ), by part (a) of Lemma 5.1, σ̃+
d (αd) =

(σ(ad), σ̃∗(ξd)), and by Proposition 3.3

ι
σ̃φσ̃−1,d

(σ̃+
d (αd)) = ι

σ̃φσ̃−1,d
(σ(ad), σ̃∗(ξd))

= lim←−
i

ι
σ̃φσ̃−1,σ(K)iσ(K)nr

d
/σ(K)

(
(σ(ad)−1, σ(K))|σ(K)i,σ(K)nr ,

σ̃φ1−iσ̃−1∇−1
σ(πK ),f

σ̃φ̃σ−1 ,σK

(σ̃∗(ξd))(πσ(K)i)
)

= lim←−
i

ι
σ̃φσ̃−1,σ(K)iσ(K)nr

d
/σ(K)

(
σ̃(a−1

d , K)σ̃−1|
σ̃(KiKnr)

, σ̃(φ1−i∇−1
πK ,fφ,K

(ξd)(πKi)))
)

by the Galois conjugation law of abelian local class field theory, by part (c) of Lemma
4.3, and by parts (a) and (b) of Lemma 4.1. Thus,

ι
σ̃φσ̃−1,d

(σ̃+
d (αd)) =

lim←−
i

ι
σ̃φσ̃−1,σ(K)iσ(K)nr

d
/σ(K)

σ̃+
σ(K)iσ(K)nr

d
/σ(K)((a

−1
d , K)|KiKnr , φ1−i∇−1

πK,fφ,K
(ξd)(πKi))

by part (b) of Lemma 5.1. Now, applying Proposition 7.1 for each 1 ≤ i ∈ Z,

ι
σ̃φσ̃−1,d

(σ̃+
d (αd))

= lim←−
i

σ̃|KiKnr
d

ιφ,KiKnr
d

/K

(
(a−1

d , K)|Ki,Knr , φ1−i∇−1
πK ,fφ,K

(ξd)(πKi)
)

σ̃−1|σ̃(KiKnr
d

)

= σ̃|K∞Knr
d

ιφ,d(αd)σ̃−1|σ̃(K∞Knr
d

)
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for every 1 ≤ d ∈ Z. Now, passing to the projective limits (with respect to eq. no. (3.4)),

ι
σ̃φσ̃−1 (σ̃+(α)) = lim←−

d

ι
σ̃φσ̃−1,d

(σ̃+
d (αd))

= lim←−
d

σ̃|K∞Knr
d

ιφ,d(αd)σ̃−1|σ̃(K∞Knr
d

)

= σ̃|K(ab)2 ιφ(α)σ̃−1|σ̃(K(ab)2 )

for every α = {αd} ∈ (K, φ), which is the Galois conjugation law, since ιφ(α) = (α, K)φ

for every α ∈ (K, φ).
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