Representing Systems of Exponentials and Projection on Initial Data in the Cauchy Problem*

Yu. F. Korobeinik

$$
\begin{align*}
& \text { Abstract } \\
& \text { The Cauchy problem for the equation } \\
& \qquad M w \equiv \sum_{j=0}^{m} \sum_{s=0}^{l_{j}} a_{s, j} \frac{\partial^{s+j} w\left(z_{1}, z_{2}\right)}{\partial z_{1}^{s} \partial z_{2}^{j}}=0 \tag{1}\\
& \left.\frac{\partial^{n} w\left(z_{1}, z_{2}\right)}{\partial z_{2}^{n}}\right|_{z_{2}=0}=\varphi_{n}\left(z_{1}\right), n=0,1, \ldots, m-1 \tag{2}
\end{align*}
$$

is investigated under the condition $l_{j} \leq l_{m}, j=0,1, \ldots, m-1$. It is shown that the operator of projection of solution of (1) on its initial data (2) in a definite situation has a linear continuous right inverse which can be determined effectively with the help of representing systems of exponentials in the space of initial data.

Introduction

The Cauchy problem (C.p.) for the equation

$$
\begin{equation*}
M w \equiv \sum_{j=0}^{m} \sum_{s=0}^{l_{j}} a_{s, j} \frac{\partial^{s+j} w\left(z_{1}, z_{2}\right)}{\partial z_{1}^{s} \partial z_{2}^{j}}=0 \tag{3}
\end{equation*}
$$

with $a_{s, j} \in \mathcal{C}$ was investigated in a number of works and in particular in the paper [1]. We need in what follows the contents of $\oint \oint 1-4$ and $\oint 1$ of this paper. For reader's

2000 Mathematical Subject Classification. 35C10, 35E15.
*This work was supported by the Russian Fund of Fundamental Investigations (grant 99-01-01018).

KOROBEINIK

convenience let us remind some definitions and results from [1]. Let $F_{1}(l=1,2)$ be a dense in itself subset of C and let $C^{\infty}\left(F_{1}\right)$ be a space of functions $y\left(z_{1}\right): F_{1} \rightarrow \mathcal{C}$ infinitely differentiable at each point of F_{1}. The sequence $\left\{y_{n}\left(z_{1}\right)\right\}_{n=1}^{\infty}$ tends to $y\left(z_{1}\right)$ in $C^{\infty}\left(F_{1}\right)$ if $\forall s \geq 0 y_{n}^{(s)}\left(z_{1}\right) \rightarrow y^{(s)}\left(z_{1}\right)$ uniformly on each compact of F_{1}. Let $E_{1}\left(F_{1}\right)$ be a complete separable locally convex space (CSLCS) satisfying the following conditions:

1) $E_{1}\left(F_{1}\right) \hookrightarrow C^{\infty}\left(F_{1}\right)$;
2) the operator $D y \equiv y^{\prime}$ is continuous in $E_{1}\left(F_{1}\right)$;
3) there exists an absolutely representing system (ARS) of exponentials $E_{\Lambda, 1}=$ $\left\{\exp \lambda_{k} z_{1}\right\}_{k=1}^{\infty}$ such that for each $k \geq 1 E_{\Lambda, k}=\left\{\exp \lambda_{j} z_{1}\right\}_{j=k}^{\infty}$ is also an ARS in $E_{1}\left(F_{1}\right)$ and $\lim _{k \rightarrow \infty}\left|\lambda_{k}\right|=\infty$.

It is worth reminding that he system $\left\{x_{k}\right\}_{k=1}^{\infty}$ of elements x_{k} of a complete locally convex space H is said to be an ARS in H (see e.g. [1], p. 556) if each element x of H can be represented in the form of the series $x=\sum_{k=1}^{\infty} a_{k} x_{k}$, absolutely converging in H.

Suppose that a standard decomposition of the polynomial $Q(\lambda, \mu):=\sum_{j=0}^{m} \mu^{j}$ $\sum_{s=0}^{l_{j}} a_{s, j} \lambda^{s}$ contains no irreducible polynomials depending only on one variable λ or μ. Then in some neighborhood of infinity the equation $Q(\lambda, \mu)=0$ generates N different branches $\mu_{j}(\lambda)$ with multiplicity $p_{j}: \sum_{j=1}^{N} p_{j}=m$.

The symbol $\left(E_{1}\left(F_{1}\right) ; E_{2}\left(F_{2}\right)\right)$ denotes the set of functions $u\left(z_{1}, z_{2}\right)$ such that $\forall z_{l} \in$ $F_{l} u\left(z_{1}, z_{2}\right) \in E_{3-l}\left(F_{3-l}\right)$ as a function of $z_{3-1}, l=1,2$.

Assuming that $0 \in F_{2}$ throughout the paper we look for the function $w\left(z_{1}, z_{2}\right)$ from $\left(E_{1}\left(F_{1}\right) ; E_{2}\left(F_{2}\right)\right)$ satisfying the equation (1) and initial conditions with respect to z_{2} :

$$
\begin{equation*}
\left.\frac{\partial^{n} w\left(z_{1}, z_{2}\right)}{\partial z_{2}^{n}}\right|_{z_{2}=0}=\varphi_{n}\left(z_{1}\right), n=0,1, \ldots, m-1 \tag{4}
\end{equation*}
$$

where $\varphi_{n} \in E_{1}\left(F_{1}\right), 0 \leq n \leq m-1$. To do this we expand at first the functions φ_{n} into series with respect to ARS $E_{\Lambda, 1}$

$$
\begin{equation*}
\varphi_{n}\left(z_{1}\right)=\sum_{k=1}^{\infty} b_{k, n} \exp \lambda_{k} z_{1}, n=0,1, \ldots, m-1 \tag{5}
\end{equation*}
$$

KOROBEINIK

All the series (3) converge absolutely in $E_{1}\left(F_{1}\right)$. If $k \geq 1$ is fixed we always can find numbers $a_{j, s}^{(k)}$ from the system

$$
\begin{equation*}
b_{k, n}=\sum_{j=1}^{N} \sum_{s=0}^{q_{j}(n)} a_{j, s}^{(k)} s!C_{n}^{s} \mu_{j, k}^{n-s}, n=0,1, \ldots, m-1 \tag{6}
\end{equation*}
$$

where $\mu_{j, k}=\mu_{j}\left(\lambda_{k}\right), q_{j}(n)=\min \left(n, p_{j}-1\right)$. After that we form the series

$$
\begin{equation*}
w_{0}\left(z_{1}, z_{2}\right)=\sum_{j=1}^{N} \sum_{s=0}^{p_{j}-1} \sum_{k=1}^{\infty} a_{j, s}^{(k)}\left(z_{2}\right)^{s} \exp \left(\lambda_{k} z_{1}+\mu_{j, k} z_{2}\right) \tag{7}
\end{equation*}
$$

It was proved in [1] under definite suppositions that w_{0} belongs to $\left(E_{1}\left(F_{1}\right) ; E_{2}\left(F_{2}\right)\right)$ and satisfies (1), (2). We cite one result from [1] in this direction. Suppose that

$$
\begin{equation*}
l_{j} \leq l_{m} \text { if } j \leq m-1 \text { and if } a_{l_{j}, j} \neq 0 \tag{8}
\end{equation*}
$$

Then $[1] \exists R_{0}>0: v:=\sup \left\{\left|\mu_{j}(\lambda)\right|:|\lambda| \geq R_{0}, 1 \leq j \leq N\right\}<\infty$.
We put $F_{2}=\mathcal{C}, \beta:=\max \left\{\left(p_{j}-1\right): 1 \leq j \leq N\right\}$ and introduce the Banach space $E_{2}(\mathcal{C})=E(v, \beta)$ of entire functions $y\left(z_{2}\right)$ such that $\|y\|_{2}:=\sup _{z_{2} \in C} \frac{\left|y\left(z_{2}\right)\right| \exp \left(-v\left|z_{2}\right|\right)}{\left|z_{2}\right|^{\beta}+1}<\infty$.

Let $P=\{p\}$ be the set of seminorms defining the topology in CSLCS $E_{1}\left(F_{1}\right)$ with properties 1)-3). Denote by $\left\{E_{1}\left(F_{1}\right) ; E(v, \beta)\right\}$ the subspace of $\left(E_{1}\left(F_{1}\right) ; E(v, \beta)\right)$ containing all functions $y\left(z_{1}, z_{2}\right)$ for which $\forall p \in P$

$$
(p) y\left(z_{1}, z_{2}\right):=\sup _{z_{2} \in C} \frac{p\left(y\left(z_{1}, z_{2}\right)\right) \exp \left(-v\left|z_{2}\right|\right)}{\left|z_{2}\right|^{\beta}+1}<\infty
$$

$\left\{E_{1}\left(F_{1}\right) ; E(v, \beta)\right\}$ is a CSLCS with topology defined by the set $(P):=\{(p)\}_{p \in P}$ of seminorms (p). According to theorem 1 ($[1]$, p. 559-560) the series (5) described above converges absolutely in $\left\{E_{1}\left(F_{1}\right) ; E(v, \beta)\right\}$ and its sum $w_{0}\left(z_{1}, z_{2}\right)$ is a solution of the Cauchy problem (1)(2) for arbitrary chosen φ_{n} from $E_{1}\left(F_{1}\right)$. Let us introduce the CSLCS $\left(E_{1}\left(F_{1}\right)\right)^{m}$ with the standard set of seminorms $P_{(m)}=\left\{p_{m}(\varphi)=\sum_{k=0}^{m-1} p\left(\varphi_{k}\right), p \in\right.$ $\left.P, \varphi=\left(\varphi_{0}, \ldots, \varphi_{m-1}\right)\right\}$ and the operator T_{M} of projection to initial data: for each $w\left(z_{1}, z_{2}\right) \in A:=M^{-1}(0) \cap\left\{E_{1}\left(F_{1}\right) ; E(v, \beta)\right\}$

$$
T_{M} w=\left(w\left(z_{1}, 0\right), \ldots,\left.\frac{\partial^{m-1} w\left(z_{1}, z_{2}\right)}{\partial z_{2}^{m-1}}\right|_{z_{2}=0}\right)
$$

KOROBEINIK

It is easy to see that T_{M} is a continuous operator from A (with the topology induced from $\left\{E_{1}\left(F_{1}\right) ; E(v, \beta)\right\}$ into $\left.\left(E_{1}\left(F_{1}\right)\right)^{m}\right)$. Under the relation (6) and conditions 1)-3) T_{M} is an epimorphism of A onto $\left(E_{1}\left(F_{1}\right)\right)^{m}$. We shall indicate further the conditions under which the operator T_{M} has a linear continuous right inverse (LCRI). In order to formulate the main result we need to introduce the CSLCS

$$
A_{2}^{k}=A_{2}\left(E_{\Lambda, k}, E_{1}\left(F_{1}\right)\right)=\left\{c=\left(c_{s}\right)_{s=k}^{\infty}: q_{p}^{k}(c):=\sum_{s=k}^{\infty}\left|c_{s}\right| p\left(\exp \lambda_{s} z_{1}\right)<\infty, \forall p \in P\right\}
$$

with the set of seminorms $Q_{P}^{k}=\left\{q_{p}^{k}\right\}_{p \in P}$ and the representation operator (RO) L_{k} :

$$
\forall c=\left(c_{s}\right)_{s=k}^{\infty} \in A_{2}^{k} \rightarrow L_{k} c=\sum_{s=k}^{\infty} c_{s} \exp \lambda_{s} z_{1} \in E_{1}\left(F_{1}\right)
$$

It is evident that L_{k} acts continuously from A_{2}^{k} into $E_{1}\left(F_{1}\right)$.
Theorem 1. Let the relations (6) be valid and let the CSLCS $E_{1}\left(F_{1}\right)$ satisfy the conditions 1)-3). Suppose that $\forall k \geq 1$ the operator L_{k} has a LCRI B_{k}. Then the projection operator T_{M} has a LCRI which can be determined effectively.
Proof. Let us fix $R_{0}<\infty$ so that the above described branches $\mu_{j}(\lambda)$ are determined in the set $|\lambda| \geq R_{0}$. Let us also fix $k \geq 1$ so that $\left|\lambda_{j}\right| \geq R_{0}, \forall j \geq k$. If $\varphi=\left(\varphi_{n}\right)_{n=0}^{m-1} \in$ $\left(E_{1}\left(F_{1}\right)\right)^{m}$ then $\forall z_{1} \in F_{1} \varphi_{n}\left(z_{1}\right)=\sum_{s=k}^{\infty}\left(B_{k} \varphi_{n}\right)_{s} \exp \lambda_{s} z_{1}, n=0,1, \ldots, m-1$. Moreover $\forall p_{1} \in P \exists d<\infty \exists p_{0} \in P$

$$
\begin{equation*}
\forall y \in E_{1}\left(F_{1}\right) \sum_{s=k}^{\infty}\left|\left(B_{k} y\right)_{s}\right| p_{1}\left(\exp \lambda_{s} z_{1}\right) \leq d p_{0}(y) . \tag{9}
\end{equation*}
$$

Following [1], $\oint 3$ and $\oint 11$ we form the series (5)

$$
w_{k}\left(z_{1}, z_{2}\right)=\sum_{j=1}^{N} \sum_{s=0}^{p_{j}-1} \sum_{r=k}^{\infty} a_{j, s}^{(r)}\left(z_{2}\right)^{s} \exp \left(\lambda_{r} z_{1}+\mu_{j, r} z_{2}\right)=\sum_{r=k}^{\infty} u_{r}\left(z_{1}, z_{2}\right)
$$

where $\mu_{j, r}=\mu_{j}\left(\lambda_{r}\right)$ and the coefficients $a_{j, s}^{(r)}(r \geq k)$ are determined from the system $\left(B_{k} \varphi_{n}\right)_{r}=\sum_{j=l}^{N} \sum_{s=0}^{q_{j}(n)} a_{j, s}^{(r)} s!C_{n}^{s} \mu_{j, r}^{n-s}, n=0,1, \ldots, m-1$. According to inequality (9) from [1]

KOROBEINIK

$$
\exists D<\infty \exists H<\infty: \forall r \geq k \forall j \leq N \forall s \leq q_{j}(n)\left|a_{j, s}^{(r)}\right| \leq D\left(\left.\lambda_{r}\right|^{H} \sum_{n=0}^{m-1}\left|\left(B_{k} \varphi_{n}\right)_{r}\right|\right.
$$

The constants D, H do not depend on j, s and r (when k is fixed). We have for all $p \in P$ and $r \geq k$

$$
\begin{aligned}
& (p) u_{r} \leq \sup _{z_{2} \in C} \sum_{j=1}^{N} \sum_{s=0}^{p_{j}-1}\left|a_{j, s}^{(r)}\right| \frac{\exp \left(-v\left|z_{2}\right|\right)}{\left|z_{2}\right|^{\beta}+1}\left|z_{2}\right|^{s} p\left(\exp \lambda_{r} z_{1}\right) \exp \left|\mu_{j, r} \| z_{2}\right| \\
& \quad \leq D\left|\lambda_{r}\right|^{H} \sum_{n=0}^{m-1}\left|\left(B_{k} \varphi_{n}\right)\right| p\left(\exp \lambda_{r} z_{1}\right) \leq D_{2} \sum_{n=0}^{m-1}\left|\left(B_{k} \varphi_{n}\right)_{r}\right| p_{1}\left(\exp \lambda_{r} z_{1}\right) .
\end{aligned}
$$

Taking into account (7) we find that $\forall p \in P \exists p_{0} \in P$:

$$
\sum_{r=k}^{\infty}(p) u_{k} \leq D_{2} d \sum_{n=0}^{m-1} p_{0}\left(\varphi_{n}\right)=D_{3}\left(p_{0}\right)_{m}(\varphi)
$$

Hence $w_{k}\left(z_{1}, z_{2}\right)=Q_{k} \varphi$ where Q_{k} is a linear continuous operator from $\left(E_{1}\left(F_{1}\right)\right)^{m}$ into $\left\{E_{1}\left(F_{1}\right) ; E(v, \beta)\right\}$. Besides, $w_{k} \in M^{-1}(0) \cap\left\{E_{1}\left(F_{1}\right), E(v, \beta)\right\}$ and $T_{m} w_{k}=\varphi$, i.e. $T_{M} Q_{k} \varphi, \forall \varphi \in\left(E_{1}\left(F_{1}\right)\right)^{m}$.

In conclusion we mention some examples of the spaces $E_{1}\left(F_{1}\right)$ of initial data and some classes of equations (1) satisfying the suppositions of theorem I.
I. 1. Let G be a bounded convex domain in C and let $H(G)$ be the Frechet space of all functions analytic in G with the standard open-compact topology. It is proved in [2] that if the function $\Psi(z)$ maps conformly the disc $|z|<1$ onto G and satisfies the condition $\sup \left\{\left|\Psi^{\prime}(z)\right|:|z|<1\right\}<\infty$, then there exists an ARS $\left(\exp \lambda_{k} z\right)_{k=1}^{\infty}$ in $H(G)$ such that $\lim _{k \rightarrow \infty} \sup \frac{k}{\left|\lambda_{k}\right|}<\infty, \forall k \geq 1\left(\exp \lambda_{r} z\right)_{r=k}^{\infty}$ is an ARS in $H(G)$ and the corresponding RO L_{k} has a LCRO B_{k}. So we can put in theorem I $F_{1}=G, E_{1}\left(F_{1}\right)=H(G)$.

KOROBEINIK

2. For any $R \in(0,+\infty)$ denote by $C^{\infty}[-R, R]$ the Frechet space of all complexvalued functions infinitely differentiable on $[-R, R]$, with the set of norms $\|y\|_{n}=\max \{\mid$ $y(j)(x) \mid: x \in[-R, R], 0 \leq j \leq n\}, n=0,1, \ldots$ According to [3], $\oint 5$, for each $\theta<1$ and $k \geq 0 E_{\theta, R}^{k}:=\left\{\exp \frac{i j \theta \pi x}{R}\right\}_{|j| \geq k}$ is an ARS in $C^{\infty}[-R, R]$ and the RO L_{k} has a LCRI. So theorem I is valid if $F_{1}=[-R, R], 0<R<\infty, E_{1}\left(F_{1}\right)=C^{\infty}[-R, R]$.
3. Assume that $M_{0}=1, M_{l} \uparrow+\infty, l \geq 1, R \in(0,+\infty)$. Denote by $E_{\left(M_{l}\right.}[-R, R]$ the Beurling space of all functions $y(x)$ from $C^{\infty}[-R, R]$ such that

$$
\forall h>0|y|_{R, h}:=\sup \left\{\frac{\left|y^{(l)}(x)\right|}{h^{l} M_{l}}: l \geq 0, x \in[-R, R]\right\}<\infty .
$$

The topology in $E_{\left(M_{l}\right)}[-R, R]$ is defined by the set of norms $|y|_{R, 1 / n}, n=1,2, \ldots$ Suppose that $\left(M_{l}\right)$ satisfies the following conditions:

$$
\begin{align*}
& \forall \varepsilon<0 \exists \delta>0 \exists d<\infty: \forall l \geq 0 \sum_{j=0}^{l} M_{j} \delta^{j} C_{l}^{j} \leq d \varepsilon^{l} M_{l} \tag{10}\\
& \sup \frac{m_{p}}{p} \sum_{j \geq p} \frac{1}{m_{j}}<\infty \tag{11}\\
& \sup \left(m_{p}\right)^{1 / p}<\infty \tag{12}
\end{align*}
$$

where $m_{0}=1, M_{p}=m_{p} M_{p-1}, p \geq 1$. It is proved in [3] ($\oint 5$, theorem 5.3) with the help of the results of [4] that for each $\theta<1$ and $k \geq 0 E_{\theta, R}^{k}$ is an ARS in $E_{\left(M_{l}\right)}[-R, R]$ and the RO L_{k} has a LCRI B_{k}. So under conditions (8)-(10) theorem I works in the case $F_{1}=[-R, R], E_{1}\left(F_{1}\right)=E_{\left(M_{l}\right)}[-R, R]$. In particular, we can put $M_{l}=(l!)^{\alpha}, \alpha>1, l \geq 1$. In this case $E_{1}\left(F_{1}\right)$ coincides with the well-known Gevrey class of minimal type:

$$
E_{1}\left(F_{1}\right)=\left\{y(x) \in C^{\infty}[-R, R]: \forall h>0 \sup \left[\left|y^{(l)}(x)\right|(l!)^{-\alpha} h^{-l}: l \geq 1, x \in[-R, R]\right]<\infty\right\}
$$

4. As the last example we regard the Roumieu space

$$
E_{\left\{M_{l}\right\}}[-R, R]=\left\{y \in C^{\infty}[-R, R]: \exists h>0:|y|_{R, h}<\infty\right\} .
$$

KOROBEINIK

If $M_{0}=1, M_{l} \uparrow+\infty$, if the conditions (8), (10) are fulfilled and if

$$
\begin{equation*}
\exists l>1 \lim _{p \rightarrow \infty} \frac{m_{p}}{p} \sum_{j=l p}^{\infty} \frac{1}{m_{j}}=0 \tag{13}
\end{equation*}
$$

then according to $\oint 5$ of [3] for each $\theta<1$ and $k \geq 0 E_{\theta, R}^{k}$ is an ARS in $E_{\left\{M_{l}\right\}}[-R, R]$. Moreover under the conditions (8), (10), (11) the operator L_{k} has a LCRI, and theorem I is again applicable. In particular, we can take for $E_{1}\left(F_{1}\right)$ the Gevrey space of maximal type:
$E_{1}\left(F_{1}\right)=\left\{y(x) \in C^{\infty}[-R, R]: \exists h>0 \sup \left[\left|y^{(l)}(x)\right|(l!)^{-\alpha} h^{-1}: l \geq 1, x \in[-R, R]\right]<\infty\right\}$.
II. The characteristical polynomial of the equation (1) can be written in the following form

$$
Q(\lambda, \mu)=\sum_{j=0}^{m} \sum_{s=0}^{l_{j}} a_{s, j} \mu^{j} \lambda^{s}=\sum_{k=0}^{m} \mu^{k} R_{k}(\lambda)=T_{\lambda}(\mu) .
$$

It is well known that discriminant of $T_{\lambda}(\mu)$ (as a polynomial with respect to μ) is a polynomial $v(\lambda)$ in λ. Suppose that $v(\lambda)$ is not identically zero. Then $\exists R_{1} \in(0,+\infty)$: $v(\lambda) \neq 0$, if $|\lambda| \geq R_{1}$. If the space $E_{1}\left(F_{1}\right)$ satisfies the conditions 1)- 3), then (see $\oint 12$ of [1]) the representation (5) of the solution w_{0} can be simplified:

$$
w_{0}\left(z_{1}, z_{2}\right)=\sum_{j=1}^{m} \sum_{k=1}^{\infty} a_{j}^{(k)} \exp \left(\lambda_{k} z_{1}+\mu_{j}\left(\lambda_{k}\right) z_{2}\right)
$$

where each branch $\mu_{j}(\lambda)$ is a simple one (i.e. $p_{j}=1, j=1,2, \ldots, m$). If the condition (6) holds, then Theorem 1 is applicable, and the magnitude β is equal to zero : $E(v, \beta)=$ $E(v, 0)$. In particular, the polynomial $v(\lambda)$ is not identically zero, if $Q(\lambda, \mu)$ is an irreducible polynomial.

Let us consider as an example the Cauchy problem for the Sobolev-Galpern equation

$$
\begin{equation*}
\sum_{k=0}^{l_{l}} a_{k} \frac{\partial^{k+1} w\left(z_{1}, z_{2}\right)}{\partial z_{1}^{k} \partial z_{2}}=\sum_{s=0}^{l_{0}} b_{s} \frac{\partial^{s} w\left(z_{1}, z_{2}\right)}{\partial z_{1}^{s}} ; w\left(z_{1}, 0\right)=f\left(z_{1}\right) \tag{14}
\end{equation*}
$$

KOROBEINIK

We have for this equation $m=1$,

$$
Q(\lambda, \mu)=\mu \sum_{k=0}^{l_{1}} a_{k} \lambda^{k}+\sum_{s=0}^{l_{0}} b_{s} \lambda^{s}=\mu P_{1}(\lambda)+P_{2}(\lambda)
$$

If $l_{0} \leq l_{1}$, the conditions 1)-3) for $E_{1}\left(F_{1}\right)$ are satisfied and if $\forall k \geq 1$ the operator L_{k} has a LCRJ B_{k}, then the projection operator T_{μ} has a LCRJ Q_{k}. The operator Q_{k} can be expressed in the following form:

$$
w_{k}\left(z_{1}, z_{2}\right)=\sum_{r=k}^{\infty} a_{1}^{(r)} \exp \left(\lambda_{r} z_{1}+\mu_{1}\left(\lambda_{r}\right) z_{2}\right)
$$

Here $\mu_{1}\left(\lambda_{r}\right)=-\frac{P_{2}\left(\lambda_{r}\right)}{P_{1}\left(\lambda_{r}\right)}, a_{1}^{(r)}=\left(B_{k} f\right)_{r} ; \beta=0 ; v=\varepsilon+\frac{\left|b_{l_{0}}\right|}{\left|a_{l_{0}}\right|}$ for the case $l_{0}=l_{1}$, and $v=\varepsilon$ if $l_{0}<l_{1}$. The positive number ε can be fixed arbitrarily small.

References

[1] Korobeinik, Yu. F.: Representative systems of exponents and the Cauchy problem for partial differential equations with constant coefficients, Izv. Acad. Nauk SSSR Ser. Mat. 61. 91-132(1996); English transl. in Izvestija: Mathematics, 61. p. 553-592 (1996).
[2] Korobeinik, Yu. F., Melihov, S. N.: A linear continuous right inverse for the representation operator, and applications to convolution operators, Sibirsk. Mat. Zh. 34. 70-84(1993); English transl. in Siberian Math. J. 34. 59-72(1993).
[3] Korobeinik, Yu. F.: Effectively representing θ-trigonometrical systems and their applications. I. Dep. in VINITI 29.06.1999, No:2132-B89. Rostov-on-Don, 35 pp.
[4] Petzsche, H. J.: On E. Borel's theorem. Math. Ann. 282. 299-313 (1988).

Yu. F. KOROBEINIK
Received 14.12.1999

Rostov State University,

Zorge St. 5, Rostov on Don, 344090-RUSSIA
Email: kor@math.rsu.ru

