Zeros of $\zeta^{\prime \prime}(s) \& \zeta^{\prime \prime \prime}(s)$ in $\sigma<\frac{1}{2}$

Cem Yalçın Yoldırım

Abstract

There is only one pair of non-real zeros of $\zeta^{\prime \prime}(s)$, and of $\zeta^{\prime \prime \prime}(s)$, in the left halfplane. The Riemann Hypothesis implies that $\zeta^{\prime \prime}(s)$ and $\zeta^{\prime \prime \prime}(s)$ have no zeros in the strip $0 \leq \Re s<\frac{1}{2}$. 19991 Mathematics Subject Classification. Primary 11M26.

1. Introduction

The Riemann zeta-function defined as

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad(\sigma>1) \tag{1}
\end{equation*}
$$

(as usual we write $s=\sigma+i t ; \sigma, t \in \mathbb{R}$), can be analytically continued to the whole complex plane, with a simple pole at $s=1$, and satisfies the functional equation

$$
\begin{equation*}
\zeta(1-s)=2(2 \pi)^{-s}\left(\cos \frac{\pi s}{2}\right) \Gamma(s) \zeta(s) \tag{2}
\end{equation*}
$$

From (2) it is seen that $\zeta(-2 n)=0, \forall n \in \mathbb{Z}^{+}$(trivial zeros of ζ). From Hadamard's theory of entire functions it follows that $\zeta(s)$ also has infinitely many (nontrivial) zeros in the strip $0<\sigma<1$. The nontrivial zeros are situated symmetrically with respect to the real axis and also with respect to the line $\sigma=\frac{1}{2}$. Applying the argument principle, von Mangoldt proved that the number of nontrivial zeros $\rho=\beta+i \gamma$ with $0<\gamma \leq T$ is $\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+O(\log T)$, as $T \rightarrow \infty$. Riemann's yet unproved assertion that all of these zeros lie on the critical line $\sigma=\frac{1}{2}$ is known as the Riemann Hypothesis (RH). For the fundamentals of the theory of $\zeta(s)$ we refer the reader to Davenport's book [3].

YILDIRIM

The origin of our topic is Speiser's proof [6] that the Riemann Hypothesis is equivalent to $\zeta^{\prime}(s)$ having no zeros in $0<\sigma<\frac{1}{2}$. In a comprehensive article on the zeros of derivatives of $\zeta(s)$, Levinson and Montgomery [4] gave a different proof of this and that $\zeta^{\prime}(s)$ has only real zeros in the closed left half-plane, vanishing exactly once in the interval $(-2 n-2,-2 n)$ for $n \geq 1$ (these are the zeros between the trivial zeros of ζ guaranteed by Rolle's theorem). Moreover they showed that for any $k \geq 1, \zeta^{(k)}(s)$ has at most a finite number of nonreal zeros in $\sigma<\frac{1}{2}$ as a consequence of RH. Spira [7] calculated the zeros of ζ^{\prime} and $\zeta^{\prime \prime}$ in the rectangle $-1 \leq \sigma \leq 5,|t| \leq 100$, and found out that $\zeta^{\prime \prime}(s) \neq 0$ in $0 \leq \sigma \leq \frac{1}{2},|t| \leq 100$. However, Spira also found that $\zeta^{\prime \prime}$ has zeros at $-0.355084 . . \pm i \cdot 3.59083 .$. (to be denoted as b_{0} and \bar{b}_{0} below).

Berndt [2] showed that the number of nonreal zeros of $\zeta^{(k)}(s)$ with imaginary parts in $[0, T]$ is $\frac{T}{2 \pi} \log T-\frac{1+\log 4 \pi}{2 \pi} T+O(\log T)$. For each $k \geq 0$, the nonreal zeros of $\zeta^{(k)}(s)$ all lie in a strip $\alpha_{k}<\sigma<\sigma_{k}$. The existence of α_{k} was deduced by Spira [8]. That $\zeta(s) \neq 0$ in the region $\sigma \geq 1-\frac{c}{\log T}, t \geq 2$ (in fact the very first zero of $\zeta(s)$ is at $\frac{1}{2}+i \cdot 14.134 .$. , and the first $1.5 \cdot 10^{9}$ zeros of $\zeta(s)$ have all been verified in [5] to lie on the critical line) implies the prime number theorem. Titchmarsh [9, Theorem 11.5c] proved $\sigma_{1}<3$. Later Spira [7] calculated that $\sigma_{2}=4.98 . ., \sigma_{3}=6.01, \ldots, \sigma_{10}=13.68$, and in general $\sigma_{k}=\frac{7}{4}+2$ for $k \geq 3$ is acceptable. Verma and Kaur [10] have improved the last estimate to $\sigma_{k}=a k+2$ for $k \geq 3$ with $a=1.13 \ldots$

In this paper, we shall be concerned with the zeros of $\zeta^{\prime \prime}(s)$ and $\zeta^{\prime \prime \prime}(s)$ lying to the left of the critical line. Our results for the left half-plane are unconditional (i.e. without assuming RH), since here $\zeta(s)$ can be expressed via the functional equation in terms of its values in $\sigma>1$, but to get results for the strip $0<\sigma<\frac{1}{2}$ we assume RH. Most of our results appeared in [11] which contained only the proof of Theorem 1 fully.

In our calculations we will repeatedly use the well-known formula

$$
\sum_{n=1}^{\infty}\left(\sum_{k=1}^{m} \frac{a_{k}}{n+\alpha_{k}}\right)=-\sum_{k=1}^{m} a_{k} \psi\left(1+\alpha_{k}\right), \quad\left(a_{k}, \alpha_{k} \in \mathbb{C}\right)
$$

where $\psi=\frac{\Gamma^{\prime}}{\Gamma}$ is the digamma function.

YILDIRIM

2. $\zeta^{\prime \prime}$ to the left of the critical line

Theorem 1. The Riemann Hypothesis implies that $\zeta^{\prime \prime}(s)$ has no zeros in the strip $0 \leq \sigma<\frac{1}{2}$.
Proof. Let us denote the real zeros of ζ^{\prime} as $-a_{n}, n \geq 1$, where $a_{n} \in(2 n, 2 n+2)$. A nonreal zero of ζ^{\prime} will be represented as $\rho_{1}=\beta_{1}+i \gamma_{1}$. By what was recounted above, $\frac{1}{2} \leq \beta_{1}<3$ for all ρ_{1} (the lower-bound is upon RH). Since $\Re \frac{\zeta^{\prime}}{\zeta}(s)<0$ on $\sigma=\frac{1}{2}$ except when $\zeta(s)=0$, one has $\beta_{1}=\frac{1}{2}$ only at a possible multiple zero of $\zeta(s)$ (see [4]). We start with the partial fraction representation

$$
\begin{equation*}
\frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(s)=\frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(0)-2-\frac{2}{s-1}+\sum_{\rho_{1}}\left(\frac{1}{s-\rho_{1}}+\frac{1}{\rho_{1}}\right)+\sum_{n}\left(\frac{1}{s+a_{n}}-\frac{1}{a_{n}}\right) \tag{3}
\end{equation*}
$$

which follows from Hadamard factorization. Taking real parts in (3), we have

$$
\begin{align*}
\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(s)= & \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(0)-2+\frac{2(1-\sigma)}{|s-1|^{2}}+\sum_{\rho_{1}} \Re \frac{1}{s-\rho_{1}}+\sum_{\rho_{1}} \frac{1}{\rho_{1}} \\
& +\sum_{n}\left(\frac{\sigma+a_{n}}{\left|s+a_{n}\right|^{2}}-\frac{1}{a_{n}}\right) \tag{4}
\end{align*}
$$

since $\zeta^{\prime}\left(\overline{\rho_{1}}\right)=0$ as well. We should first like to put a bound on $\sum \frac{1}{\rho_{1}}$ (in this series it is understood that the terms from ρ_{1} and $\overline{\rho_{1}}$ are grouped together). At $s=6$, Eq. (4) reads

$$
\begin{align*}
\frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(6)= & \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(0)-\frac{12}{5}+\sum_{\rho_{1}} \frac{6-\beta_{1}}{\left(6-\beta_{1}\right)^{2}+\gamma_{1}^{2}}+\sum_{\rho_{1}} \frac{\beta_{1}}{\beta_{1}^{2}+\gamma_{1}^{2}} \\
& -\sum_{n} \frac{6}{a_{n}\left(a_{n}+6\right)} \tag{5}
\end{align*}
$$

It is known that $\frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(0)=2.183 . .($ see $[1])$, and $\frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(6)=-0.773 \ldots$ Also

$$
\sum_{n} \frac{6}{a_{n}\left(a_{n}+6\right)}<\sum_{n=1}^{\infty} \frac{6}{2 n(2 n+6)}=\frac{11}{12}
$$

YILDIRIM

Since the least $\left|\gamma_{1}\right|$ is $23.3 .$. (see [7]), for all ρ_{1} we have

$$
\frac{6-\beta_{1}}{\left(6-\beta_{1}\right)^{2}+\gamma_{1}^{2}}>\frac{\beta_{1}}{\beta_{1}^{2}+\gamma_{1}^{2}}
$$

Plugging all these in (5), it follows that

$$
\begin{equation*}
\sum_{\rho_{1}} \frac{1}{\rho_{1}}<0.185 \tag{6}
\end{equation*}
$$

(from Spira's list of ρ_{1} with $\left|\gamma_{1}\right|<100$ one calculates $\sum \frac{1}{\rho_{1}}>0.0249$).
We now examine the value of $\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(s)$ in the region $0 \leq \sigma \leq \frac{1}{2},|t| \geq 100$. If ever a zero of ζ^{\prime} exists on the critical line, this region is to be modified by deleting an arbitrarily small neighbourhood around such a zero. For any s in our region, $\frac{2(1-\sigma)}{|s-1|^{2}}<\frac{1}{5000}$ and $\Re \frac{1}{s-\rho_{1}}<0$ for all ρ_{1} (on RH), and also

$$
\begin{align*}
\sum_{n}\left(\frac{\sigma+a_{n}}{\left|s+a_{n}\right|^{2}}-\frac{1}{a_{n}}\right) & \leq \sum_{n} \frac{-10^{4}}{a_{n}\left(\left(a_{n}+\frac{1}{2}\right)^{2}+10^{4}\right)} \\
& <\sum_{n=2}^{\infty} \frac{-10^{4}}{2 n\left(\left(2 n+\frac{1}{2}\right)^{2}+10^{4}\right)} \\
& <\frac{1}{2}\left(1+\psi(1)-\Re \psi\left(\frac{5}{4}+50 i\right)\right)+\frac{\Im \psi\left(\frac{5}{4}+50 i\right)}{400} \\
& <-1.74 . \tag{7}
\end{align*}
$$

Together with (6), these estimates used in (4) give $\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(s)<-1.37$ at all points of our region.

Notice that $\zeta^{\prime \prime}(s)$ can be zero on the critical line only at a multiple zero (of at least third order) of $\zeta(s)$ if ever this exists.

Theorem 2. (unconditional) There is only one pair of nonreal zeros of $\zeta^{\prime \prime}(s)$ in the left half-plane.

YILDIRIM

To prove Theorem 2 we shall consider the change in the argument of $\frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(s)$ as s goes around the rectangle R with corners at $\pm i N, \sigma_{N} \pm i N$, where $\sigma_{N}=-2 N-2$ with an arbitrarily large $N \in \mathbb{N}$. The reason behind this choice of σ_{N} will be clear after the following lemma.

Lemma 1. $\quad-a_{n}=-2 n-2+\frac{1}{\log n}+O\left(\frac{1}{\log ^{2} n}\right)$, as $n \rightarrow \infty$.
Proof. Differentiating the functional equation (2) we have

$$
\begin{equation*}
\zeta^{\prime}(1-s)=\zeta(1-s)\left[\log 2 \pi+\frac{\pi}{2} \tan \frac{\pi s}{2}-\psi(s)-\frac{\zeta^{\prime}}{\zeta}(s)\right] \tag{8}
\end{equation*}
$$

so we see that $\zeta^{\prime}(1-\sigma)=0$ with $\sigma>1$ if

$$
\begin{equation*}
\log 2 \pi+\frac{\pi}{2} \tan \frac{\pi \sigma}{2}-\psi(\sigma)-\frac{\zeta^{\prime}}{\zeta}(\sigma)=0 \tag{9}
\end{equation*}
$$

We are interested in the situation when $\sigma \rightarrow \infty$, in which case we use

$$
\begin{gather*}
\psi(\sigma)=\log \sigma-\frac{1}{2 \sigma}+O\left(\frac{1}{\sigma^{2}}\right) \tag{10}\\
\frac{\zeta^{\prime}}{\zeta}(\sigma)=-\left(\frac{\log 2}{2^{\sigma}}+\frac{\log 3}{3^{\sigma}}+\frac{\log 2}{4^{\sigma}}+\ldots\right)=O\left(\frac{1}{\sigma^{2}}\right) \tag{11}
\end{gather*}
$$

Thus as $\sigma \rightarrow \infty,(9)$ becomes

$$
\frac{\pi}{2} \tan \frac{\pi \sigma}{2}=\log \frac{\sigma}{2 \pi}-\frac{1}{2 \sigma}+O\left(\frac{1}{\sigma^{2}}\right)
$$

Since the right-hand side tends to ∞, to maintain equality we must have σ tend to ∞ through values close to and to the left of odd integers. So the negative zeros of ζ^{\prime} lie slightly to the right of negative even integers, i.e.

$$
-a_{n}=-2 n-2+\epsilon(n), \quad(\epsilon(n)>0)
$$

Carrying this out in more detail, taking $\sigma=2 n+3-\epsilon(n)$, we have

$$
\frac{\pi}{2} \tan \frac{\pi \sigma}{2}=\frac{1}{\epsilon(n)}-\frac{\pi^{2} \epsilon(n)}{12}+O\left(\epsilon^{3}(n)\right)
$$

YILDIRIM

Thus we find

$$
\epsilon(n)=\frac{1}{\log n}+O\left(\frac{1}{\log ^{2} n}\right)
$$

and $\epsilon(n)<1$ for $n \geq 3$.
Note that differentiation of (2) also gives

$$
\begin{equation*}
\zeta^{\prime}(-2 k)=(-1)^{k} \pi(2 \pi)^{-(2 k+1)}(2 k)!\zeta(2 k+1) . \tag{12}
\end{equation*}
$$

Next we observe that $\frac{\zeta^{\prime \prime}}{\zeta^{\prime}}\left(-\sigma_{N}\right)<0$ for all sufficiently large N. For, differentiating the functional equation twice, we get for $k \geq 1$,

$$
\begin{equation*}
\zeta^{\prime \prime}(-2 k)=(-1)^{k} \frac{(2 k)!}{(2 \pi)^{2 k}}\left[\zeta(2 k+1)(\log 2 \pi-\psi(2 k+1))-\zeta^{\prime}(2 k+1)\right] \tag{13}
\end{equation*}
$$

and so we have

$$
\begin{equation*}
\frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(-2 k)=2\left(\log 2 \pi-\psi(2 k+1)-\frac{\zeta^{\prime}}{\zeta}(2 k+1)\right)<0,(k \geq 3) . \tag{14}
\end{equation*}
$$

Proof of Theorem 2. Inside R there are exactly N zeros of ζ^{\prime} (all real), so by Rolle's theorem there must be at least $N-1$ real zeros of $\zeta^{\prime \prime}$. We also know that there exist $2 \kappa, \kappa \geq 1$, nonreal zeros of $\zeta^{\prime \prime}$ inside R. Call the number of zeros of $\zeta^{(i)}$ in R as Z_{i}. By the argument principle we have

$$
\frac{1}{2 \pi} \Delta_{R} \arg \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(s)=Z_{2}-Z_{1} \geq N-1+2 \kappa-N=2 \kappa-1
$$

If it is shown that $\arg \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(s)$ changes by 2π as s makes one counterclockwise tour of R, then Theorem 2 is proved. It would also follow that between consecutive negative zeros of $\zeta^{\prime}, \zeta^{\prime \prime}$ vanishes exactly once.

Equation (4) may be rewritten as

$$
\begin{align*}
\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(\sigma+i t)= & K+\frac{2(1-\sigma)}{(1-\sigma)^{2}+t^{2}}+\sum_{n}\left(\frac{\left(\sigma+a_{n}\right)}{\left(\sigma+a_{n}\right)^{2}+t^{2}}-\frac{1}{a_{n}}\right) \\
& +\sum_{\rho_{1}} \frac{\sigma-\beta_{1}}{\left(\sigma-\beta_{1}\right)^{2}+\left(\gamma_{1}-t\right)^{2}} \tag{15}
\end{align*}
$$

where $K=\frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(0)-2+\sum_{\rho_{1}} \frac{1}{\rho_{1}}$ and $0.185<K<0.368$.

YILDIRIM

First consider the left edge of R where $\sigma=\sigma_{N}=-2 N-2,|t| \leq N$. Here

$$
\begin{equation*}
\frac{2(1-\sigma)}{(1-\sigma)^{2}+t^{2}}=O\left(\frac{1}{N}\right) \tag{16}
\end{equation*}
$$

and $-2 N-5 \leq \sigma_{N}-\beta_{1} \leq-2 N-2$, so that (writing $\sum_{\rho_{1}}$ for the last term of (15))

$$
\begin{aligned}
& -(2 N+5) \sum_{\gamma_{1}} \frac{1}{(2 N+2)^{2}+\left(\gamma_{1}-t\right)^{2}}<\sum_{\rho_{1}}<-(2 N+2) \sum_{\gamma_{1}} \frac{1}{(2 N+5)^{2}+\left(\gamma_{1}-t\right)^{2}} \\
& -(2 N+5)\left(\sum_{\left|\gamma_{1}-t\right|<2 N+2} \frac{1}{(2 N+2)^{2}}+\sum_{\left|\gamma_{1}-t\right| \geq 2 N+2} \frac{1}{\left(\gamma_{1}-t\right)^{2}}\right) \\
& \quad<\sum_{\rho_{1}}<-(2 N+2)\left(\sum_{\left|\gamma_{1}-t\right|<2 N+5} \frac{1}{2(2 N+5)^{2}}+\sum_{\left|\gamma_{1}-t\right| \geq 2 N+5} \frac{1}{2\left(\gamma_{1}-t\right)^{2}}\right) .
\end{aligned}
$$

The sums over γ_{1} are evaluated in a standard way using the result of Berndt mentioned in the introduction, giving

$$
\begin{equation*}
-\frac{2}{\pi} \log N \lesssim \sum_{\rho_{1}} \frac{\sigma-\beta_{1}}{\left(\sigma-\beta_{1}\right)^{2}+\left(\gamma_{1}-t\right)^{2}} \lesssim-\frac{1}{\pi} \log N \tag{17}
\end{equation*}
$$

Now consider the sum over n in (15) for $\sigma_{N} \leq \sigma<0$, splitting it into two parts: $\sigma+a_{n} \leq 0$ (the finite part) and $\sigma+a_{n}>0$ (the infinite part). The finite part is negative and attains its maximum at $|t|=N$. We have

$$
\begin{align*}
\sum_{a_{n} \leq-\sigma}\left(\frac{\left(\sigma+a_{n}\right)}{\left(\sigma+a_{n}\right)^{2}+N^{2}}-\frac{1}{a_{n}}\right) & \leq-\sum_{a_{n} \leq-\sigma} \frac{1}{a_{n}}+O(1) \\
& \leq-\sum_{n<\left\lceil\frac{-\sigma}{2}\right\rceil} \frac{1}{2 n+2}+O(1) \\
& =-\frac{1}{2} \log \left(1-\frac{\sigma}{2}\right)+O(1) \tag{18}
\end{align*}
$$

(In (18) the sums over a_{n} are void if $-\sigma<a_{1}$, and the sum over n is void if $\sigma>-2$. In these cases the $\mathrm{O}(1)$-term takes care of things). Thus on the left edge of R the finite part

YILDIRIM

is always less than $-\frac{1}{2} \log N+O(1)$. On the left edge of R the infinite part is maximum when $t=0$, and then by Lemma 1

$$
\begin{align*}
\sum_{n=N+1}^{\infty}\left(\frac{1}{\sigma_{N}+a_{n}}-\frac{1}{a_{n}}\right) & <\sum_{n=N+1}^{\infty}\left(\frac{1}{2(n-N)-\frac{2}{\log N}}-\frac{1}{2 n+2}\right) \\
& =\frac{1}{2} \sum_{m=1}^{\infty}\left(\frac{1}{m-\frac{1}{\log N}}-\frac{1}{m+N+1}\right) \\
& =\frac{1}{2}\left(\psi(N+2)-\psi\left(1-\frac{1}{\log N}\right)\right) \\
& \leq \frac{1}{2} \log N+O(1) . \tag{19}
\end{align*}
$$

Adding up the results of (16)-(19) in (15) we have on the left edge of R

$$
\begin{equation*}
\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}\left(\sigma_{N}+i t\right) \lesssim-\frac{1}{\pi} \log N \quad(|t| \leq N) \tag{20}
\end{equation*}
$$

On $\sigma+i N, \sigma_{N} \leq \sigma<0$ we rewrite (15) as

$$
\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(\sigma+i N)=K+\sum_{a_{n}>-\sigma}+\sum_{a_{n} \leq-\sigma}+\sum_{\rho_{1}}+O\left(\frac{1}{N}\right),
$$

where the sum over ρ_{1} takes negative values, and the finite sum was estimated in (18). Now observe that for $\sigma<0$

$$
\begin{aligned}
& \sum_{a_{n}>-\sigma}\left(\frac{\sigma+a_{n}}{\left(\sigma+a_{n}\right)^{2}+N^{2}}-\frac{1}{a_{n}}\right) \\
& =-\left(\sigma^{2}+N^{2}\right) \sum_{a_{n}>-\sigma} \frac{1}{a_{n}\left(\left(\sigma+a_{n}\right)^{2}+N^{2}\right)}-\sigma \sum_{a_{n}>-\sigma} \frac{1}{\left(\sigma+a_{n}\right)^{2}+N^{2}} \\
& <-\left(\sigma^{2}+N^{2}\right) \sum_{n=\left\lceil\frac{-\sigma}{2}\right\rceil}^{\infty} \frac{1}{(2 n+2)\left[(\sigma+2 n+2)^{2}+N^{2}\right]}+O(1)-\sigma \sum_{n=0}^{\infty} \frac{1}{(2 n)^{2}+N^{2}} .
\end{aligned}
$$

For $\sigma_{N} \leq \sigma<0$,

$$
-\sigma \sum_{n=0}^{\infty} \frac{1}{(2 n)^{2}+N^{2}}=O(1)
$$

YILDIRIM

and we calculate

$$
\begin{aligned}
& -\left(\sigma^{2}+N^{2}\right) \sum_{n=\left\lceil\frac{-\sigma}{2}\right\rceil}^{\infty} \frac{1}{(2 n+2)\left[(\sigma+2 n+2)^{2}+N^{2}\right]} \\
& \leq-\frac{\left(\sigma^{2}+N^{2}\right)}{8} \sum_{m=1}^{\infty} \frac{1}{\left(m-\frac{\sigma}{2}\right)\left(m^{2}+\left(\frac{N}{2}\right)^{2}\right)} \\
& =\sum_{m=1}^{\infty}\left(-\frac{1}{2} \frac{1}{m-\frac{\sigma}{2}}-\frac{\sigma-i N}{4 N i} \frac{1}{m+\frac{i N}{2}}+\frac{\sigma+i N}{4 N i} \frac{1}{m-\frac{i N}{2}}\right) \\
& =\frac{1}{2} \psi\left(1-\frac{\sigma}{2}\right)+\frac{\sigma}{2 N} \Im \psi\left(1+\frac{i N}{2}\right)-\frac{1}{2} \Re \psi\left(1+\frac{i N}{2}\right) .
\end{aligned}
$$

So for $\sigma_{N} \leq \sigma<0$

$$
\begin{align*}
\sum_{a_{n}>-\sigma}\left(\frac{\sigma+a_{n}}{\left(\sigma+a_{n}\right)^{2}+N^{2}}-\frac{1}{a_{n}}\right) & <\frac{1}{2} \psi\left(1-\frac{\sigma}{2}\right)-\frac{1}{2} \Re \psi\left(1+\frac{i N}{2}\right)+O(1) \\
& =\frac{1}{2} \log \left(1-\frac{\sigma}{2}\right)-\frac{\log N}{2}+O(1) \tag{21}
\end{align*}
$$

Hence on $\sigma \pm i N, \sigma_{N} \leq \sigma<0$ we have

$$
\begin{equation*}
\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(\sigma+i N)<-\frac{1}{2} \log N+O(1) . \tag{22}
\end{equation*}
$$

It remains to consider the edge on the imaginary axis, $[-i N, i N]$. Here,

$$
\begin{gather*}
\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(i t)=\frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(0)-2+\frac{2}{1+t^{2}}+\sum_{n} \frac{-t^{2}}{a_{n}\left(a_{n}^{2}+t^{2}\right)}+\sum_{\rho_{1}} \frac{1}{\rho_{1}} \\
 \tag{23}\\
+\sum_{\gamma_{1}>0}\left(\frac{-\beta_{1}}{\left(\beta_{1}^{2}+\left(\gamma_{1}-t\right)^{2}\right)}+\frac{-\beta_{1}}{\left(\beta_{1}^{2}+\left(\gamma_{1}+t\right)^{2}\right)}\right), \tag{24}\\
\Im \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(i t)=\frac{2 t}{1+t^{2}}-\sum_{n} \frac{t}{a_{n}^{2}+t^{2}}+\sum_{\gamma_{1}>0} \frac{2 t\left(\gamma_{1}^{2}-\beta_{1}^{2}-t^{2}\right)}{\left(\beta_{1}^{2}+\left(\gamma_{1}-t\right)^{2}\right)\left(\beta_{1}^{2}+\left(\gamma_{1}+t\right)^{2}\right)} .
\end{gather*}
$$

The sums over a_{n} can be bounded in a similar way to (7), but keeping in mind that $2.6<a_{1}<2.8,4.8<a_{2}<5$, and $2 n+1<a_{n}<2 n+2$ for $n \geq 3$ (this can be verified

YILDIRIM

from (8)) in order to get sharper inequalities that will allow us below to determine the signs of $\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(i t)$ and $\Im \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(i t)$ at certain points. Writing

$$
\begin{gathered}
A(t)=-\frac{t^{2}}{2.8\left(2.8^{2}+t^{2}\right)}-\frac{t^{2}}{5\left(5^{2}+t^{2}\right)}+\sum_{n=1}^{3} \frac{t^{2}}{2 n\left(2 n^{2}+t^{2}\right)} \\
B(t)=-\frac{t^{2}}{2.6\left(2.6^{2}+t^{2}\right)}-\frac{t^{2}}{4.8\left(4.8^{2}+t^{2}\right)}+\frac{t^{2}}{3\left(3^{2}+t^{2}\right)}+\frac{t^{2}}{5\left(5^{2}+t^{2}\right)}
\end{gathered}
$$

we have

$$
\begin{align*}
& B(t)+\frac{1}{2}\left(\psi\left(\frac{3}{2}\right)-\Re \psi\left(\frac{3}{2}+\frac{i t}{2}\right)\right) \tag{25}\\
& <\sum_{n} \frac{-t^{2}}{a_{n}\left(a_{n}^{2}+t^{2}\right)}<A(t)+\frac{1}{2}\left(\psi(1)-\Re \psi\left(1+\frac{i t}{2}\right)\right) .
\end{align*}
$$

Similarly, writing

$$
\begin{gathered}
C(t)=-\frac{t}{2.6^{2}+t^{2}}-\frac{t}{4.8^{2}+t^{2}}+\frac{t}{3^{2}+t^{2}}+\frac{t}{5^{2}+t^{2}} \\
D(t)=-\frac{t}{2.8^{2}+t^{2}}-\frac{t}{5^{2}+t^{2}}+\frac{t}{2^{2}+t^{2}}+\frac{t}{4^{2}+t^{2}}+\frac{t}{6^{2}+t^{2}}
\end{gathered}
$$

we have

$$
\begin{equation*}
C(t)-\frac{1}{2} \Im \psi\left(\frac{3}{2}+\frac{i t}{2}\right)<\sum_{n} \frac{-t}{a_{n}^{2}+t^{2}}<D(t)-\frac{1}{2} \Im \psi\left(1+\frac{i t}{2}\right) \tag{26}
\end{equation*}
$$

Using (25) and (6) in (23), where taking 0 as an upper bound for the sum over $\gamma_{1}>0$, it is seen that for $t>23, \Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(i t)<0$. In (23) we combine the sums over ρ_{1} and $\gamma_{1}>0$ as

$$
\sum_{\gamma_{1}>0} \frac{2 t^{2} \beta_{1}\left(\beta_{1}^{2}-3 \gamma_{1}^{2}+t^{2}\right)}{\left(\beta_{1}^{2}+\gamma_{1}^{2}\right)\left(\beta_{1}^{2}+\left(\gamma_{1}-t\right)^{2}\right)\left(\beta_{1}^{2}+\left(\gamma_{1}+t\right)^{2}\right)}
$$

and we see that for $|t|<40$ each term is negative (since $\gamma_{1}>23.298$ and $\beta_{1}<3$ ([7])). Also, the derivative of a term of the sum over γ_{1} in (23) is

$$
\frac{-4 t \beta_{1}\left[-\beta^{4}+\left(\gamma^{2}-t^{2}\right)\left(2 \beta^{2}+t^{2}+3 \gamma^{2}\right)\right]}{\left[\beta_{1}^{2}+\left(\gamma_{1}-t\right)^{2}\right]^{2}\left[\beta_{1}^{2}+\left(\gamma_{1}+t\right)^{2}\right]^{2}}
$$

YILDIRIM

which is negative for $t \in[0,23]$. So for $t \in[0,23]$ all the terms in the right-hand side of (23) are decreasing functions of t. Hence $\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(i t)=0$ at only one pair of conjugate points on the imaginary axis. As for $\Im \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(i t)$, the sum over ρ_{1} in (24) is positive for $0<t \leq 23$. When $t \rightarrow 0^{ \pm}$we have $\Im \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(i t) \rightarrow 0^{ \pm}\left(\lim _{t \rightarrow 0} \frac{\Im \psi\left(1+\frac{i t}{2}\right)}{t}=\frac{\pi^{2}}{12}\right.$ and $\left.\lim _{t \rightarrow 0} \frac{\Im \psi\left(\frac{3}{2}+\frac{i t}{2}\right)}{t}=\frac{\pi^{2}}{2}-4\right)$. From eqs. (23)-(26) we see that

$$
\begin{gathered}
\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(i)>K+1+B(1)+\frac{1}{2}\left[\psi\left(\frac{3}{2}\right)-\Re \psi\left(\frac{3}{2}+\frac{i}{2}\right)\right]+\sum_{\gamma_{1}>0} \frac{-4 \beta_{1}}{\left(\beta_{1}^{2}+\gamma_{1}^{2}\right)} \\
=\frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(0)-1+B(1)+\frac{1}{2}\left[\psi\left(\frac{3}{2}\right)-\Re \psi\left(\frac{3}{2}+\frac{i}{2}\right)\right]-\sum_{\rho_{1}} \frac{1}{\rho_{1}}>0, \\
\Im \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(i)>1+C(1)-\frac{1}{2} \Im \psi\left(\frac{3}{2}+\frac{i}{2}\right)>0, \\
\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(3.5 i)<\frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(0)-2+\frac{2}{13.25}+A(3.5)+\frac{1}{2}[\psi(1)-\Re \psi(1+1.75 i)]<0, \\
\Im \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(3.5 i)>\frac{7}{13.25}+C(3.5)-\frac{1}{2} \Im \psi\left(\frac{3}{2}+1.75 i\right)+0.0197>0,
\end{gathered}
$$

where 0.0197 is a lower bound for the first two terms of the sum over $\gamma_{1}>0$ in (24) coming from the first two zeros of ζ^{\prime} at approximately $2.46 . .+i \cdot 23.298 .$. and $1.29+i \cdot 31.71 .$. ([7]). As t increases from $3.5, \Im \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(i t)$ may change sign, but $\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(i t)$ will always be negative. Thus as t moves up on the imaginary axis, the image curve of $\frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(i t)$ includes just one counterclockwise loop around the origin and the change in $\arg \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}$ is roughly 2π. This completes the proof of Theorem 2.

The graphs of $\frac{\zeta^{(k+1)}}{\zeta^{(k)}}(i t)$ for $|t| \leq 40$ and $k=0,1,2,3$ are included at the end of this paper. These graphs were plotted by M. Özkan in his senior project, using the expressions from the Euler-Maclaurin sum formula

$$
\begin{align*}
& (-1)^{k} \zeta^{(k)}(s)=\sum_{n=1}^{N-1} \frac{\log ^{k} n}{n^{s}}+\frac{\log ^{k} N}{2 N^{s}}+N^{1-s} \sum_{j=0}^{k} C_{k j} \frac{\log ^{k-j} N}{(s-1)^{j+1}} \\
& +\sum_{\nu=1}^{m}\left[\sum_{j=0}^{k}\binom{k}{j} \Pi_{\nu}^{(k-j)}(s)(-1)^{k-j} \log ^{j} N\right] N^{1-s-2 \nu}+R_{k} \tag{27}
\end{align*}
$$

where

$$
C_{k j}=\frac{k!}{(k-j)!}, \quad \Pi_{\nu}^{(t)}(s)=\frac{B_{2 \nu}}{(2 \nu)!} \frac{d^{t}}{d s^{t}} \prod_{j=0}^{2 \nu-2}(s+j)
$$

and the error term R_{k} is neglected in the computations.
In the proof of Theorem 2 one can also notice that if one starts from a point on the negative real axis where $\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(s)>0$ and moves vertically away from the real axis, soon one hits a point where $\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(s)=0$ and further away from the axis $\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}(s)<0$.

3. Zeros of $\zeta^{\prime \prime}(s)$ on the negative real axis

In order to proceed to the investigation of $\zeta^{\prime \prime \prime}(s)$ some information on the negative zeros of $\zeta^{\prime \prime}(s)$ - which will be denoted by $-b_{n}, n \geq 1$ - is needed. The zeros of $\zeta^{\prime \prime}(s)$ in the right half-plane will be denoted by $\rho_{2}=\beta_{2}+i \gamma_{2}$. From Eq. (13) we see that $\zeta^{\prime \prime}(-2)<0, \zeta^{\prime \prime}(-4)>0$, and as of $k=3$ the quantity in brackets in (13) will always be negative so that $\operatorname{sgn}\left[\zeta^{\prime \prime}(-2 k)\right]=(-1)^{k+1},(k \geq 3)$. Similar to (13) we have for $k \geq 1$

$$
\begin{align*}
\zeta^{\prime \prime}(1-2 k)= & (-1)^{k} \frac{2 \Gamma(2 k) \zeta(2 k)}{(2 \pi)^{2 k}}\left[\log ^{2} 2 \pi-\left(\frac{\pi}{2}\right)^{2}+\psi^{\prime}(2 k)+(\psi(2 k))^{2}+\frac{\zeta^{\prime \prime}}{\zeta}(2 k)\right. \\
& \left.+2 \psi(2 k)\left(\frac{\zeta^{\prime}}{\zeta}(2 k)-\log 2 \pi\right)-2 \frac{\zeta^{\prime}}{\zeta}(2 k) \log 2 \pi\right] \tag{28}
\end{align*}
$$

In (28), as k increases, the term $(\psi(2 k))^{2}$ will eventually dominate and the quantity in brackets will always be positive. This happens for $k \geq 16$. We find that

$$
b_{n} \in \begin{cases}{[3,4]} & n=1 \tag{29}\\ {[2 n+2,2 n+3]} & 2 \leq n \leq 13 \\ {[2 n+3,2 n+4]} & n \geq 14\end{cases}
$$

YILDIRIM

Using MAPLE-V the first few negative zeros of $\zeta^{\prime \prime}$ are found to be

$$
\begin{gather*}
b_{1}=3.595 . ., \quad b_{2}=6.028 . ., \quad b_{3}=8.278 . ., \quad b_{4}=10.446 . ., \tag{30}\\
b_{5}=12.568 . ., \quad b_{6}=14.662 . ., \quad b_{7}=16.736 . ., \quad b_{8}=18.798 . ., \\
b_{9}=20.849 . ., \quad b_{10}=22.893 . ., \quad b_{11}=24.931 . .
\end{gather*}
$$

Lemma 2. $\quad-b_{n}=-2 n-4+\frac{2}{\log n}+O\left(\frac{1}{\log ^{2} n}\right)$, as $n \rightarrow \infty$.
Proof. Differentiating (8) gives

$$
\begin{equation*}
-\frac{\zeta^{\prime \prime}}{\zeta}(1-s)+\left(\frac{\zeta^{\prime}}{\zeta}(1-s)\right)^{2}=\left(\frac{\pi}{2}\right)^{2}\left(1+\tan ^{2} \frac{\pi s}{2}\right)-\psi^{\prime}(s)-\left(\frac{\zeta^{\prime}}{\zeta}(s)\right)^{\prime} . \tag{31}
\end{equation*}
$$

We put $\zeta^{\prime \prime}(1-\sigma)=0, \sigma>1$ and use (8) to write

$$
\left(\log 2 \pi+\frac{\pi}{2} \tan \frac{\pi \sigma}{2}-\psi(\sigma)-\frac{\zeta^{\prime}}{\zeta}(\sigma)\right)^{2}=\left(\frac{\pi}{2}\right)^{2}\left(1+\tan ^{2} \frac{\pi \sigma}{2}\right)-\psi^{\prime}(\sigma)-\left(\frac{\zeta^{\prime}}{\zeta}(\sigma)\right)^{\prime}
$$

For large σ, using (10), (11) and

$$
\begin{equation*}
\psi^{\prime}(\sigma)=\frac{1}{\sigma}+O\left(\frac{1}{\sigma^{2}}\right), \quad \frac{\zeta^{\prime \prime}}{\zeta}(\sigma)=O\left(\frac{1}{\sigma^{2}}\right) \tag{32}
\end{equation*}
$$

this is simplified to

$$
\begin{equation*}
\left[\log \frac{\sigma}{2 \pi}-\left(\pi+O\left(\frac{1}{\sigma \log \sigma}\right) \tan \frac{\pi \sigma}{2}+O\left(\frac{1}{\sigma}\right)\right] \log \frac{\sigma}{2 \pi}=\left(\frac{\pi}{2}\right)^{2}\right. \tag{33}
\end{equation*}
$$

It follows that $\log \frac{\sigma}{2 \pi} \approx \pi \tan \frac{\pi \sigma}{2}$, and σ must be close to and to the left of an odd integer. So we plug $\sigma=2 n+5-\delta(n),(\delta(n)>0)$ in (33) and solving for $\delta(n)$ we obtain the result.
4. Nonreal zeros of $\zeta^{\prime \prime \prime}(s)$ in $\sigma<\frac{1}{2}$

Similar to (3) we have

$$
\begin{align*}
\frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(s)= & \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(0)-3-\frac{3}{s-1}+\sum_{n=1}^{\infty}\left(\frac{1}{s+b_{n}}-\frac{1}{b_{n}}\right)+\sum_{\rho_{2}}\left(\frac{1}{s-\rho_{2}}+\frac{1}{\rho_{2}}\right) \\
& +\left(\frac{1}{s-b_{0}}+\frac{1}{b_{0}}+\frac{1}{s-\bar{b}_{0}}+\frac{1}{\bar{b}_{0}}\right) . \tag{34}
\end{align*}
$$

YILDIRIM

From Spira [7] we know that $\beta_{2}<5$ for all ρ_{2}, and analogous to (4) (by using (34) at $s=10)$ we find

$$
\begin{equation*}
\sum_{\rho_{2}} \frac{1}{\rho_{2}}<0.12 \tag{35}
\end{equation*}
$$

(from Spira's list of ρ_{2} with $\left|\gamma_{2}\right|<100$ one calculates $\sum \frac{1}{\rho_{2}}>0.037$).
Theorem 3. (unconditional) There is only one pair of nonreal zeros of $\zeta^{\prime \prime \prime}(s)$ in the left half-plane.
Proof. Consider $\Delta_{R} \arg \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(s)$ where R is as in the proof of Theorem 2, but with $\sigma_{N}=-2 N-4$. From our results above, inside R there are N real zeros and two nonreal zeros of $\zeta^{\prime \prime}$. By Rolle's Theorem there must be at least $N-1$ real zeros of $\zeta^{\prime \prime \prime}$ here. Let 2κ be the number of nonreal zeros of $\zeta^{\prime \prime \prime}(s)$. Then

$$
\frac{1}{2 \pi} \Delta_{R} \arg \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(s)=Z_{3}-Z_{2} \geq(N-1+2 \kappa)-(N+2)=2 \kappa-3
$$

We will show that $\Delta_{R} \arg \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(s)=-2 \pi$ in one tour of the rectangle, implying $\kappa \leq 1$. M. Özkan computed that $\zeta^{\prime \prime \prime}(s)$ has zeros at $-2.1101 . . \pm i \cdot 2.5842$.., so $\kappa=1$. This computation was based upon evaluating $\oint \frac{\zeta^{(\mathrm{iv})}}{\zeta^{\prime \prime \prime}}(s) d s$ around various rectangles. The Euler-Maclaurin formula (27) was used with $N=10$ and $m=6$ for the integrand. The line integrations were then done by employing MATHEMATICA.

On the three sides of R in the left half-plane the situation is the same as for $\Re \frac{\zeta^{\prime \prime}}{\zeta^{\prime}}$, and there is no need to repeat the arguments in the proof of Theorem 2. On the imaginary axis we have, by (34),

$$
\begin{align*}
\Re \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(i t)= & \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(0)-3+\frac{3}{1+t^{2}}+\sum_{n=1}^{\infty}\left(\frac{b_{n}}{b_{n}^{2}+t^{2}}-\frac{1}{b_{n}}\right)+\sum_{\rho_{2}} \frac{1}{\rho_{2}} \tag{36}\\
& +\sum_{\gamma_{2}>0}\left(\frac{-\beta_{2}}{\beta_{2}^{2}+\left(\gamma_{2}-t\right)^{2}}+\frac{-\beta_{2}}{\beta_{2}^{2}+\left(\gamma_{2}+t\right)^{2}}\right) \\
& +\frac{2 \Re b_{0}}{\left|b_{0}\right|^{2}}-\Re b_{0}\left(\frac{1}{\left(\Re b_{0}\right)^{2}+\left(t-\Im b_{0}\right)^{2}}+\frac{1}{\left(\Re b_{0}\right)^{2}+\left(t+\Im b_{0}\right)^{2}}\right)
\end{align*}
$$

$$
\begin{align*}
\Im \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(i t)= & \frac{3 t}{1+t^{2}}-\sum_{n=1}^{\infty} \frac{t}{b_{n}^{2}+t^{2}}+\sum_{\rho_{2}} \frac{\gamma_{2}-t}{\beta_{2}^{2}+\left(\gamma_{2}-t\right)^{2}} \tag{37}\\
& -\frac{t-\Im b_{0}}{\left(\Re b_{0}\right)^{2}+\left(t-\Im b_{0}\right)^{2}}-\frac{t+\Im b_{0}}{\left(\Re b_{0}\right)^{2}+\left(t+\Im b_{0}\right)^{2}}
\end{align*}
$$

In (36), bounding the sum over γ_{2} trivially by 0 , and using (35), the value of b_{0} and $\frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(0)=2.993 . .([1])$, we have

$$
\begin{align*}
\Re \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(i t)< & 0.0595+\frac{3}{1+t^{2}}+\sum_{n=1}^{\infty}\left(\frac{b_{n}}{b_{n}^{2}+t^{2}}-\frac{1}{b_{n}}\right) \tag{38}\\
& -\Re b_{0}\left(\frac{1}{\left(\Re b_{0}\right)^{2}+\left(t-\Im b_{0}\right)^{2}}+\frac{1}{\left(\Re b_{0}\right)^{2}+\left(t+\Im b_{0}\right)^{2}}\right)
\end{align*}
$$

We see that for $t \geq \Im b_{0}$ the right-hand side is a strictly decreasing function of t. So, if we find a value $t_{0}>\Im b_{0}$ making the right-hand side of (38) negative, then we know that for $t \geq t_{0}$, $\Re \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(i t)<0$. To bound the sums over b_{n} 's, using (29) and (30) we take \hat{b}_{n} and \tilde{b}_{n} for $1 \leq n \leq 4$ satisfying $\hat{b}_{n}<b_{n}<\tilde{b}_{n}$ and define

$$
\begin{aligned}
& a(t)=\sum_{n=1}^{4} \frac{-t^{2}}{\tilde{b}_{n}\left(\tilde{b}_{n}^{2}+t^{2}\right)}+\sum_{n=1}^{6} \frac{t^{2}}{2 n\left((2 n)^{2}+t^{2}\right)} \\
& b(t)=\sum_{n=1}^{4} \frac{-t^{2}}{\hat{b}_{n}\left(\hat{b}_{n}^{2}+t^{2}\right)}+\sum_{n=1}^{5} \frac{t^{2}}{2 n\left((2 n)^{2}+t^{2}\right)} \\
& c(t)=\sum_{n=1}^{4} \frac{-t}{\tilde{b}_{n}^{2}+t^{2}}+\sum_{n=1}^{6} \frac{t}{(2 n)^{2}+t^{2}} \\
& d(t)=\sum_{n=1}^{4} \frac{-t}{\hat{b}_{n}^{2}+t^{2}}+\sum_{n=1}^{5} \frac{t}{(2 n)^{2}+t^{2}} .
\end{aligned}
$$

Then, similar to (25) and (26) we have

$$
\begin{gather*}
b(t)<\sum_{n=1}^{\infty} \frac{-t^{2}}{b_{n}\left(b_{n}^{2}+t^{2}\right)}-\frac{1}{2}\left(\psi(1)-\Re \psi\left(1+\frac{i t}{2}\right)\right)<a(t), \tag{39}\\
d(t)<\sum_{n=1}^{\infty} \frac{-t}{b_{n}^{2}+t^{2}}+\frac{1}{2} \Im \psi\left(1+\frac{i t}{2}\right)<c(t) \tag{40}
\end{gather*}
$$

YILDIRIM

Now by sheer calculation we find that $t_{0}=5.2$ is admissible, and we only need to consider $0 \leq t \leq 5.2$ to determine $\Delta_{R} \arg \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(s)$. The quadrants where $\frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(i t)$ lies for various t 's can be found from the foregoing expressions (e.g. $\frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}\left(i \Im b_{0}\right)$ is in the first quadrant). Also note that as $t \rightarrow 0^{+}, \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(i t) \rightarrow \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(0)$ from the first quadrant.

When using (36) to obtain a lower bound for $\Re \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(i t)$ observe that

$$
\frac{-\beta_{2}}{\beta_{2}^{2}+\left(\gamma_{2}-t\right)^{2}} \geq \frac{-2 \beta_{2}}{\beta_{2}^{2}+\gamma_{2}^{2}} \quad\left(0 \leq t \leq \min \left|\gamma_{2}\right|\left(1-\frac{1}{\sqrt{2}}\right)\right)
$$

and since $([7])$ the least $\left|\gamma_{2}\right|$ is $23.27 .$. , for $t \leq 6.8$ the sum over γ_{2} in (36) is $>-\frac{3}{2} \sum_{\rho_{2}} \frac{1}{\rho_{2}}>$ -0.18 . The sum over ρ_{2} in (37) is equal to

$$
\begin{equation*}
2 t \sum_{\gamma_{2}>0} \frac{\gamma_{2}^{2}-\beta_{2}^{2}-t^{2}}{\left[\beta_{2}^{2}+\left(\gamma_{2}-t\right)^{2}\right]\left[\beta_{2}^{2}+\left(\gamma_{2}+t\right)^{2}\right]} \tag{41}
\end{equation*}
$$

all of the terms in this sum being positive for

$$
0<t<\sqrt{\left(\min \gamma_{2}\right)^{2}-\left(\max \beta_{2}\right)^{2}}
$$

i.e. certainly for $0<t<22.7$. A trivial lower bound for (41) is 0 , and one can do better by including the terms corresponding to known values of ρ_{2}. When using (37) to obtain an upper bound for $\Im \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(i t)$, the sum over ρ_{2} presents some difficulty. The quantity in (41) is less than

$$
2 t \sum_{\gamma_{2}>0} \frac{\gamma_{2}^{2}-t^{2}}{\left(\gamma_{2}-t\right)^{2}\left(\gamma_{2}+t\right)^{2}}=2 t \sum_{\gamma_{2}>0} \frac{1}{\gamma_{2}^{2}-t^{2}}<2.12 t \sum_{\gamma_{2}>0} \frac{1}{\gamma_{2}^{2}}
$$

where the last inequality holds for $0 \leq t \leq 5.2$. However we do not know the value of the last sum. If we cheat and assume RH to the effect that $\beta_{2} \geq \frac{1}{2}$, then for $0<t \leq 5.2$ we have

YILDIRIM

$$
\begin{aligned}
\sum_{\gamma_{2}>0} \frac{2 t\left(\gamma_{2}^{2}-\beta_{2}^{2}-t^{2}\right)}{\left[\beta_{2}^{2}+\left(\gamma_{2}-t\right)^{2}\right]\left[\beta_{2}^{2}+\left(\gamma_{2}+t\right)^{2}\right]} & <2 t \sum_{\gamma_{2}>0} \frac{1}{\beta_{2}^{2}+\left(\gamma_{2}-t\right)^{2}} \\
& \leq 2 t \sum_{\gamma_{2}>0} \frac{2 \beta_{2}}{\beta_{2}^{2}+\gamma_{2}^{2}} \frac{\beta_{2}^{2}+\gamma_{2}^{2}}{\beta_{2}^{2}+\left(\gamma_{2}-t\right)^{2}} \\
& <2 t \frac{\left(\max \beta_{2}\right)^{2}+\left(\min \gamma_{2}\right)^{2}}{\left(\min \gamma_{2}-t\right)^{2}} \sum_{\rho_{2}} \frac{1}{\rho_{2}}
\end{aligned}
$$

and we may use (35) to get an upper bound. We do not assume RH, and instead appeal to the graph of $\frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(i t)$. We see that as t moves up on the imaginary axis on our contour $\Delta \arg \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}$ is roughly -2π. This completes the proof.

Next consider the values of $\Re \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(s)$, in the region $0 \leq \sigma<\frac{1}{2},|t|>T$. If we assume RH, then by Theorem $1, \Re \frac{1}{s-\rho_{2}}<0$ for all ρ_{2}. So from (34), when $T \geq\left|\Re b_{0}\right|+\left|\Im b_{0}\right|$, (bounding the sums over b_{n} as in (39))

$$
\begin{aligned}
\Re \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(s)< & \frac{\zeta^{\prime \prime \prime}}{\zeta^{\prime \prime}}(0)-3+\frac{3}{1+T^{2}}+\sum_{\rho_{2}} \frac{1}{\rho_{2}}+g(T)+\frac{2 \Re b_{0}}{\left|b_{0}\right|^{2}}+ \\
& +\left(\frac{1}{2}-\Re b_{0}\right)\left(\frac{1}{\left(T-\Im b_{0}\right)^{2}}+\frac{1}{\left(T+\Im b_{0}\right)^{2}}\right)+ \\
& +\frac{2 T^{2}}{1+4 T^{2}}\left(\psi(1)-\Re \psi\left(\frac{5}{4}+\frac{i T}{2}\right)+\frac{1}{4 T} \Im \psi\left(\frac{5}{4}+\frac{i T}{2}\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
g(t)= & \sum_{n=1}^{4} \frac{-t^{2}}{\tilde{b}_{n}\left[\left(\frac{1}{2}+\tilde{b}_{n}\right)^{2}+t^{2}\right]}+\sum_{n=1}^{4} \frac{t^{2}}{(2 n+4)\left[\left(2 n+\frac{9}{2}\right)^{2}+t^{2}\right]} \\
& +\frac{t^{2}}{8\left[\left(\frac{5}{4}\right)^{2}+t^{2}\right]}+\frac{t^{2}}{16\left[\left(\frac{9}{4}\right)^{2}+t^{2}\right]} .
\end{aligned}
$$

Thus it is seen that $\Re \frac{\zeta^{\prime \prime \prime}(s)}{\zeta^{\prime \prime}(s)}<0$ in $0 \leq \sigma<\frac{1}{2},|t| \geq 10$. The region with $|t|<10$ may be swept by integrating $\frac{\zeta^{(\mathrm{iv})}}{\zeta^{\prime \prime \prime}}(s)$ around the rectangle, employing the Euler-Maclaurin

YILDIRIM

formulae (27) for the integrand. This computation was carried out by H.E. Yıldırım and no zeros of $\zeta^{\prime \prime \prime}(s)$ were found. Hence we have

Theorem 4. The Riemann Hypothesis implies that $\zeta^{\prime \prime \prime}(s)$ has no zeros in the strip $0 \leq \sigma<\frac{1}{2}$.

Armed with the methods and results of this paper one may proceed to the investigation of $\zeta^{(\mathrm{iv})}(s)$.

Graphs

The graphs of $\frac{\zeta^{(k+1)}}{\zeta^{(k)}}(i t), \quad(k=0,1,2,3)$ are plotted below for $|t| \leq 40$. The darker parts are for $-40 \leq t \leq 0$.

YILDIRIM

References

[1] T.M. Apostol - Formulas for higher derivatives of the Riemann zeta function, Math. Comp. 44 (1985), 223-232.
[2] B.C. Berndt - The number of zeros for $\zeta^{(k)}(s)$, J. London Math. Soc. (2) 2 (1970), 577-580.
[3] H. Davenport - Multiplicative Number Theory (2nd ed.), Springer, 1980
[4] N. Levinson and H. L. Montgomery - Zeros of derivatives of the Riemann zeta-function, Acta Math. 133 (1974), 49-65.
[5] J. van de Lune, H.J.J. te Riele and D.T. Winter - On the zeros of the Riemann zeta function the critical strip. IV., Math. Comp. 46 (1986), 667-681.
[6] A. Speiser - Geometrisches zur Riemannschen zetafunktion, Math. Ann. 110 (1934), 514521.
[7] R. Spira - Zero-free regions of $\zeta^{(k)}(s)$, J. London Math. Soc. 40 (1965), 677-682.
[8] R. Spira - Another zero-free region for $\zeta^{(k)}(s)$, Proc. Amer. Math. Soc. 26 (1970), 246-247.

YILDIRIM

[9] E. C. Titchmarsh - The theory of the Riemann zeta-function (2nd ed.), Oxford, 1986.
[10] D. P. Verma and A. Kaur - Zero-free regions of derivatives of the Riemann zeta function, Proc. Indian Acad. Sci. Math. Sci. 91 No. 3 (1982), 217-221.
[11] C. Y. Yıldırım - A note on $\zeta^{\prime \prime}(s)$ and $\zeta^{\prime \prime \prime}(s)$, Proc. Amer. Math. Soc. 124 No. 8 (1996), 2311-2314.

Cem Yalçın YILDIRIM
Received 28.01.1999
Department of Mathematics
Bilkent University,
06533, Ankara-TURKEY

