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Zeros of ζ ′′(s) & ζ ′′′(s) in σ < 1
2

Cem Yalçın Yıldırım

Abstract

There is only one pair of non-real zeros of ζ ′′(s), and of ζ ′′′(s), in the left half-

plane. The Riemann Hypothesis implies that ζ ′′(s) and ζ ′′′(s) have no zeros in the

strip 0 ≤ < s < 1
2
.
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1. Introduction

The Riemann zeta-function defined as

ζ(s) =
∞∑
n=1

1
ns

(σ > 1) (1)

(as usual we write s = σ + it; σ, t ∈ R), can be analytically continued to the whole
complex plane, with a simple pole at s = 1, and satisfies the functional equation

ζ(1 − s) = 2(2π)−s(cos
πs

2
)Γ(s)ζ(s) . (2)

From (2) it is seen that ζ(−2n) = 0, ∀n ∈ Z+ (trivial zeros of ζ). From Hadamard’s
theory of entire functions it follows that ζ(s) also has infinitely many (nontrivial) zeros
in the strip 0 < σ < 1. The nontrivial zeros are situated symmetrically with respect to
the real axis and also with respect to the line σ = 1

2 . Applying the argument principle,
von Mangoldt proved that the number of nontrivial zeros ρ = β + iγ with 0 < γ ≤ T

is
T

2π
log

T

2π
− T

2π
+ O(logT ), as T → ∞. Riemann’s yet unproved assertion that all of

these zeros lie on the critical line σ = 1
2 is known as the Riemann Hypothesis (RH). For

the fundamentals of the theory of ζ(s) we refer the reader to Davenport’s book [3].

89



YILDIRIM

The origin of our topic is Speiser’s proof [6] that the Riemann Hypothesis is equivalent
to ζ′(s) having no zeros in 0 < σ < 1

2
. In a comprehensive article on the zeros of

derivatives of ζ(s), Levinson and Montgomery [4] gave a different proof of this and that
ζ′(s) has only real zeros in the closed left half-plane, vanishing exactly once in the interval
(−2n − 2,−2n) for n ≥ 1 (these are the zeros between the trivial zeros of ζ guaranteed
by Rolle’s theorem). Moreover they showed that for any k ≥ 1, ζ(k)(s) has at most a
finite number of nonreal zeros in σ < 1

2 as a consequence of RH. Spira [7] calculated
the zeros of ζ′ and ζ′′ in the rectangle −1 ≤ σ ≤ 5, |t| ≤ 100, and found out that
ζ′′(s) 6= 0 in 0 ≤ σ ≤ 1

2 , |t| ≤ 100. However, Spira also found that ζ′′ has zeros at

−0.355084..± i · 3.59083.. (to be denoted as b0 and b0 below).
Berndt [2] showed that the number of nonreal zeros of ζ(k)(s) with imaginary parts in

[0, T ] is
T

2π
logT − 1 + log 4π

2π
T +O(logT ). For each k ≥ 0, the nonreal zeros of ζ(k)(s) all

lie in a strip αk < σ < σk. The existence of αk was deduced by Spira [8]. That ζ(s) 6= 0 in

the region σ ≥ 1− c

logT
, t ≥ 2 (in fact the very first zero of ζ(s) is at 1

2 + i · 14.134.., and

the first 1.5 ·109 zeros of ζ(s) have all been verified in [5] to lie on the critical line) implies
the prime number theorem. Titchmarsh [9, Theorem 11.5c] proved σ1 < 3. Later Spira
[7] calculated that σ2 = 4.98.., σ3 = 6.01, . . . , σ10 = 13.68, and in general σk = 7

4 + 2 for
k ≥ 3 is acceptable. Verma and Kaur [10] have improved the last estimate to σk = ak+2
for k ≥ 3 with a = 1.13...

In this paper, we shall be concerned with the zeros of ζ′′(s) and ζ′′′(s) lying to the
left of the critical line. Our results for the left half-plane are unconditional (i.e. without
assuming RH), since here ζ(s) can be expressed via the functional equation in terms of
its values in σ > 1, but to get results for the strip 0 < σ < 1

2
we assume RH. Most of our

results appeared in [11] which contained only the proof of Theorem 1 fully.
In our calculations we will repeatedly use the well-known formula

∞∑
n=1

( m∑
k=1

ak
n+ αk

)
= −

m∑
k=1

akψ(1 + αk), (ak, αk ∈ C)

where ψ = Γ′

Γ
is the digamma function.
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2. ζ′′ to the left of the critical line

Theorem 1. The Riemann Hypothesis implies that ζ′′(s) has no zeros in the strip
0 ≤ σ < 1

2 .

Proof. Let us denote the real zeros of ζ′ as −an, n ≥ 1, where an ∈ (2n, 2n+ 2). A
nonreal zero of ζ′ will be represented as ρ1 = β1 + iγ1. By what was recounted above,
1
2 ≤ β1 < 3 for all ρ1 (the lower-bound is upon RH). Since < ζ

′

ζ (s) < 0 on σ = 1
2 except

when ζ(s) = 0, one has β1 = 1
2 only at a possible multiple zero of ζ(s) (see [4]). We start

with the partial fraction representation

ζ′′

ζ′
(s) =

ζ′′

ζ′
(0)− 2− 2

s− 1
+
∑
ρ1

( 1
s− ρ1

+
1
ρ1

)
+
∑
n

( 1
s+ an

− 1
an

)
, (3)

which follows from Hadamard factorization. Taking real parts in (3), we have

<ζ
′′

ζ′
(s) =

ζ′′

ζ′
(0) − 2 +

2(1− σ)
|s− 1|2 +

∑
ρ1

< 1
s− ρ1

+
∑
ρ1

1
ρ1

+
∑
n

( σ + an
|s+ an|2

− 1
an

)
, (4)

since ζ′(ρ1) = 0 as well. We should first like to put a bound on
∑ 1

ρ1
(in this series it

is understood that the terms from ρ1 and ρ1 are grouped together). At s = 6, Eq. (4)
reads

ζ′′

ζ′
(6) =

ζ′′

ζ′
(0) − 12

5
+
∑
ρ1

6− β1

(6− β1)2 + γ2
1

+
∑
ρ1

β1

β2
1 + γ2

1

−
∑
n

6
an(an + 6)

. (5)

It is known that ζ′′

ζ′ (0) = 2.183..(see [1]), and ζ′′

ζ′ (6) = −0.773... Also

∑
n

6
an(an + 6)

<

∞∑
n=1

6
2n(2n+ 6)

=
11
12

.

91



YILDIRIM

Since the least |γ1| is 23.3.. (see [7]), for all ρ1 we have

6− β1

(6− β1)2 + γ2
1

>
β1

β2
1 + γ2

1

.

Plugging all these in (5), it follows that

∑
ρ1

1
ρ1

< 0.185 (6)

(from Spira’s list of ρ1 with |γ1| < 100 one calculates
∑ 1

ρ1
> 0.0249).

We now examine the value of < ζ
′′

ζ′ (s) in the region 0 ≤ σ ≤ 1
2 , |t| ≥ 100. If ever a

zero of ζ′ exists on the critical line, this region is to be modified by deleting an arbitrarily

small neighbourhood around such a zero. For any s in our region,
2(1− σ)
|s− 1|2 <

1
5000

and

< 1
s− ρ1

< 0 for all ρ1 (on RH), and also

∑
n

( σ + an
|s+ an|2

− 1
an

)
≤
∑
n

−104

an((an + 1
2 )2 + 104)

<

∞∑
n=2

−104

2n((2n+ 1
2 )2 + 104)

<
1
2

(
1 + ψ(1)− <ψ(

5
4

+ 50i)
)

+
=ψ(5

4 + 50i)
400

< −1.74. (7)

Together with (6), these estimates used in (4) give < ζ
′′

ζ′ (s) < −1.37 at all points of our
region. 2

Notice that ζ′′(s) can be zero on the critical line only at a multiple zero (of at least
third order) of ζ(s) if ever this exists.

Theorem 2. (unconditional) There is only one pair of nonreal zeros of ζ′′(s) in the
left half-plane.
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To prove Theorem 2 we shall consider the change in the argument of ζ′′

ζ′ (s) as s goes
around the rectangle R with corners at ±iN, σN ± iN , where σN = −2N − 2 with an
arbitrarily large N ∈ N. The reason behind this choice of σN will be clear after the
following lemma.

Lemma 1. −an = −2n− 2 +
1

logn
+ O(

1
log2 n

), as n→∞.

Proof. Differentiating the functional equation (2) we have

ζ′(1− s) = ζ(1− s)
[
log 2π +

π

2
tan

πs

2
− ψ(s) − ζ′

ζ
(s)
]
, (8)

so we see that ζ′(1 − σ) = 0 with σ > 1 if

log 2π +
π

2
tan

πσ

2
− ψ(σ) − ζ′

ζ
(σ) = 0 . (9)

We are interested in the situation when σ →∞, in which case we use

ψ(σ) = log σ − 1
2σ

+O(
1
σ2

) , (10)

ζ′

ζ
(σ) = −(

log 2
2σ

+
log 3
3σ

+
log 2
4σ

+ . . .) = O(
1
σ2

) . (11)

Thus as σ→∞, (9) becomes

π

2
tan

πσ

2
= log

σ

2π
− 1

2σ
+O(

1
σ2

) .

Since the right-hand side tends to ∞, to maintain equality we must have σ tend to ∞
through values close to and to the left of odd integers. So the negative zeros of ζ′ lie
slightly to the right of negative even integers, i.e.

−an = −2n− 2 + ε(n) , (ε(n) > 0) .

Carrying this out in more detail, taking σ = 2n+ 3− ε(n), we have

π

2
tan

πσ

2
=

1
ε(n)

− π2ε(n)
12

+O(ε3(n)) .
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Thus we find

ε(n) =
1

logn
+O(

1
log2 n

),

and ε(n) < 1 for n ≥ 3. 2

Note that differentiation of (2) also gives

ζ′(−2k) = (−1)kπ(2π)−(2k+1)(2k)!ζ(2k + 1). (12)

Next we observe that ζ′′

ζ′ (−σN ) < 0 for all sufficiently large N . For, differentiating the
functional equation twice, we get for k ≥ 1,

ζ′′(−2k) = (−1)k
(2k)!

(2π)2k

[
ζ(2k + 1)(log 2π − ψ(2k + 1))− ζ′(2k + 1)

]
(13)

and so we have

ζ′′

ζ′
(−2k) = 2

(
log 2π − ψ(2k + 1)− ζ′

ζ
(2k + 1)

)
< 0, (k ≥ 3). (14)

Proof of Theorem 2. Inside R there are exactly N zeros of ζ′ (all real), so by Rolle’s
theorem there must be at least N − 1 real zeros of ζ′′. We also know that there exist
2κ, κ ≥ 1, nonreal zeros of ζ′′ inside R. Call the number of zeros of ζ(i) in R as Zi. By
the argument principle we have

1
2π

∆R arg
ζ′′

ζ′
(s) = Z2 − Z1 ≥ N − 1 + 2κ−N = 2κ− 1 .

If it is shown that arg ζ′′

ζ′ (s) changes by 2π as s makes one counterclockwise tour of R,
then Theorem 2 is proved. It would also follow that between consecutive negative zeros
of ζ′, ζ′′ vanishes exactly once.

Equation (4) may be rewritten as

<ζ
′′

ζ′
(σ + it) = K +

2(1− σ)
(1− σ)2 + t2

+
∑
n

( (σ + an)
(σ + an)2 + t2

− 1
an

)
+
∑
ρ1

σ − β1

(σ − β1)2 + (γ1 − t)2
, (15)

where K =
ζ′′

ζ′
(0)− 2 +

∑
ρ1

1
ρ1

and 0.185 < K < 0.368.
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First consider the left edge of R where σ = σN = −2N − 2, |t| ≤ N . Here

2(1− σ)
(1− σ)2 + t2

= O(
1
N

), (16)

and −2N − 5 ≤ σN − β1 ≤ −2N − 2, so that (writing
∑
ρ1

for the last term of (15))

−(2N + 5)
∑
γ1

1
(2N + 2)2 + (γ1 − t)2

<
∑
ρ1

< −(2N + 2)
∑
γ1

1
(2N + 5)2 + (γ1 − t)2

−(2N + 5)
( ∑
|γ1−t|<2N+2

1
(2N + 2)2

+
∑

|γ1−t|≥2N+2

1
(γ1 − t)2

)

<
∑
ρ1

< −(2N + 2)
( ∑
|γ1−t|<2N+5

1
2(2N + 5)2

+
∑

|γ1−t|≥2N+5

1
2(γ1 − t)2

)
.

The sums over γ1 are evaluated in a standard way using the result of Berndt mentioned
in the introduction, giving

− 2
π

logN .
∑
ρ1

σ − β1

(σ − β1)2 + (γ1 − t)2
. − 1

π
logN. (17)

Now consider the sum over n in (15) for σN ≤ σ < 0, splitting it into two parts: σ+an ≤ 0
(the finite part) and σ+an > 0 (the infinite part). The finite part is negative and attains
its maximum at |t| = N . We have

∑
an≤−σ

( (σ + an)
(σ + an)2 + N2

− 1
an

)
≤ −

∑
an≤−σ

1
an

+ O(1)

≤ −
∑

n<d−σ2 e

1
2n+ 2

+ O(1)

= −1
2

log(1 − σ

2
) +O(1) (18)

(In (18) the sums over an are void if −σ < a1, and the sum over n is void if σ > −2. In
these cases the O(1)-term takes care of things). Thus on the left edge of R the finite part

95



YILDIRIM

is always less than −1
2 logN + O(1). On the left edge of R the infinite part is maximum

when t = 0, and then by Lemma 1

∞∑
n=N+1

( 1
σN + an

− 1
an

)
<

∞∑
n=N+1

( 1
2(n−N) − 2

logN

− 1
2n+ 2

)

=
1
2

∞∑
m=1

( 1
m− 1

logN

− 1
m+ N + 1

)
=

1
2

(
ψ(N + 2) − ψ(1 − 1

logN
)
)

≤ 1
2

logN +O(1) . (19)

Adding up the results of (16)-(19) in (15) we have on the left edge of R

<ζ
′′

ζ′
(σN + it) . − 1

π
logN (|t| ≤ N). (20)

On σ + iN, σN ≤ σ < 0 we rewrite (15) as

<ζ
′′

ζ′
(σ + iN) = K +

∑
an>−σ

+
∑

an≤−σ
+
∑
ρ1

+O(
1
N

) ,

where the sum over ρ1 takes negative values, and the finite sum was estimated in (18).
Now observe that for σ < 0

∑
an>−σ

( σ + an
(σ + an)2 +N2

− 1
an

)
= −(σ2 + N2)

∑
an>−σ

1
an((σ + an)2 +N2)

− σ
∑

an>−σ

1
(σ + an)2 +N2

< −(σ2 + N2)
∞∑

n=d−σ2 e

1
(2n+ 2)[(σ + 2n+ 2)2 +N2]

+O(1)− σ
∞∑
n=0

1
(2n)2 + N2

.

For σN ≤ σ < 0,

−σ
∞∑
n=0

1
(2n)2 + N2

= O(1),
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and we calculate

−(σ2 + N2)
∞∑

n=d−σ2 e

1
(2n+ 2)[(σ + 2n+ 2)2 + N2]

≤ −(σ2 + N2)
8

∞∑
m=1

1
(m− σ

2 )(m2 + (N2 )2)

=
∞∑
m=1

(
−1

2
1

m− σ
2

− σ − iN
4Ni

1
m+ iN

2

+
σ + iN

4Ni
1

m− iN
2

)
=

1
2
ψ(1 − σ

2
) +

σ

2N
=ψ(1 +

iN

2
)− 1

2
<ψ(1 +

iN

2
).

So for σN ≤ σ < 0

∑
an>−σ

( σ + an
(σ + an)2 +N2

− 1
an

)
<

1
2
ψ(1− σ

2
)− 1

2
<ψ(1 +

iN

2
) + O(1)

=
1
2

log(1− σ

2
)− logN

2
+O(1). (21)

Hence on σ ± iN, σN ≤ σ < 0 we have

<ζ
′′

ζ′
(σ + iN) < −1

2
logN + O(1). (22)

It remains to consider the edge on the imaginary axis, [−iN, iN ]. Here,

<ζ
′′

ζ′
(it) =

ζ′′

ζ′
(0)− 2 +

2
1 + t2

+
∑
n

−t2
an(a2

n + t2)
+
∑
ρ1

1
ρ1

+
∑
γ1>0

( −β1

(β2
1 + (γ1 − t)2)

+
−β1

(β2
1 + (γ1 + t)2)

)
, (23)

=ζ
′′

ζ′
(it) =

2t
1 + t2

−
∑
n

t

a2
n + t2

+
∑
γ1>0

2t(γ2
1 − β2

1 − t2)
(β2

1 + (γ1 − t)2)(β2
1 + (γ1 + t)2)

. (24)

The sums over an can be bounded in a similar way to (7), but keeping in mind that
2.6 < a1 < 2.8, 4.8 < a2 < 5, and 2n + 1 < an < 2n + 2 for n ≥ 3 (this can be verified
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from (8)) in order to get sharper inequalities that will allow us below to determine the

signs of < ζ
′′

ζ′ (it) and = ζ
′′

ζ′ (it) at certain points. Writing

A(t) = − t2

2.8(2.82 + t2)
− t2

5(52 + t2)
+

3∑
n=1

t2

2n(2n2 + t2)

B(t) = − t2

2.6(2.62 + t2)
− t2

4.8(4.82 + t2)
+

t2

3(32 + t2)
+

t2

5(52 + t2)

we have

B(t) +
1
2

(ψ(
3
2

)− <ψ(
3
2

+
it

2
)) (25)

<
∑
n

−t2
an(a2

n + t2)
< A(t) +

1
2

(ψ(1) −<ψ(1 +
it

2
)).

Similarly, writing

C(t) = − t

2.62 + t2
− t

4.82 + t2
+

t

32 + t2
+

t

52 + t2

D(t) = − t

2.82 + t2
− t

52 + t2
+

t

22 + t2
+

t

42 + t2
+

t

62 + t2

we have

C(t)− 1
2
=ψ(

3
2

+
it

2
) <

∑
n

−t
a2
n + t2

< D(t) − 1
2
=ψ(1 +

it

2
). (26)

Using (25) and (6) in (23), where taking 0 as an upper bound for the sum over γ1 > 0, it

is seen that for t > 23, < ζ
′′

ζ′ (it) < 0. In (23) we combine the sums over ρ1 and γ1 > 0 as

∑
γ1>0

2t2β1(β2
1 − 3γ2

1 + t2)
(β2

1 + γ2
1)(β2

1 + (γ1 − t)2)(β2
1 + (γ1 + t)2)

,

and we see that for |t| < 40 each term is negative (since γ1 > 23.298 and β1 < 3 ([7])).
Also, the derivative of a term of the sum over γ1 in (23) is

−4tβ1[−β4 + (γ2 − t2)(2β2 + t2 + 3γ2)]
[β2

1 + (γ1 − t)2]2[β2
1 + (γ1 + t)2]2

,
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which is negative for t ∈ [0, 23]. So for t ∈ [0, 23] all the terms in the right-hand side of

(23) are decreasing functions of t. Hence < ζ
′′

ζ′ (it) = 0 at only one pair of conjugate

points on the imaginary axis. As for = ζ
′′

ζ′ (it), the sum over ρ1 in (24) is positive

for 0 < t ≤ 23. When t → 0± we have = ζ
′′

ζ′ (it) → 0± (lim
t→0

=ψ(1 + it
2

)
t

=
π2

12
and

lim
t→0

=ψ(3
2 + it

2 )
t

=
π2

2
− 4). From eqs. (23)-(26) we see that

<ζ
′′

ζ′
(i) > K + 1 + B(1) +

1
2

[ψ(
3
2

)−<ψ(
3
2

+
i

2
)] +

∑
γ1>0

−4β1

(β2
1 + γ2

1)

=
ζ′′

ζ′
(0)− 1 + B(1) +

1
2

[ψ(
3
2

)− <ψ(
3
2

+
i

2
)]−

∑
ρ1

1
ρ1

> 0,

=ζ
′′

ζ′
(i) > 1 + C(1)− 1

2
=ψ(

3
2

+
i

2
) > 0,

<ζ
′′

ζ′
(3.5i) <

ζ′′

ζ′
(0)− 2 +

2
13.25

+ A(3.5) +
1
2

[ψ(1)−<ψ(1 + 1.75 i)] < 0,

=ζ
′′

ζ′
(3.5i) >

7
13.25

+ C(3.5)− 1
2
=ψ(

3
2

+ 1.75 i) + 0.0197 > 0,

where 0.0197 is a lower bound for the first two terms of the sum over γ1 > 0 in (24) coming
from the first two zeros of ζ′ at approximately 2.46..+i ·23.298.. and 1.29+i ·31.71.. ([7]).

As t increases from 3.5, = ζ
′′

ζ′ (it) may change sign, but < ζ
′′

ζ′ (it) will always be negative.

Thus as t moves up on the imaginary axis, the image curve of ζ′′

ζ′
(it) includes just one

counterclockwise loop around the origin and the change in arg ζ′′

ζ′ is roughly 2π. This
completes the proof of Theorem 2. 2

The graphs of ζ(k+1)

ζ(k) (it) for |t| ≤ 40 and k = 0, 1, 2, 3 are included at the end of this

paper. These graphs were plotted by M. Özkan in his senior project, using the expressions
from the Euler-Maclaurin sum formula
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(−1)kζ(k)(s) =
N−1∑
n=1

logk n
ns

+
logkN
2Ns

+N1−s
k∑
j=0

Ckj
logk−j N

(s− 1)j+1

+
m∑
ν=1

[ k∑
j=0

(
k

j

)
Π(k−j)
ν (s)(−1)k−j logj N

]
N1−s−2ν +Rk, (27)

where

Ckj =
k!

(k − j)! , Π(t)
ν (s) =

B2ν

(2ν)!
dt

dst

2ν−2∏
j=0

(s+ j),

and the error term Rk is neglected in the computations.
In the proof of Theorem 2 one can also notice that if one starts from a point on the

negative real axis where < ζ
′′

ζ′ (s) > 0 and moves vertically away from the real axis, soon

one hits a point where < ζ
′′

ζ′
(s) = 0 and further away from the axis < ζ

′′

ζ′
(s) < 0.

3. Zeros of ζ′′(s) on the negative real axis

In order to proceed to the investigation of ζ′′′(s) some information on the negative
zeros of ζ′′(s) - which will be denoted by −bn, n ≥ 1 - is needed. The zeros of ζ′′(s)
in the right half-plane will be denoted by ρ2 = β2 + iγ2. From Eq. (13) we see that
ζ′′(−2) < 0, ζ′′(−4) > 0, and as of k = 3 the quantity in brackets in (13) will always be
negative so that sgn [ζ′′(−2k)] = (−1)k+1, (k ≥ 3). Similar to (13) we have for k ≥ 1

ζ′′(1− 2k) = (−1)k
2Γ(2k)ζ(2k)

(2π)2k
[log2 2π − (

π

2
)2 + ψ′(2k) + (ψ(2k))2 +

ζ′′

ζ
(2k)

+2ψ(2k)(
ζ′

ζ
(2k)− log 2π)− 2

ζ′

ζ
(2k) log 2π]. (28)

In (28), as k increases, the term (ψ(2k))2 will eventually dominate and the quantity in
brackets will always be positive. This happens for k ≥ 16. We find that

bn ∈


[3, 4] n = 1
[2n+ 2, 2n+ 3] 2 ≤ n ≤ 13
[2n+ 3, 2n+ 4] n ≥ 14.

(29)
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Using MAPLE-V the first few negative zeros of ζ′′ are found to be

b1 = 3.595.., b2 = 6.028.., b3 = 8.278.., b4 = 10.446.., (30)

b5 = 12.568.., b6 = 14.662.., b7 = 16.736.., b8 = 18.798..,

b9 = 20.849.., b10 = 22.893.., b11 = 24.931..

Lemma 2. −bn = −2n− 4 +
2

logn
+ O(

1
log2 n

), as n→∞.

Proof. Differentiating (8) gives

−ζ
′′

ζ
(1− s) + (

ζ′

ζ
(1− s))2 = (

π

2
)2(1 + tan2 πs

2
) − ψ′(s) − (

ζ′

ζ
(s))′. (31)

We put ζ′′(1− σ) = 0, σ > 1 and use (8) to write(
log 2π +

π

2
tan

πσ

2
− ψ(σ) − ζ′

ζ
(σ)
)2

= (
π

2
)2(1 + tan2 πσ

2
)− ψ′(σ) − (

ζ′

ζ
(σ))′.

For large σ, using (10), (11) and

ψ′(σ) =
1
σ

+ O(
1
σ2

),
ζ′′

ζ
(σ) = O(

1
σ2

) (32)

this is simplified to

[log
σ

2π
− (π +O(

1
σ log σ

) tan
πσ

2
+ O(

1
σ

)] log
σ

2π
= (

π

2
)2. (33)

It follows that log
σ

2π
≈ π tan

πσ

2
, and σ must be close to and to the left of an odd integer.

So we plug σ = 2n+5−δ(n), (δ(n) > 0) in (33) and solving for δ(n) we obtain the result. 2

4. Nonreal zeros of ζ′′′(s) in σ < 1
2

Similar to (3) we have

ζ′′′

ζ′′
(s) =

ζ′′′

ζ′′
(0)− 3− 3

s− 1
+
∞∑
n=1

( 1
s+ bn

− 1
bn

)
+
∑
ρ2

( 1
s− ρ2

+
1
ρ2

)
+
( 1
s− b0

+
1
b0

+
1

s− b0
+

1
b0

)
. (34)
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From Spira [7] we know that β2 < 5 for all ρ2, and analogous to (4) (by using (34) at
s = 10) we find

∑
ρ2

1
ρ2

< 0.12 (35)

(from Spira’s list of ρ2 with |γ2| < 100 one calculates
∑ 1

ρ2
> 0.037).

Theorem 3. (unconditional) There is only one pair of nonreal zeros of ζ′′′(s) in the
left half-plane.

Proof. Consider ∆R arg ζ′′′

ζ′′ (s) where R is as in the proof of Theorem 2, but with
σN = −2N − 4. From our results above, inside R there are N real zeros and two nonreal
zeros of ζ′′. By Rolle’s Theorem there must be at least N − 1 real zeros of ζ′′′ here. Let
2κ be the number of nonreal zeros of ζ′′′(s). Then

1
2π

∆R arg
ζ′′′

ζ′′
(s) = Z3 − Z2 ≥ (N − 1 + 2κ)− (N + 2) = 2κ− 3 .

We will show that ∆R arg ζ′′′

ζ′′ (s) = −2π in one tour of the rectangle, implying κ ≤ 1.

M. Özkan computed that ζ′′′(s) has zeros at −2.1101.. ± i · 2.5842.., so κ = 1. This

computation was based upon evaluating
∮
ζ(iv)

ζ′′′
(s) ds around various rectangles. The

Euler-Maclaurin formula (27) was used with N = 10 and m = 6 for the integrand. The
line integrations were then done by employing MATHEMATICA.

On the three sides of R in the left half-plane the situation is the same as for < ζ
′′

ζ′ , and
there is no need to repeat the arguments in the proof of Theorem 2. On the imaginary
axis we have, by (34),

<ζ
′′′

ζ′′
(it) =

ζ′′′

ζ′′
(0)− 3 +

3
1 + t2

+
∞∑
n=1

( bn
b2n + t2

− 1
bn

)
+
∑
ρ2

1
ρ2

(36)

+
∑
γ2>0

( −β2

β2
2 + (γ2 − t)2

+
−β2

β2
2 + (γ2 + t)2

)

+
2<b0
|b0|2

− <b0
( 1

(<b0)2 + (t− =b0)2
+

1
(<b0)2 + (t+ =b0)2

)
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=ζ
′′′

ζ′′
(it) =

3t
1 + t2

−
∞∑
n=1

t

b2n + t2
+
∑
ρ2

γ2 − t
β2

2 + (γ2 − t)2
(37)

− t −=b0
(<b0)2 + (t− =b0)2

− t+ =b0
(<b0)2 + (t+ =b0)2

.

In (36), bounding the sum over γ2 trivially by 0, and using (35), the value of b0 and
ζ′′′

ζ′′
(0) = 2.993.. ([1]), we have

<ζ
′′′

ζ′′
(it) < 0.0595 +

3
1 + t2

+
∞∑
n=1

( bn
b2n + t2

− 1
bn

)
(38)

−<b0
( 1

(<b0)2 + (t −=b0)2
+

1
(<b0)2 + (t+ =b0)2

)
.

We see that for t ≥ =b0 the right-hand side is a strictly decreasing function of t. So, if
we find a value t0 > =b0 making the right-hand side of (38) negative, then we know that

for t ≥ t0, < ζ
′′′

ζ′′ (it) < 0. To bound the sums over bn’s, using (29) and (30) we take b̂n

and b̃n for 1 ≤ n ≤ 4 satisfying b̂n < bn < b̃n and define

a(t) =
4∑

n=1

−t2

b̃n(b̃2n + t2)
+

6∑
n=1

t2

2n((2n)2 + t2)

b(t) =
4∑

n=1

−t2

b̂n(b̂2n + t2)
+

5∑
n=1

t2

2n((2n)2 + t2)

c(t) =
4∑

n=1

−t
b̃2n + t2

+
6∑

n=1

t

(2n)2 + t2

d(t) =
4∑

n=1

−t
b̂2n + t2

+
5∑

n=1

t

(2n)2 + t2
.

Then, similar to (25) and (26) we have

b(t) <
∞∑
n=1

−t2
bn(b2n + t2)

− 1
2

(
ψ(1) −<ψ(1 +

it

2
)
)
< a(t), (39)

d(t) <
∞∑
n=1

−t
b2n + t2

+
1
2
=ψ(1 +

it

2
) < c(t). (40)
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Now by sheer calculation we find that t0 = 5.2 is admissible, and we only need to consider

0 ≤ t ≤ 5.2 to determine ∆R arg ζ′′′

ζ′′
(s). The quadrants where ζ′′′

ζ′′
(it) lies for various t’s

can be found from the foregoing expressions (e.g. ζ′′′

ζ′′ (i=b0) is in the first quadrant). Also

note that as t→ 0+, ζ
′′′

ζ′′ (it)→
ζ′′′

ζ′′ (0) from the first quadrant.

When using (36) to obtain a lower bound for < ζ
′′′

ζ′′
(it) observe that

−β2

β2
2 + (γ2 − t)2

≥ −2β2

β2
2 + γ2

2

(0 ≤ t ≤ min |γ2|(1−
1√
2

)) ,

and since ([7]) the least |γ2| is 23.27.., for t ≤ 6.8 the sum over γ2 in (36) is > −3
2

∑
ρ2

1
ρ2

>

−0.18. The sum over ρ2 in (37) is equal to

2t
∑
γ2>0

γ2
2 − β2

2 − t2
[β2

2 + (γ2 − t)2][β2
2 + (γ2 + t)2]

, (41)

all of the terms in this sum being positive for

0 < t <
√

(min γ2)2 − (max β2)2,

i.e. certainly for 0 < t < 22.7. A trivial lower bound for (41) is 0, and one can do better
by including the terms corresponding to known values of ρ2 . When using (37) to obtain

an upper bound for = ζ
′′′

ζ′′ (it), the sum over ρ2 presents some difficulty. The quantity in

(41) is less than

2t
∑
γ2>0

γ2
2 − t2

(γ2 − t)2(γ2 + t)2
= 2t

∑
γ2>0

1
γ2

2 − t2
< 2.12t

∑
γ2>0

1
γ2

2

,

where the last inequality holds for 0 ≤ t ≤ 5.2. However we do not know the value of the
last sum. If we cheat and assume RH to the effect that β2 ≥ 1

2 , then for 0 < t ≤ 5.2 we
have
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∑
γ2>0

2t(γ2
2 − β2

2 − t2)
[β2

2 + (γ2 − t)2][β2
2 + (γ2 + t)2]

< 2t
∑
γ2>0

1
β2

2 + (γ2 − t)2

≤ 2t
∑
γ2>0

2β2

β2
2 + γ2

2

β2
2 + γ2

2

β2
2 + (γ2 − t)2

< 2t
(maxβ2)2 + (minγ2)2

(min γ2 − t)2

∑
ρ2

1
ρ2
,

and we may use (35) to get an upper bound. We do not assume RH, and instead appeal

to the graph of ζ′′′

ζ′′
(it). We see that as t moves up on the imaginary axis on our contour

∆ arg ζ′′′

ζ′′ is roughly −2π. This completes the proof. 2

Next consider the values of < ζ
′′′

ζ′′ (s), in the region 0 ≤ σ < 1
2 , |t| > T . If we assume

RH, then by Theorem 1, < 1
s− ρ2

< 0 for all ρ2. So from (34), when T ≥ |<b0| + |=b0|,

(bounding the sums over bn as in (39))

<ζ
′′′

ζ′′
(s) <

ζ′′′

ζ′′
(0)− 3 +

3
1 + T 2

+
∑
ρ2

1
ρ2

+ g(T ) +
2<b0
|b0|2

+

+(
1
2
− <b0)

( 1
(T − =b0)2

+
1

(T + =b0)2

)
+

+
2T 2

1 + 4T 2

(
ψ(1)− <ψ(

5
4

+
iT

2
) +

1
4T
=ψ(

5
4

+
iT

2
)
)
,

where

g(t) =
4∑

n=1

−t2

b̃n[(1
2 + b̃n)2 + t2]

+
4∑

n=1

t2

(2n+ 4)[(2n+ 9
2
)2 + t2]

+
t2

8[(5
4 )2 + t2]

+
t2

16[(9
4 )2 + t2]

.

Thus it is seen that < ζ
′′′(s)
ζ′′(s) < 0 in 0 ≤ σ < 1

2 , |t| ≥ 10. The region with |t| < 10 may

be swept by integrating ζ(iv)

ζ′′′ (s) around the rectangle, employing the Euler-Maclaurin
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formulae (27) for the integrand. This computation was carried out by H.E. Yıldırım and
no zeros of ζ′′′(s) were found. Hence we have

Theorem 4. The Riemann Hypothesis implies that ζ′′′(s) has no zeros in the strip
0 ≤ σ < 1

2 .

Armed with the methods and results of this paper one may proceed to the investigation
of ζ(iv)(s).

Graphs

The graphs of ζ(k+1)

ζ(k) (it), (k = 0, 1, 2, 3) are plotted below for |t| ≤ 40. The darker

parts are for −40 ≤ t ≤ 0.
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ζ′′′
(it)

ζ′′ -1-2 1 3
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