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Abstract

In the paper we obtain a local zero-two law for positive contractions of L1-spaces,

which we use in order to offer new proofs of a theorem of Orey concerning Markov

chains, and of the strong asymptotic stability of certain Markov operators that have

appeared in the study of the Tjon-Wu equation and in connection with the Hannsgen

and Tyson model of the cell cycle.
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1. Introduction

Let (X, Σ, µ) be a measure space (the measure µ is not necessarily σ-finite).

A linear bounded operator T : L1(X, Σ, µ) → L1(X, Σ, µ) is called a positive con-

traction if T is positive (that is, Tf ≥ 0 whenever f ∈ L1(X, Σ, µ), f ≥ 0) and T is a

contraction (i.e., ‖ T ‖≤ 1).

The starting point for the results of this paper is a beautiful theorem of Ornstein and

Sucheston (Theorem 1.1 of [10]) known as the zero-two law for positive contractions of

L1-spaces. For our purposes the theorem can be stated as follows:

Theorem 1.1. Let T: L1(X, Σ, µ) → L1(X, Σ, µ) be a positive contraction. If there

exists ε ∈ R, ε > 0 such that
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limn→∞
‖ Tn+1u− Tnu ‖

‖ u ‖ ≤ 2(1− ε)

for every u ∈ L1(X, Σ, µ), u 6= 0, then

limn→∞ ‖ Tn+1u− Tnu ‖= 0

for every u ∈ L1(X, Σ, µ).

A linear bounded operator T : L1(X, Σ, µ)→ L1(X, Σ, µ) is called a Markov operator

if T is a positive operator and ‖ Tf ‖=‖ f ‖ for every f ∈ L1(X, Σ, µ), f ≥ 0. (Clearly, a

Markov operator is a positive contraction.)

Now, let T : L1(X, Σ, µ)→ L1(X, Σ, µ) be a Markov operator.

Given A ∈ Σ, set TA = 1AT1A and

δA = sup

{
limn→∞

‖ Tn+1u− Tnu ‖
‖ u ‖ | u ∈ L1(X, Σ, µ), u1A = u, u 6= 0

}
.

We say that A is a strong zero set (for T ) if the sequence of positive contractions

(TnA)n∈N converges strongly to zero.

Given ρ ∈ R, 0 ≤ ρ ≤ 1, we say that T is of 2ρ type for the zero-two law on A (to

shorten, we write that T is 2ρ; 0-2 on A) if δA ≤ 2ρ.

Note that for any measurable subset A of X it follows that T is 2; 0-2 on A.

The main result of the paper is the following theorem:

Theorem 1.2. Let T : L1(X, Σ, µ) → L1(X, Σ, µ) be a Markov operator. If there

exists A ∈ Σ such that X \ A is a strong zero set, and such that T is 2η ; 0-2 on A for

some η ∈ R, 0 ≤ η < 1, then limn→∞ ‖ Tn+1u− Tnu ‖= 0 for every u ∈ L1(X, Σ, µ).

We call Theorem 1.2 a “local” zero-two law because the theorem has the following

consequence: if T : L1(X, Σ, µ)→ L1(X, Σ, µ) is a Markov operator and if A ∈ Σ is such

that X \A is a strong zero set for T , then

sup

{
limn→∞

‖ Tn+1u− Tnu ‖
‖ u ‖ | u ∈ L1(X, Σ, µ), u1A = u, u 6= 0

}
= 0 or 2,
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and because one may think of Theorem 1.1 as a “global” zero-two law for positive

contractions of L1-spaces.

We will use the main result in order to obtain a new proof of a theorem of Orey [9]

(see also Ornstein and Sucheston [10]) and new proofs of the strong asymptotic stability

of the following two Markov operators:

- and operator that has appeared in the study of a special case of the linear Boltzmann

equation known as the linear Tjon-Wu equation (the operator is discussed in detail in the

book by Lasota and Mackey [6]; see also Lasota, Li, and Yorke [5] and Malczak [8]);

- an operator that was defined in connection with a model of the cell cycle in biology

created by Hannsgen and Tyson [3] (see also Gacki and Lasota [2], Komorowski and

Tyrcha [4], Lasota and Mackey [6], Malczak [8], and Tyrcha [11]).

The paper is organized as follows: in the next secton (Section 2) we prove the main

result of the paper (Theorem 1.2) and discuss several consequences; the results of Section

2 are used to obtain a new proof of a theorem of Orey [9] in Section 3, and to obtain

(in Section 4) new proofs of the asymptotic stability of the Markov operators defined by

stochastic kernels that we mentioned earlier (an operator that stems from the study of

the linear Tjon-Wu equation, and another one which appeared in the study of the cell

cycle).

Throughout the paper we will use results and terminology from Foguel [1], Lasota and

Mackey [6], Lin [7], Ornstein and Sucheston [10].

2. A Zero-Two Law for Complements of Strong Zero Sets

Let (X, Σ, µ) be a measure space (not necessarily σ-finite) and let T : L1(X, Σ, µ)→
L1(X, Σ, µ) be a Markov operator.

The next lemma is a reformulation of Lemma 2.2 of Lin [7].

Lemma 2.1 Let A ∈ Σ, and let u ∈ L1(X, Σ, µ) be such that u ≥ 0, u1X\A = u. Then

there exists a sequence (gn)n∈N of positive elements of L1(X, Σ, µ) such that:

(a) gn1A = gn ∀n ∈ N;

(b) Σnk=1T
n−kgk + TnX\Au = Tnu for every n ∈ N;

(c) ‖ Σnk=1gk ‖=‖ Tnu− TnX\Au ‖ for every n ∈ N.
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Proof. Set gn = 1ATTn−1
X\Au for every n ∈ N. Clearly, gn ≥ 0 and gn1A = gn for every

n ∈ N.

Since g1+TX\Au = Tu, and since Σnk=1T
n−kgk+TnX\Au = Σn−1

k=1Tn−kgk+1ATTn−1
X\Au+

TnX\Au = Σn−1
k=1Tn−kgk + TTn−1

X\Au = T (Σn−1
k=1Tn−1−kgk + Tn−1

X\Au), by an induction argu-

ment it follows that (b) holds true for every n ∈ N.

Finally, taking into consideration that (b) is true it follows that

‖ Σnk=1gk ‖= Σnk=1 ‖ Tn−kgk ‖=‖ Σnk=1T
n−kgk ‖=‖ Tnu− TnX\Au ‖ for every n ∈ N.

2

Proof of Theorem 1.2.

We first note that the theorem is trivially true if µ(A) = 0 (if µ(A) = 0, then X is a

strong zero set); thus, we may and will assume that µ(A) > 0.

Next, note that if µ(X \A) = 0, then the conclusion of the theorem follows from the

zero-two law for positive contractions of L1-spaces of Ornstein and Sucheston (Theorem

1.1); therefore, we may and do assume that µ(X \A) > 0.

Let ρ ∈ R, 0 < ρ < 1 − η. Since T is 2η; 0-2 on A, it follows that limn→∞ ‖
Tn+1u− Tnu ‖< 2(1− ρ) ‖ u ‖ for every u ∈ L1(X, Σ, µ), u1A = u, u 6= 0.

Using again Theorem 1.1, we infer that in order to prove that limn→∞ ‖ Tn+1u −
Tnu ‖= 0 for every u ∈ L1(X, Σ, µ), it is enough to prove that for every v ∈ L1(X, Σ, µ), v ≥
0, v 6= 0 there exists n0 ∈ N such that ‖ Tn0+1v − Tn0v ‖≤ 2(1− ρ

2 ) ‖ v ‖.
To this end, let v ∈ L1(X, Σ, µ), v ≥ 0, v 6= 0. Set vA = v1A and vX\A = v1X\A.

It follows that there exists n1 ∈ N such that ‖ Tn+1vA − TnvA ‖≤ 2(1− ρ) ‖ vA ‖ for

every n ≥ n1.

Since X \A is a strong zero set, it follows that there exists n2 ∈ N, n2 ≥ n1 such that

‖ TnX\AvX\A ‖≤ ρ
8 ‖ vX\A ‖ for every n ≥ n2.

Set gk = 1ATT k−1
X\AvX\A for every k ∈ N .

Since gk1A = gk for every k ∈ N, it follows that there exists n3 ∈ N, n3 ≥ n2 such

that ‖ Tn3+1gk − Tn3gk ‖≤ 2(1− ρ) ‖ gk ‖ for every k = 1, 2, . . . , n2.
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Set n0 = n2 + n3. Using (b) and (c) of Lemma 2.1, we obtain that

‖ Tn0+1v − Tn0v ‖≤‖ Tn0+1vA − Tn0vA ‖

+ ‖ (Tn0+1 − Tn0)vX\A ‖≤ 2(1− ρ) ‖ vA ‖

+ ‖ (Tn3+1 − Tn3)(Σn2
k=1T

n2−kgk + Tn2
X\AvX\A) ‖

≤ 2(1− ρ) ‖ vA ‖ +(Σn2
k=1 ‖ Tn3+1gk − Tn3gk ‖

+2 ‖ Tn2
X\AvX\A ‖≤ 2(1− ρ) ‖ vA ‖ +2(1 − ρ)Σn2

k=1 ‖ gk ‖

+
ρ

4
‖ vX\A ‖= 2(1− ρ) ‖ vA ‖

+2(1− ρ) ‖ Tn2vX\A − Tn2
X\AvX\A ‖ +

ρ

4
‖ vX\A ‖

≤ 2(1− ρ) ‖ vA ‖ +2(1− ρ) ‖ vX\A ‖ +
ρ

4
‖ vX\A ‖

≤ 2(1− ρ

2
) ‖ vA ‖ +2(1− ρ

2
) ‖ vX\A ‖= 2(1− ρ

2
) ‖ v ‖ .

From now on, throughout this section, we will deal only with σ-finite measure spaces.

Thus, we assume given a σ-finite measure space (X, Σ, µ) (and a Markov operator T :

L1(X, Σ, µ)→ L1(X, Σ, µ)).

Following [10] we say that T is ergodic and conservative if Σ∞n=0T
nf = +∞ on X for

every f ∈ L1(X, Σ, µ), f ≥ 0, f 6= 0.

Lemma 2.2 Assume that T : L1(X, Σ, µ) → L1(X, Σ, µ) is ergodic and conservative.

Then any measurable subset A ∈ Σ such that µ(A) > 0 and µ(X \A) > 0 is a strong zero

set.

Proof. Let T ′ : L∞(X, Σ, µ)→ L∞(X, Σ, µ) be the dual of T , and set Σi = {B ∈ Σ |
T ′1B = 1B}. It is the custom to say that Σi is trivial if Σi contains only negligible and

complements of negligible sets. It is known (and not hard to prove) that T is ergodic and

conservative if and only if T is conservative (that is, X = C) and Σi is trivial. In other

words, the notions of “ergodic and conservative” of Ornstein and Sucheston’s paper [10]

and of Foguel’s book [1] agree. 2
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Now, let A ∈ Σ be such that µ(A) > 0 and µ(X \ A) > 0. Using the discussion on

p. 67 of [1] we obtain that ((1AT ′1A)n1X)n∈N∪{0} is a decreasing sequence of elements

of L∞(X, Σ, µ), and infn∈N∪{0} (1AT ′1A)n1X = 0.

By the Lebesgue dominated convergence theorem it follows that

limn→∞ ‖ TnAu ‖= limn→∞

∫
u((1AT ′1A)n1X)dµ

=
∫

limn→∞(u((1AT ′1A)n1X))dµ = 0

for every u ∈ L1(X, Σ, µ), u ≥ 0.

It follows that (TnA)n∈N∪{0} converges strongly to zero.

The operator T : L1(X, Σ, µ)→ L1(X, Σ, µ) is called completely mixing if limn→∞ ‖
Tnf ‖= 0 for every f ∈ L1(X, Σ, µ),

∫
fdµ = 0.

Theorem 1.2 has the following consequence:

Corollary 2.3. Assume that T is ergodic and conservative. If there exists A ∈
Σ, µ(A) > 0, and η ∈ R, 0 ≤ η < 1 such that T is 2η; 0-2 on A, then T is completely

mixing.

Proof. Lemma 2.2 implies that X \ A is a strong zero set. Thus, by Theorem 1.2

limn→∞ ‖ Tn+1u − Tnu ‖= 0 for every u ∈ L1(X, Σ, µ). Using Corollary 1.3 of [10] we

conclude that T is completely mixing. 2

The operator T : L1(X, Σ, µ)→ L1(X, Σ, µ) is called (strongly) asymptotically stable

if there exists g ∈ L1(X, Σ, µ), g ≥ 0, ‖ g ‖= 1 such that the sequence (Tnf)n∈N
converges in the norm topology of L1(X, Σ, µ) to

(∫
fdµ

)
· g for every f ∈ L1(X, Σ, µ).

Clearly, T is asymptotically stable if and only if T is completely mixing and there exists

u ∈ L1(X, Σ, µ), u ≥ 0, u 6= 0 such that Tu = u.

We conclude this section with two consequences of Theorem 1.1 which can be used in

studying the asymptotic stability of Markov operators.
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Corollary 2.4. Assume that T satisfies the following conditions:

(a) There exists u ∈ L1(X, Σ, µ), u > 0 on X such that Tu = u.

(b)
⋃
n∈N∪{0}{Tnf > 0} = X whenever f ∈ L1(X, Σ, µ), f ≥ 0, f 6= 0.

(c) There exists A ∈ Σ, µ(A) > 0, and η ∈ R, 0 ≤ η < 1 such that T is 2η; 0-2 on A.

Then T is asymptotically stable.

Proof. If (a) is satisfied, then T is conservative (that is, X = C); if both (a) and (b)

are satisfied, then T is ergodic and conservative. By Corollary 2.3 it follows that T is

completely mixing whenever (a), (b), and (c) are satisfied.

Using again (a) it follows that T is asymptotically stable. 2

Corollary 2.5. Assume that T satisfies (a) and (b) of Corollary 2.4, and that there

exists A ∈ Σ, µ(A) > 0, and η ∈ R, η > 0 such that ‖ (T 2g) ∧ (Tg) ‖≥ η for every

g ∈ L1(X, Σ, µ), g ≥ 0, ‖ g ‖= 1, g1A = g. Then T is asymptotically stable.

Proof. Since T is a positive contraction, it follows that limn→∞ ‖ Tn+1g − Tng ‖≤
‖ T 2g−Tg ‖=‖| T 2g−Tg |‖=‖ T 2g+Tg−2((T 2g)∧(Tg)) ‖ 2−2 ‖ (T 2g)∧(Tg) ‖≤ 2(1−η)

for every g ∈ L1(X, Σ, µ), g ≥ 0, ‖ g ‖= 1, g1A = g.

Thus, T is 2(1 − η); 0-2 on A. By Corollary 2.4, it follows that T is asymptotically

stable. 2

3. An Application to Markov Chains

Recall that a real valued matrix P = (pij)i,j∈N is called a Markovian matrix (or a

column stochastic matrix) if pij ≥ 0 ∀i, j and if Σipij = 1 for every j. Such a matrix

induces an operator on l1 = {(an)n∈N | an ∈ R ∀n, Σn | an |< +∞} denoted again by P.

Thus, P : l1 → l1, P ((an)n) =
(
Σ∞j=1pijaj

)
i∈N for every (an)n ∈ l1.

We will use the notation P n = (p(n)
ij )i,j. The values taken by the indices i and j are

called states in Markov chain terminology.

Theorem 3.1. (Orey [9]). Assume that the operator P : l1 → l1 defined by the

Markovian matrix P = (pij)i,j∈N is ergodic and conservative. If p
(n0+1)
k0i0

p
(n0)
k0i0

6= 0 for
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some i0, k0, n0 ∈ N, then P is completely mixing.

Proof. Since

‖ (P n0+1 − P n0)1{i0} ‖ =
∞∑
k=1

| p(n0+1)
ki0

− p
(n0)
ki0
|

≤
∞∑
k=1

(p(n0+1)
ki0

+ p
(n0)
ki0
− 2(p(n0+1)

k0i0
∧ (p(n0+1)

k0i0
∧ p

(n0)
k0i0

)

= 2− 2(p(n0+1)
k0i0

∧ p
(n0)
k0i0

< 2

it follows that T is 2η; 0-2 on {i0} for some η ∈ R, 0 ≤ η < 1. By Corollary 2.3, T is

completely mixing. 2

4. Applications to Operators Defined by Stochastic Kernels

Our goal in this section is to discuss the use of the results of Section 2 in the study

of the asymptotic stability of a certain type of Markov operators defined by stochastic

kernels. Thus, we will offer new proofs of the asymptotic stability of a Markov operator

that has appeared in the study of the linear Tjon-Wu equation and of another Markov

operator that was created in connection with a model of the cell cycle.

Let (X, Σ, µ) be a σ-finite measure space, let K : X ×X → R be a function which is

measurable with respect to the product σ-algebra Σ⊗Σ such that K(x, y) ≥ 0 for every

x, y ∈ X and
∫
X

K(x, y)dµ(x) = 1 for every y ∈ X. By Fubini’s theorem the operator

T : L1(X, Σ, µ) → L1(X, Σ, µ), (Tf)(x) =
∫

K(x, y)f(y)dy for every f ∈ L1(X, Σ, µ)

and x ∈ X is well-defined (that is, Tf ∈ L1(X, Σ, µ) for every f ∈ L1(X, Σ, µ)) and is a

stochastic operator. The function K is called a stochastic kernel.

Theorem 4.1. Assume that (X, Σ, µ) is a σ-finite measure space, that T : L1(X, Σ, µ)→
L1(X, Σ, µ) is defined by a stochastic kernel K : X×X → R, and that the following three

conditions are satisfied.

I. There exists A ∈ Σ, µ(A) > 0 such that infx,y∈AK(x, y) > 0.

II. There exists u ∈ L1(X, Σ, µ), u > 0 on X such that Tu = u.

III.
⋃
n∈N∪{0}{Tnf > 0} = X for every f ∈ L1(X, Σ, µ), f ≥ 0, f 6= 0.
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Then T is (strongly) asymptotically stable.

Proof. Set η = infx,y∈AK(x, y).

It follows that K2(x, y) = (K?K)(x, y) =
∫
X K(x, z)K(z, y)dµ(z) ≥

∫
A K(x, z)K(z, y)dµ(z) ≥

η2µ(A) for every x, y ∈ A.

Set ρ = η2µ(A).

It follows that

‖ (T 2w) ∧ (Tw) ‖=
∫
X

((
∫
X

K2(x, y)w(y)dy) ∧ (
∫
X

K(x, y)w(y)dy))dx

≥
∫
A

((
∫
A

K2(x, y)w(y)dy) ∧ (
∫
A

K(x, y)w(y)dy))dx

≥
∫
A

(ρ ∧ η)dx = (ρ ∧ η)µ(A) > 0

for every w ∈ L1(X, Σ, µ), w ≥ 0, ‖ w ‖= 1, w1A = w.

By Corollary 2.5, T is asymptotically stable. 2

Examples (1) Assume that X = (0,∞), let B be the σ-algebra of all the Lebesgue

measurable subsets of (0, +∞), and let λ be the Lebesgue measure on (0, +∞). Consider

the function K : (0, +∞)× (0, +∞)→ R,

K(x, y) =

{
ey
∫∞
y

e−z

z dz whenever 0 < x ≤ y

ey
∫∞
x

e−z

z dz whenever 0 < y < x.

It is well-known and easy to check that K is a stochastic kernel (see, for example,

Lasota and Mackey [6]). Let T : L1((0,∞), β, λ) → L1((0,∞), β, λ) be the stochastic

operator defined by K. The kernel K and the operator T have appeared in the study of a

special case of the linear Boltzman equation known as the Tjon-Wu equation (see Lasota

and Mackey [6] or Malczak [8]).

If we set A = (0, 1], then infx,y∈AK(x, y) ≥ min{infy∈Aey
∫∞
y

e−z

z dz, infx,y∈A

ey
∫∞
x

e−z

z dz} ≥
∫∞

1
e−z

z dz > 0. Thus, T has property I of Theorem 4.1.
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An easy computation shows (see [6]) that u(x) = e−x is an invariant weak order

unit for T , and since K(x, y) > 0 for every (x, y) ∈ (0, +∞) × (0, +∞) (therefore,

{Tf > 0} = X for every f ∈ L1((0, +∞),B, λ), f ≥ 0, f 6= 0) it follows that we can

use Theorem 4.1 in order to conclude that T is strongly asymptotically stable.

(2) We will now consider a stochastic operator which was introduced in biology, in

the study of the cell cycle by Hannsgen and Tyson [3] (see also Komorowski and Tyrcha

[4], Lasota and Mackey [6], and Malczak [8]; we will be using here the approach of [4]).

Let σ ∈ R, 0 < σ < 1, let α ∈ R, α > 0, and let K : [σ,∞)× [σ,∞)→ R be defined by

K(x, y) =


α
σ ( xσ )−1−α if σ ≤ y ≤ 1
α
σ ( xσ )−1−αyα if 1 < y ≤ x

6

0 if y > x
σ .

Let B be the σ-algebra of all Lebesgue measurable subsets of [σ,∞), and let λ be the

Lebesgue measure on [σ,∞). It is easy to see that K is a stochastic kernel. Thus, it

makes sense to consider the stochastic operator T : L1([σ,∞),B, λ) → L1([σ,∞),B, λ)

defined by K.

If we set A = [σ, 1], then inf(x,y)∈A×AK(x, y) = infσ≤x≤1
α
σ
.( x
σ
)−1−α = ασα > 0;

therefore, T satisfies I of Theorem 4.1.

We now prove that T satisfies III of Theorem 4.1. To this end, set ω(g) = inf{β ∈
R | β > σ and λ((g−1((0,∞))) ∩ [σ, β]) > 0} for every g ∈ L1([σ,∞),B, λ), g ≥ 0, g 6= 0,

and let f ∈ L1([σ,∞),B, λ), f ≥ 0, f 6= 0,.

If ω(f) = σ, then Tf(x) =
∫ x
σ

σ
K(x, y)f(y)dy > 0 for every x ≥ σ since λ({y ∈ [σ, x

σ
] |

f(y) > 0}) > 0 and K(x, y) > 0 for all y ∈ [σ, x
σ
]. Thus, {Tf > 0} = [σ,∞) in this case.

If ω(f) > σ, then Tf(x) =
∫ x
σ

σ
K(x, y)f(y)dy > 0 for every x ∈ R, x ≥ σ, xσ > ω(f);

that is, Tf(x) > 0 whenever x ∈ R, x > max{σω(f), σ}. Thus, ω(Tf) ≤max{σω(f), σ}.
In general, taking into consideration that Tnf = T (Tn−1f), we obtain that Tnf(x) > 0

whenever x > max{σω(Tn−1f), σ}; hence, ω(Tnf) ≤max{σω(Tn−1f), σ}

≤ max{σmax{σω(Tn−2f), σ}, σ}

= max{σ2ω(Tn−2f), σ2 , σ} = max{σ2ω(Tn−2f), σ}
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= . . . = max{σnω(f), σ} for every n ∈ N.

It follows that {Tf > 0} ⊆ (max{σω(f), σ},∞), and, in general {Tnf > 0} ⊇
(max{σnω(f), σ},∞) for every n ∈ N.

Thus,

∞⋃
n=1

{Tnf > 0} ⊇
∞⋃
n=1

(max{σnω(f), σ},∞) = (σ,∞).

It follows that T satisfies III of Theorem 4.1.

A straightforward computation (see [3]; also see [4], [6], and [8]) shows that if αlnσ <

−1, then T has an invariant weak order unit; it follows that we can use Theorem 4.1 in

order to obtain a new proof of the fact that T is strongly asymptotically stable whenever

αlnσ < −1.
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