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On the Efficiency of Finite Simple Semigroups

H. Ayik, C. M. Campbell, J.J.O’Connor, N. Ruskuc*

Abstract

Let S be a finite simple semigroup, given as a Rees matrix semigroup M[G; I, A; P|
over a group G.

We prove that the second homology of S is Hz(S) = H2(G) X 7, (=D (A=),

It is known that for any finite presentation ( A| R) of S we have |R| — |A| >
rank(H2(5)); we say that S is efficient if equality is attained for some presentation.
Given a presentation ( Ay | Ry ) for G, we find a presentation ( A| R) for S such that
|R| — |A| = |R1| — |A1] + (JI] = 1)(JA| — 1) 4+ 1. Further, if R; contains a relation of
a special form, we show that |R| — |A| can be reduced by one. We use this result to

prove that S is efficient whenever G is finite abelian or dihedral of even degree.

1. Introduction

The purpose of this paper is to investigate the efficiency of finite simple semigroups.

It is well known that a finite semigroup S is simple if and only if it is isomorphic
to a finite Rees matrix semigroup M|[G;I, A; P]. Here G is a group, I and A are non-
empty sets, and P = (py;) is a A X I matrix with entries from G. Then the Rees matriz
semigroup M[G; I, A; Plistheset I x Gx A={(i,a,\)|i €I, a€ G, A € A} with the
multiplication

(i, a, A) (4, b, ) = (i, apx;b, ).

It is known that the matrix P can be chosen to be normal, that is py; = p1; = 1 for all
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A €A, i€ I, where 1¢ is the identity of G; see for example [7] or [4].

Let A be an alphabet and let AT denote the free semigroup on A. A presentation
is an ordered pair ( A | R ), where R C AT x AT. A semigroup S is said to be defined
by (A|R) if S = A" /p where p is the congruence generated by R. If both A and R
are finite sets then ( A| R) is said to be a finite presentation and S is said to be finitely
presented. The deficiency of a finite presentation P = ( A| R) is defined to be |R| — |A]
and is denoted by def(P). The deficiency of a finitely presented semigroup S is defined
by

def(S) = min{ def(P) | P is a finite presentation for S }.

For a semigroup 9, let S' denote the monoid S with an identity adjoined to it. For a
finite semigroup S, it is well-known that def(S) > 0. Recently it has been shown by S.
J. Pride (unpublished) that there exists a better lower bound for the deficiency of finite
semigroups, namely

def(S) > rank(Ha(S)),

where Hj(S) is the second integral homology of S*.

We call a finite semigroup S efficient if S has a presentation P = ( A | R) such that
def(P) = rank(H2(S)) and inefficient otherwise. Examples of both efficient semigroups
and of inefficient semigroups are given in [1], where it is also shown that finite rectangular
bands are efficient. Of course rectangular bands are simple. In this paper we first compute
the second integral homology of a general finite simple semigroup S = M[G; I, A; P]. If
G is efficient, then we find a presentation P for S with def(P) = rank(H2(S)) + 1. We
are able to modify this presentation to reduce the deficiency by one and hence show that
S is efficient when G is a finite abelian group or a dihedral group Ds,, with even n. It is
not known whether this can be done for an arbitrary finite group, or whether there exists
a finite group G such that def(S) = rank(H>(S)) + 1. Finally, we show that there exist

non-simple efficient semigroups which have non-trivial second homology.

2. A rewriting system for Rees matrix semigroups

In [1] the bar resolution was used to compute the second homology of rectangular
bands R,, , to be Zm=1"=1) "and the nth (n > 1) homology of semigroups with a left

or a right zero to be trivial. Here we use another resolution which is described by Squier
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in [8]. Since this resolution is defined by using a presentation in which the set of relations
is a uniquely terminating rewriting system, we first find a presentation for a Rees matrix
semigroup in which the set of relations forms such a system. We begin by introducing
some elementary concepts about rewriting systems.

Let A be a set and let A* be the free monoid on A. A rewriting system R on A is a
subset of A* x A*. For wy,wy € A*, we write wy = wo if they are identical words. We
say that wy rewrites to wso if there exist b,c € A* and (u,v) € R such that wy = buc and
wo = bvc and we write w; — w2. We denote by % the reflexive transitive closure of —
and by ~ the equivalence relation generated by —-.

For a word w we say that w is reducible if there is a word z such that w — z; otherwise
we call w irreducible. If w = y and y is irreducible, then we say that y is an irreducible
form of w. A rewriting system R is said to be terminating if there is no infinite sequence
(wy) such that w, — wp4q for all n > 1. We denote by |w| the length of the word
w. We call R length-reducing if |u| > |v| for all (u,v) € R. It is clear that if R is a
length-reducing rewriting system, then R is a terminating rewriting system.

We say that R is confluent if, for any x,y,z € A* such that z = y, * = z, there
exists w € A* such that y = w, z = w. A rewriting system R is complete if it is both
terminating and confluent. For a given R, define Ry C A* to consist of all » € A* such
that there exists (r, s) € R for some s € A*. The system R is said to be reduced provided
that, for each (r,s) € R, we have Ry N A*rA* = {r} and s is R-irreducible. A reduced

complete rewriting system R C A* x A* is called a uniquely terminating rewriting system.

Lemma 2.1 Let R be a terminating rewriting system. Then the following are equivalent:

(i) R is confluent (and hence complete);

(ii) for any (rire,s12), (rers,sas) € R, where ro is non-empty, there exists a word
w € A* such that s1273 = w, 71823 = w; for any (r1rars, s12), (r2, s23) € R, there exists
a word w € A* such that s1a — w, 7182373 — W;

(iii) any word w € A* has exactly one irreducible form. Moreover w ~ w' if and only

if w and w' have the same irreducible form. O

For a proof see [3] or [§].

We define the overlaps to be the ordered pairs of the form [(r17r2, s12), (r2rs, S23)]
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and [(rars76, 845), (75, 556)] Where (1172, 512), (1273, 523), (147576, 545), (75, 556) € R, and
ro and rs are non-empty.
First, we give a presentation for a Rees matrix semigroup with a normal matrix. For

ease of notation we assume that I and A contain a distinguished element denoted by 1.

Theorem 2.2 Let S = M|G; 1, A; P| be a Rees matrixz semigroup, where G is a group
and P = (pxi) s a normal A x I matriz with entries from G. Let (X | R) be a semigroup
presentation for G, let e € X1 be a non-empty word representing the identity of G, and
letY =XU{y|liel—{1}}u{zx| A€ A—{1}}. Then the presentation

(Y| R, yie=vyi, ey =e, zxe=e, ez =2\, Z\Yi = Dxi

tel-{1}, e A-A{1}))

defines S in terms of the generating set { (1,z,1) |z € X }U{ (4,e,1)|i € I — {1} } U
{(LeA)[AeA—{1}}

Proof. The result is a special case of Theorem 6.2 in [5]. m

In the previous presentation, there are some overlaps, for example [y;e = y;, ey; = €],
which show that the set of the relations is not a uniquely terminating rewriting system.
Now we construct a new presentation with a uniquely terminating rewriting system of
relations. We can take the presentation ( X | R) to be the Cayley table, that is X = G
and R = { (z1x2,x3) | x1, 22,23 € X, 122 = x3 in G }. Tt is clear that R is a uniquely
terminating rewriting system on X. Let zg € X represent the identity of G. Then,
taking e = xg and adding the new relations xy; = x, zxx = x, Y,y = y; and 2yzy» = 2,/
(x e X —{ao}; 4,7 € I —{1}; \,\ € A — {1}), which are easily seen to hold in S, yields

the presentation

(Y] R, yizo=1vi, TYi =T, YilYr = Yi, 22T =T, ToZ\ = Zx, 22y = 2y,

i =pa (7 €T—{1}, M eA—{1}, z€ X))

which defines S = MI[G; I, A; P).
For ease of notation, we assume that G is finite and X = {xg, z1, ..., Zm }. We further

assume that the entries py; of the matrix P are represented by the words of length one.
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Theorem 2.3 Let ( X | R) be the Cayley table of the finite group G and let xg € X be

the representative of the identity. With the above notation, the presentation

P = (Y | R, yivo =i, TrYi = Tk, Yi¥ir = Yi, 22Tk = Tk, TOZ\ = 2,

waiy =2y, i = (0<k<m, i, e I—{1}, A\ € A—{1})),

which defines S = M[G; I, A; P), has a uniquely terminating rewriting system of relations
onY.

Proof. Let @ denote the set of relations of P. Recall that all rewriting rules in R
have the form (2122, x3) (21,22, x5 € X) so that all the rewriting rules in @ are length-
reducing. Therefore @ is terminating. It is clear that @ is reduced. To prove that @ is

confluent, we list the overlaps:

Urkr ke = [(erer, 1), (@, zr)], Uskri = [(Ter, 21), (Teyi, or)],

Us,kx = [(@rz0, 2), (w02, 20)]; Us ki = [(yiwo, yi), (zow, zx)],

Us,i,ir = [(yi%o,¥:), (woyur, To)], Us,ix = [(yizo, i), (o2x, 20)];

Ur ki = [(Tryi, ox), (Yizo, yi)], Us.k.iir = [(TxYi, or)s (Yivir, vi)],

U,isir = [(Wivir, vi), (yirwo, yir)), Uso,i,irir = Wiy, i) (yiryir, i)l
U1,k = [(2aZk, Tk)s (TrTrr, 21)], Ui2,k,ix = [(2a2k, Tk)s (TrYi, Tk)],
UIS,)\,)\' = [(2am0, T0), ($02A’a2A’)], Ulsen = [(mozx, 20), (2amk, Tk)],
Upsan = [(Tozx, 2x), (2azyr, 20)], Ute,ix = [(To2x, 22), (2a9i, Pai)],

Uiz e’ = [(2azys 2x0)s (2y @ks T1)], Usan a" = [(=x2yrs2y0), (z2yr 2y, 23]

U1971-7>\7>\' = [(Z/\Z,\',Zx), (Z,\'yi,pxi)], Uso,i,x = [(2A%i, Pai)s (YiTo, ¥i)l,

Ustiiry = [(2a¥i, Pxi)s (Wavir, vi)),

(6,7, e I —{1}; A, AN\ eA— {1}; 1 <k, k', K" < m), and then apply Lemma 2.1(ii),
which is straightforward. O

3. The second homology of Rees matrix semigroups

Now we describe the resolution of Z given by Squier in [8], which we use to compute

the second homology of a finite Rees matrix semigroup.
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Let S be a monoid and let { A | R) be a presentation for S in which R is a uniquely

terminating rewriting system. Then Squier defined the free resolution of Z as follows:

Pap, 2p P 70

where Py is the free ZS-module on a single formal symbol [ ], the augmentation map
e : Py — Z is defined by &([]) = 1, P is the free ZS-module on the set of formal
symbols [z] for all x € A and 0y : Pi— P, is defined by

O ([2]) = (= = D[]

where © € A. Further P, is the free ZS-module on the set of formal symbols [r, s], one

for each (r,s) € R. For x € A, we define a function 9/9,, : A* — ZA* inductively by

0/0,(1) = 0
0/0y(wz) = 0/0;(w)+w (we A"
/0, (wy) = 0/0z(w) (w e A* and y # x).

This function is called a derivation.
Now we define 0y : P,— P; by

Da([rs]) = D $(0/0:(r) — 0/0u(s))la]

z€A

where ¢ : ZA* — 7S is induced by the natural homomorphism from A* to S.

Next, P5 is the free ZS-module on the set of overlaps [(r172, s12), (rors, S23)] from
R. Let w be in A* and let u be the irreducible form of w. Then we have a sequence
w = birici, bisicr = baraca, ... ,bySqcy = u where b, c; € A* and (riy i) € R for all
i=1,...,q. Define ®: A* — P, by

Now we define 03 : P3 — P5 by
03 ([(7“17“2, 512), (rars, 523)]) = r1[rars, s23] — [r17r2, s12] + P(r1523) — P(s1273).
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Squier [8] showed that P 2, py 22 Py 2 Py -5 Z — 0 is an exact sequence
when R is a uniquely terminating rewriting system.

We now use this resolution to compute the second homology of a finite Rees matrix
semigroup M|[G; I, A; P].

Theorem 3.4 Let S = M[G; 1, A; P be a finite Rees matrixz semigroup. Then the second
integral homology of S is

Ha(S) = Ha(G) x Z01-D0AI-D),

Proof. Without loss of generality we may assume that P is normal. We consider the
uniquely terminating rewriting system @ on Y given in Theorem 2.3 and the resolution
of Z arising from it. By applying the functor Z ®zg:1 — to this resolution, we obtain the

chain complex of abelian groups

ZoP % 79p, %% 0P ¥ 20 25207 — 0,

or simply
Py %Py 2 p g,

where Py, P, and Pj are the free abelian groups on the sets of formal symbols [z] (z € V),
[r,s] ((r,s) € Q) and [(r1re, $12), (T273, $23)], one for each overlap from @Q, respectively.

The mappings s : P, — P; and 03 : P — P; are defined respectively by

Do ([r, 5]) = Z ((the number of z’s in r) — (the number of a’s in s))[x]
€Y

and

d5([(r172, 812), (rars, s23)]) = [rars, s23] — [r172, s12) + ®(r1523) — P(s1273),
where ® is defined by

®(w) =Y [ri, si]

i=1

if ®(w) = Y"1, ¢(bs)[ri, sil-
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Before we compute the second homology of S, Ha(S) 2 ker 02 /im 05, we assume that
H>(G) = ker 05 /im 0§ where ker 95 is the free abelian group on { W; |j € J } and im 0§
is the free abelian group on { V; |1 € L} which are found by using the Squier resolution
on the Cayley table of G. Notice that since G is a finite group, Ha(G) is finite, and so

|J| = |L|. Moreover, since
05 ([2%, u] + [ur, uz) + -+ + [un, 12, 2]) = ny[2] (1)
where z € X, u; = 2'T! and n, is the order of z, we have rank (imd$') = | X| = |G|, and

so |J] = |L| = |G| - |G].

Now we find a generating set for im 03 by using the overlaps from the proof of Theorem
2.3. First observe that 53(U17k7k17k~) gives a generating set which may be reduced to the
basis { Vi |l € L'} for im 5. Next we have

O3(Ua i) = |wryiszn) — [wpag, x) + @(vpar) — (z1y;)

[Jckyi, 3Uk] - [3Ulyz', JCZ]

since ®(zgra) = [Trak, 1) and ®(21y;) = [21Ys, 21]. Similarly, we compute that

aS(UIO'L'L i = Y'Y z”ayz] [yiyi”ayi]a

93(Us k) = [zozx, 22] — [xro, 21],
83(U4 ki) = [ToTk, Tk] — [Yi%o, il
93(Us,iir) = [woyir, o] — [Yavir, yil,
93(Us,i,x) = [zozx, 2a) — [wio, yil,
93(Ur ki) = [yizo, yi] — [ro, T1],

A3(Us ki) = [yiyir, yi] =[xy, 2k,
93(Ug,i,ir) = [yirwo, yir] — [yizo, yil,
=
O3(Un1 kkr.0) = [2a21, 21] — [2a2k, k),
d3(Ur2,k,i0) = 0,
93(U BAN) = [2x2y7, 23] = [2a®0, 20],
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O3(Urak\) = —[T022, 2] + [T0Tk, 7],
53(U15,/\,/\’) = [zozy, 2y] — [wo2a, 22],
03(Ur6.i.0) = —[Tozx, 2] + [ToPri, Pails
53(U177k7)\7)\1) = [eamk, Tk] — [2a2y75 20 ],
53(U18,)\,)\',)\”) = [aazyr, 2y] = [aazy, 20l
F3(Urg i an') = —[2azas 2x] + [2a0x7is Pyvil,
93(Uz0,5,0) = [yiwo, yi] — [PriTos P,
93(Ua1,i,0,3) = [Wivir, Yi) — [Paibiir i)

It is easy to see that we have a smaller generating set for im Js: the generating set
{Vi|le L} for imd§ together with

Vii = [Wizo, yi] — ko, )y Vi = [Wivir, Yi] — [@ryir, Tx),

Viea = [wo2x, 2a] — [Tozk, wk], Vi = [2azy, 2y ] — [2amk, 2]

(0<k<m;ii el—{1} A NeA-— {1}). For example, observe that d5(Usz k' ;) =
Viiri— Vi s and 03(Us k1) = Vi x—([2k0, 2] —[T0Tk, 71]) Where, of course, ([xxz0, Tk]—

[0k, %)) € im 0. The remaining proofs are similar. Therefore
B ={Vi, Vi, Viisirs Vir, Viaw [ 1€ Li 0 <k <md,d € I— {1} AN € A—{1}}

generates im Os.

Next we find a basis for kerdy. First notice that since Oo([yiryi,vir]) = [vi] and

Ba([2xzy 2y/]) = [2a], it follows from (1) that
rank (im d;) = rank (P,) = |G|+ (JA| — 1) + (]I - 1).
Therefore
rank (ker 95) = rank () — rank (P,) = (|GJ? — |G]) + |G|((|A| _1)
+(I] - 1)) + (Al = 1)+ (1] = 1) + (|A] = D)(11] = 1).
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Since each « € P, has the form

m
Z g,y [xkxk’a xl] + Z (al i YiTo, yz Z Qg 4.4/ yz Yis Yir ]

k,k’=0 iel—{1} iel—{1}

m
+Za3,k,i[$kyi,$k]>+ Z (51,A[3002A,2A]+ Z Bax [2x2ars 2y]

k=0 AeA—{1} NeA—{1}

m
+Zﬁs,k,A[2A$k,$k]+ Z 'YA,i[Z)\yiap)\i]>
k=0

iel—{1}

where all the coefficients are integers, o € ker 0, if and only if

Y oy (2] + fow] = [2])

k,k’=0

+ Z (alzxo Z a2 4/ yz +Za3k1yz>
iel—{1} el—{1}

+ Z (51,A[300]+ Z Baxx 122 +ZﬁskAZA
AeA—{1} NeA—{1}

©Y il il - [pm-])).

iel—{1}

Equivalently, o € ker 05 if and only if

m
Aoz = — E (al‘kﬂ'o + Olgg,zp — 1k71k E Q14— § ﬁl,)\
k=1

iel—{1} AeA—{1}
+ Z Yxis

AeA—{1},iel—{1}
Pxi=To
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m
0= 2aﬂik7ﬂik + E :(al‘kﬂ'k' + al'k'ﬂ'k - aa;k,,a;;,lg;k) (3)
k'=1
k'#£k

- > T (1 <k<m),

AeA—{1}, ieI—{1}
PXi=Tk

a2,i,2:_< Z a211’+za3k1+ Z ’7)\1> ZEI—{l})a (4)

i'el—{1,2} AeA—{1}

ﬁwz—( > 52M1+Zﬁm+ S i) GeA-{1h). (5

Nea—{1,2} iel—{1}

We have assumed that |I|, |A| > 2 and that 2 is a common element. The cases |I| =1
or |[A| =1 are treated similarly. By using the system of equations above, we find a basis
for ker 0o. First, if we take all 014y Q24375 O3 kis B1As 527)\7)\1, B3k,x and 7y ,; to be zero,

we have

Yy (@] + fow] = [2]) =0,

T, Tpr €X

which gives the basis { W; | j € J } of ker 9 where Hy(G) = ker 95 /im 95 .
Now if we fix a1 ; = 1 and all the other variables on the right-hand side in (2)—(5) to

be zero, then we obtain oy, ;, = —1. Therefore we obtain the following generators:

Wi = [yio, yi) — [x5, 0] (i€ I—{1}).

By using similar arguments, we obtain certain other generators:

Wiy = [zoaa, 2] = [2d,20] (A€ A-{1}),

Wi = [Y2¥i, 2] — [TxYi, Tk] (0<k<m,iel-{1}),
Wik = [2az2,22) — [azk, 2] (0<k<m, Ae A—{1}),
Wi = liyiye] = leyiye] (5,4 € I —{1}, ' #2),
Wy = [z, zv] = [aaze, 2] (A NeA-{1}, N #2).
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We note that to construct a basis for kerd, we need a further (|A| — 1)(|I| — 1)
independent elements. We will see that we do not need to identify these remaining
elements Wy ; (A € A — {1}; i € I — {1}) of the basis:

Z: {W]) VI/’L') W)\) VVi,k; W)\,k‘) m,i')W)\7)\') W)\,’L') |.7€ Jy 0 S k Smy

i e T—{1} (" #2); AN e A={1} (X #£2)}.

Now we express the V’s in B in terms of the W’s in Z. First, for each | € L, write
Vi(W) for the expression of V in terms of the W; (j € J) as in the calculation of Hs(G).

Now observe that

Voo = Wi, Vii = Wi + 03([(zrwo, 71), (ToT0, 20)] (K #0),
Vo = Wi, Vi = Wi — 03([(wowo, 20), (zozk, z1)] (K #0),
Vi =Wik, Viwi =Wy +Wipg (i #
Vinz=Wak, Vian =Wax + Wik (N #2).

We obtain the following abelian group presentation for H(S):

(Z] Vi(W) =0, W; =0, Wi + Vi (W) =0 (k #0), Wy =0,
Wi+ Vi(W)=0(k#0), Wi, =0, Wi + Wi, =0,
Wik =0, Wy v + Wy, =0 (leL;0<k<m

AeA—{1 N eA—{1,2};iel—{1};i el—{1,2}))

where Vi (W) expresses 0s([(zrwo, Tk), (ToT0, Zo)] in terms of the W;, and similarly for
V/(W). It is clear that some of the generators in the above presentation are redundant.

By eliminating these redundant generators, we obtain the abelian group presentation:
(Vi Was GEJs AeA— {1} i€ I {1})|Vi(W) =0 (L€ L))
which defines the abelian group
Hy(G) x ZMI=D(AI=1)

as required. O
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4. A small presentation for Rees matrix semigroups

Consider the presentation for S = M[G; I, A; P], a Rees matrix semigroup with P

normal, which is given in Theorem 2.2 by

Pr=(Y|Rye=y; eyi=e (2<i<m), (6)
me=e, exn =2 (2<A<n), (7)

2 =pan 2<i<m,2<X<n))

where e is a non-empty representative of the identity of G, and where I = {1,... ,m} and
A ={1,...,n}. From now on, we write S = M[G;m,n; P| instead of S = M|[G; I, A; P).

The deficiency of Py is def (P1) = def (Pg) +(m—1)(n—1)4 (m—1)+ (n—1), where
Pe = (X | R) is a semigroup presentation for G. With the above notation, we give a
presentation for S with deficiency def (Pg)+ (m—1)(n—1) 41, which is one higher than
the rank of Hy(S) (see Theorem 3.4), provided that Pg is an efficient presentation for G.

Proposition 4.5 The presentation

Po=(Y |Reys=e, yyir1 =y 2<i<m—1), (8)
eza = 22, ZaZxt1 = 2at1 2 <A <n—1), (9)
YmZn€ = Ym, (10)

2 =pan 2<i<m,2<A<n))
defines the Rees matriz semigroup S = M[G;m,n; P] with m,n > 1.
Proof. From (6), we have
Yivhirr = Wi€)yit1 = yileyirr) =ygie =1y 2<i<m—1).
Similarly, from (7), we have
2221 =21 (2<A<n—1).
Moreover, from (7) and (6), we have
YmZn€ = Ym€ = Ym.-
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Therefore, every relation in Ps holds in S. Now we show that every relation in P; is a

consequence of the relations in Ps.

By induction, it follows from (8) that y;y» = y; (2 <14 <4’ < m). In particular,
Yiym = yi and yoyi = y2 (2 <i < m). (11)
Similarly, from (9),
Zxzn = zn and z2z)y = 2z) (2 <A <n). (12)

Since G is finite and e is a representative of the identity of G, there exists k € N such that
the relation p¥,, = e holds in G, and so (2,ym)¥ = e is a consequence of the relations

from RU{ z2,Ym = Pnm }- It follows from (12), (9) and (10) that

k—1

zne = (z2zn)e = (e22)zne = ezne = (2nYm)" " 2n(Ymzne) = (znym)k =e. (13)

2 = ¢ is a consequence of the relations from R, it follows from (10) that

Moreover, since e
Yme = (Ym2n€)e = YmZn€ = Ym. (14)

Next, from (11) and (14), we have

vie = (Yiym)e = Yi(Yyme) = Yiym =i 2<i<m—1)

and, from (8) and (11), we have

eyi = (ey2)yi = e(y2yi) = eya = e (3 <i <m).

Similarly, from (9), (12) and (13), we have ezy = z) (3 < A < n) and zye = ¢
(2 <X <n—1), as required. O

5. Efficiency of Rees matrix semigroups

The presentation P, is not efficient, but it proves useful in the following results.
In [1] we proved that finite abelian groups and dihedral groups Ds, with r even are
efficient (as semigroups). In particular, we found efficient semigroup presentations of the
form ( X | Ry, 2! = 2) with identity 2*. In the following theorem we use semigroup
presentations for groups of a similar form in P, to obtain efficient semigroup presentations

for Rees matrix semigroups.
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Theorem 5.6 Let S = M[G;m,n; P] be a finite Rees matriz semigroup with P normal.
If G has a semigroup presentation of the form Pg = ( X | Ry, zux = x ) with identity xu
(x € X, u € XT), then S has a semigroup presentation whose deficiency is def (Pg) +
(m—1)(n—1).

Proof. First assume that m,n > 1 and consider the presentation Py for S. Take e = zu.
Since, from (8) and (13), the relations zuys = zu, 2,2 = z and zux = z hold in S, we
have

ruYyezn® = (Tuy2)znt = xu(znz) = zux = .

Therefore, S is a homomorphic image of the semigroup T defined by the presentation
obtained from P> by adding the relation xuysz,z = = and removing the relations

ruye = xu and ruxr = x:

Ps = (Y | Ry, xuysznr =, (15)
YiYirr =y (2<i<m-—1), (16)
TUZy = 29, (17)
2221 = 2at1 2 <A< n—1), (18)
Ym ZnTU = Y, (19)

22U =pan 2<i<m,2<A<n)).

Note that if m = 2, then (16) is absent and if n = 2, then (18) is absent. Now we show
that the relations zuys, = zu and zux = = hold in T so that S = T.

As before, from (16), (18) and (17), we have
Yolym = Y2, 222n = 2zn and Tuz, = z,. (20)
It follows from (20), (19) and (15) that
2uye = 2u(Y2Ym) = TuY2 (Ym 2ntu) = (ZUY22n,T)u = Tu (21)
and also that

z2n® = (222n)x = (Tuz2)2n® = TUZ,T = (TUY2)2px = 2. (22)
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Therefore, from (15), (21), (20) and (22), we have
zux = zu(ruysznt) = vu(zuz,)r = (Tuz,)r = 2,2 =

and hence S is efficient, as required.

Similarly, it may be shown that if m = 1, then

’Pé =(X,22,..,2n | R1, urza =22, zxzat1 =2x+1 2 <A <n—-1), zzpur =2x)
is an efficient presentation for S. Similarly, if n = 1, then

Py = (X, Y2,y | Ri, zuyer =z, yiyis1 =4 2<i <m—1), yntu = yn )

is an efficient presentation for S. The proof is now complete. O

As we mentioned at the beginning of this section, finite abelian groups and dihedral
groups Ds, with r even, have efficient semigroup presentations of the required form (see
[1]). (For further examples of groups which are efficient as semigroups, see [2].) Therefore

we have the following result.

Corollary 5.7 Finite Rees matriz semigroups over finite abelian groups or dihedral

groups with even degree are efficient. O

6. Efficient non-simple semigroups

All the efficient semigroups in [1] and in this paper so far are simple. In this section, we
give a family of efficient non-simple semigroups which have non-trivial second homology.

Consider the following presentation:

n;+1
4

(a1,..,ar|a =a; 1<i<r), agja,=aa; (1<i<j<r))

where n; > 1 and n; divides n;4; fori =1,...,7r— 1.

This semigroup presentation is related to the standard group presentation of the
abelian group Cy, X - -- x Cy,, where C,,, is the cyclic group of order n;. For r» > 2, it is
clear that this semigroup presentation defines a commutative semigroup .S which is not
a group. For r > 2, the subset I = {a]"* ---a” |1 <m; <n; fori=1,...,7} is a proper

(minimal) ideal of S, so that S is not simple.
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Theorem 6.8 Let S be the semigroup defined by the presentation

(ai,...,a, |aM™ =a; (1<i<7), aja; =aa; (1<i<ji<r))

i
where ny > 1 and n; divides n;41 fori=1,...,7— 1. Then the second homology of S is

(r—2)

Hy(S) =00V xC XX Cp, .

no -

In particular, S is an efficient semigroup.

Proof. Since the system of relations is uniquely terminating, use the Squier resolution

[8] to determine the second homology. O
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