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On the Efficiency of Finite Simple Semigroups

H. Ayık, C. M. Campbell, J.J.O’Connor, N. Ruškuc∗

Abstract

Let S be a finite simple semigroup, given as a Rees matrix semigroupM[G; I,Λ;P ]

over a group G.

We prove that the second homology of S is H2(S) = H2(G) ×Z(|I|−1)(|Λ|−1).

It is known that for any finite presentation 〈 A | R 〉 of S we have |R| − |A| ≥
rank(H2(S)); we say that S is efficient if equality is attained for some presentation.

Given a presentation 〈A1 |R1 〉 for G, we find a presentation 〈A |R 〉 for S such that

|R| − |A| = |R1| − |A1|+ (|I | − 1)(|Λ| − 1) + 1. Further, if R1 contains a relation of

a special form, we show that |R| − |A| can be reduced by one. We use this result to

prove that S is efficient whenever G is finite abelian or dihedral of even degree.

1. Introduction

The purpose of this paper is to investigate the efficiency of finite simple semigroups.

It is well known that a finite semigroup S is simple if and only if it is isomorphic

to a finite Rees matrix semigroup M[G; I,Λ;P ]. Here G is a group, I and Λ are non-

empty sets, and P = (pλi) is a Λ× I matrix with entries from G. Then the Rees matrix

semigroup M[G; I,Λ;P ] is the set I ×G× Λ = { (i, a, λ) | i ∈ I, a ∈ G, λ ∈ Λ } with the

multiplication

(i, a, λ)(j, b, µ) = (i, apλjb, µ).

It is known that the matrix P can be chosen to be normal, that is pλ1 = p1i = 1G for all
AMS Mathematics Subject Classification: 20M05, 20M50
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λ ∈ Λ, i ∈ I, where 1G is the identity of G; see for example [7] or [4].

Let A be an alphabet and let A+ denote the free semigroup on A. A presentation

is an ordered pair 〈 A | R 〉, where R ⊆ A+ × A+. A semigroup S is said to be defined

by 〈 A | R 〉 if S ∼= A+/ρ where ρ is the congruence generated by R. If both A and R

are finite sets then 〈 A | R 〉 is said to be a finite presentation and S is said to be finitely

presented. The deficiency of a finite presentation P = 〈 A | R 〉 is defined to be |R| − |A|
and is denoted by def(P). The deficiency of a finitely presented semigroup S is defined

by

def(S) = min{ def(P) | P is a finite presentation for S }.

For a semigroup S, let S1 denote the monoid S with an identity adjoined to it. For a

finite semigroup S, it is well-known that def(S) ≥ 0. Recently it has been shown by S.

J. Pride (unpublished) that there exists a better lower bound for the deficiency of finite

semigroups, namely

def(S) ≥ rank(H2(S)),

where H2(S) is the second integral homology of S1 .

We call a finite semigroup S efficient if S has a presentation P = 〈 A | R 〉 such that

def(P) = rank(H2(S)) and inefficient otherwise. Examples of both efficient semigroups

and of inefficient semigroups are given in [1], where it is also shown that finite rectangular

bands are efficient. Of course rectangular bands are simple. In this paper we first compute

the second integral homology of a general finite simple semigroup S =M[G; I,Λ;P ]. If

G is efficient, then we find a presentation P for S with def(P) = rank(H2(S)) + 1. We

are able to modify this presentation to reduce the deficiency by one and hence show that

S is efficient when G is a finite abelian group or a dihedral group D2n with even n. It is

not known whether this can be done for an arbitrary finite group, or whether there exists

a finite group G such that def(S) = rank(H2(S)) + 1. Finally, we show that there exist

non-simple efficient semigroups which have non-trivial second homology.

2. A rewriting system for Rees matrix semigroups

In [1] the bar resolution was used to compute the second homology of rectangular

bands Rm,n to be Z(m−1)(n−1), and the nth (n ≥ 1) homology of semigroups with a left

or a right zero to be trivial. Here we use another resolution which is described by Squier

130



AYIK, CAMPBELL, O’CONNOR, RUŠKUC

in [8]. Since this resolution is defined by using a presentation in which the set of relations

is a uniquely terminating rewriting system, we first find a presentation for a Rees matrix

semigroup in which the set of relations forms such a system. We begin by introducing

some elementary concepts about rewriting systems.

Let A be a set and let A∗ be the free monoid on A. A rewriting system R on A is a

subset of A∗ × A∗. For w1, w2 ∈ A∗, we write w1 ≡ w2 if they are identical words. We

say that w1 rewrites to w2 if there exist b, c ∈ A∗ and (u, v) ∈ R such that w1 ≡ buc and

w2 ≡ bvc and we write w1 → w2. We denote by ∗→ the reflexive transitive closure of →
and by ∼ the equivalence relation generated by →.

For a word w we say that w is reducible if there is a word z such that w→ z; otherwise

we call w irreducible. If w ∗→ y and y is irreducible, then we say that y is an irreducible

form of w. A rewriting system R is said to be terminating if there is no infinite sequence

(wn) such that wn → wn+1 for all n ≥ 1. We denote by |w| the length of the word

w. We call R length-reducing if |u| > |v| for all (u, v) ∈ R. It is clear that if R is a

length-reducing rewriting system, then R is a terminating rewriting system.

We say that R is confluent if, for any x, y, z ∈ A∗ such that x ∗→ y, x ∗→ z, there

exists w ∈ A∗ such that y ∗→ w, z ∗→ w. A rewriting system R is complete if it is both

terminating and confluent. For a given R, define R1 ⊆ A∗ to consist of all r ∈ A∗ such

that there exists (r, s) ∈ R for some s ∈ A∗. The system R is said to be reduced provided

that, for each (r, s) ∈ R, we have R1 ∩ A∗rA∗ = {r} and s is R-irreducible. A reduced

complete rewriting system R ⊆ A∗×A∗ is called a uniquely terminating rewriting system.

Lemma 2.1 Let R be a terminating rewriting system. Then the following are equivalent:

(i) R is confluent (and hence complete);

(ii) for any (r1r2, s12), (r2r3, s23) ∈ R, where r2 is non-empty, there exists a word

w ∈ A∗ such that s12r3
∗→ w, r1s23

∗→ w; for any (r1r2r3, s12), (r2, s23) ∈ R, there exists

a word w ∈ A∗ such that s12
∗→ w, r1s23r3

∗→ w;

(iii) any word w ∈ A∗ has exactly one irreducible form. Moreover w ∼ w′ if and only

if w and w′ have the same irreducible form. 2

For a proof see [3] or [8].

We define the overlaps to be the ordered pairs of the form [(r1r2, s12), (r2r3, s23)]
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and [(r4r5r6, s45), (r5, s56)] where (r1r2, s12), (r2r3, s23), (r4r5r6, s45), (r5, s56) ∈ R, and

r2 and r5 are non-empty.

First, we give a presentation for a Rees matrix semigroup with a normal matrix. For

ease of notation we assume that I and Λ contain a distinguished element denoted by 1.

Theorem 2.2 Let S = M[G; I,Λ;P ] be a Rees matrix semigroup, where G is a group

and P = (pλi) is a normal Λ× I matrix with entries from G. Let 〈X |R 〉 be a semigroup

presentation for G, let e ∈ X+ be a non-empty word representing the identity of G, and

let Y = X ∪ { yi | i ∈ I − {1} } ∪ { zλ | λ ∈ Λ− {1} }. Then the presentation

〈 Y | R, yie = yi, eyi = e, zλe = e, ezλ = zλ, zλyi = pλi

(i ∈ I − {1}, λ ∈ Λ− {1}) 〉

defines S in terms of the generating set { (1, x, 1) | x ∈ X } ∪ { (i, e, 1) | i ∈ I − {1} } ∪
{ (1, e, λ) | λ ∈ Λ− {1} }.

Proof. The result is a special case of Theorem 6.2 in [5]. 2

In the previous presentation, there are some overlaps, for example [yie = yi, eyi = e],

which show that the set of the relations is not a uniquely terminating rewriting system.

Now we construct a new presentation with a uniquely terminating rewriting system of

relations. We can take the presentation 〈X | R 〉 to be the Cayley table, that is X = G

and R = { (x1x2, x3) | x1, x2, x3 ∈ X, x1x2 = x3 in G }. It is clear that R is a uniquely

terminating rewriting system on X. Let x0 ∈ X represent the identity of G. Then,

taking e ≡ x0 and adding the new relations xyi = x, zλx = x, yiyi′ = yi and zλzλ′ = zλ′

(x ∈ X − {x0}; i, i′ ∈ I − {1}; λ, λ
′ ∈ Λ− {1}), which are easily seen to hold in S, yields

the presentation

〈 Y | R, yix0 = yi, xyi = x, yiyi′ = yi, zλx = x, x0zλ = zλ, zλzλ′ = zλ′ ,

zλyi = pλi (i, i′ ∈ I − {1}, λ, λ
′
∈ Λ− {1}, x ∈ X) 〉

which defines S =M[G; I,Λ;P ].

For ease of notation, we assume that G is finite and X = {x0, x1, . . . , xm}. We further

assume that the entries pλi of the matrix P are represented by the words of length one.
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Theorem 2.3 Let 〈X | R 〉 be the Cayley table of the finite group G and let x0 ∈ X be

the representative of the identity. With the above notation, the presentation

P = 〈 Y | R, yix0 = yi, xkyi = xk, yiyi′ = yi, zλxk = xk, x0zλ = zλ,

zλzλ′ = zλ′ , zλyi = pλi (0 ≤ k ≤ m, i, i′ ∈ I − {1}, λ, λ
′
∈ Λ− {1}) 〉,

which defines S =M[G; I,Λ;P ], has a uniquely terminating rewriting system of relations

on Y .

Proof. Let Q denote the set of relations of P. Recall that all rewriting rules in R

have the form (x1x2, x3) (x1, x2, x3 ∈ X) so that all the rewriting rules in Q are length-

reducing. Therefore Q is terminating. It is clear that Q is reduced. To prove that Q is

confluent, we list the overlaps:

U1,k,k′,k′′ = [(xkxk′, xl), (xk′xk′′ , xl′ )], U2,k,k′,i = [(xk′xk, xl), (xkyi, xk)],

U3,k,λ = [(xkx0, xk), (x0zλ, zλ)], U4,k,i = [(yix0, yi), (x0xk, xk)],

U5,i,i′ = [(yix0, yi), (x0yi′ , x0)], U6,i,λ = [(yix0, yi), (x0zλ, zλ)],

U7,k,i = [(xkyi, xk), (yix0, yi)], U8,k,i,i′ = [(xkyi, xk), (yiyi′ , yi)],

U9,i,i′ = [(yiyi′ , yi), (yi′x0, yi′)], U10,i,i′,i′′ = [(yiyi′ , yi), (yi′yi′′ , yi′)],

U11,k,k′,λ = [(zλxk, xk), (xkxk′ , xl)], U12,k,i,λ = [(zλxk, xk), (xkyi, xk)],

U13,λ,λ
′ = [(zλx0, x0), (x0zλ′ , zλ′ )], U14,k,λ = [(x0zλ, zλ), (zλxk, xk)],

U15,λ,λ
′ = [(x0zλ, zλ), (zλzλ′ , zλ′ )], U16,i,λ = [(x0zλ, zλ), (zλyi, pλi)],

U17,k,λ,λ
′ = [(zλzλ′ , zλ′ ), (zλ′xk, xk)], U18,λ,λ

′
,λ
′′ = [(zλzλ′ , zλ′ ), (zλ′ zλ′′ , zλ′′ )],

U19,i,λ,λ
′ = [(zλzλ′ , zλ′ ), (zλ′ yi, pλ′i)], U20,i,λ = [(zλyi, pλi), (yix0, yi)],

U21,i,i′,λ = [(zλyi, pλi), (yiyi′ , yi)],

(i, i′, i′′ ∈ I − {1}; λ, λ′ , λ′′ ∈ Λ− {1}; 1 ≤ k, k′, k′′ ≤ m), and then apply Lemma 2.1(ii),

which is straightforward. 2

3. The second homology of Rees matrix semigroups

Now we describe the resolution of Z given by Squier in [8], which we use to compute

the second homology of a finite Rees matrix semigroup.
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Let S be a monoid and let 〈A | R 〉 be a presentation for S in which R is a uniquely

terminating rewriting system. Then Squier defined the free resolution of Z as follows:

P3
∂3−→ P2

∂2−→ P1
∂1−→ P0

ε−→ Z −→ 0

where P0 is the free ZS-module on a single formal symbol [ ], the augmentation map

ε : P0 −→ Z is defined by ε([ ]) = 1, P1 is the free ZS-module on the set of formal

symbols [x] for all x ∈ A and ∂1 : P1−→P0 is defined by

∂1([x]) = (x− 1)[ ]

where x ∈ A. Further P2 is the free ZS-module on the set of formal symbols [r, s], one

for each (r, s) ∈ R. For x ∈ A, we define a function ∂/∂x : A∗ −→ ZA∗ inductively by

∂/∂x(1) = 0

∂/∂x(wx) = ∂/∂x(w) + w (w ∈ A∗)

∂/∂x(wy) = ∂/∂x(w) (w ∈ A∗ and y 6= x).

This function is called a derivation.

Now we define ∂2 : P2−→P1 by

∂2([r, s]) =
∑
x∈A

φ(∂/∂x(r) − ∂/∂x(s))[x]

where φ : ZA∗ −→ ZS is induced by the natural homomorphism from A∗ to S.

Next, P3 is the free ZS-module on the set of overlaps [(r1r2, s12), (r2r3, s23)] from

R. Let w be in A∗ and let u be the irreducible form of w. Then we have a sequence

w ≡ b1r1c1, b1s1c1 ≡ b2r2c2, . . . , bqsqcq ≡ u where bi, ci ∈ A∗ and (ri, si) ∈ R for all

i = 1, . . . , q. Define Φ : A∗ −→ P2 by

Φ(w) =
q∑
i=1

φ(bi)[ri, si].

Now we define ∂3 : P3 −→ P2 by

∂3

(
[(r1r2, s12), (r2r3, s23)]

)
= r1[r2r3, s23]− [r1r2, s12] + Φ(r1s23) −Φ(s12r3).

134



AYIK, CAMPBELL, O’CONNOR, RUŠKUC

Squier [8] showed that P3
∂3−→ P2

∂2−→ P1
∂1−→ P0

ε−→ Z −→ 0 is an exact sequence

when R is a uniquely terminating rewriting system.

We now use this resolution to compute the second homology of a finite Rees matrix

semigroup M[G; I,Λ;P ].

Theorem 3.4 Let S =M[G; I,Λ;P ] be a finite Rees matrix semigroup. Then the second

integral homology of S is

H2(S) = H2(G)× Z(|I|−1)(|Λ|−1).

Proof. Without loss of generality we may assume that P is normal. We consider the

uniquely terminating rewriting system Q on Y given in Theorem 2.3 and the resolution

of Z arising from it. By applying the functor Z⊗ZS1 − to this resolution, we obtain the

chain complex of abelian groups

Z⊗ P3
1⊗∂3−→ Z⊗ P2

1⊗∂2−→ Z⊗ P1
1⊗∂1−→ Z⊗ P0

1⊗ε−→ Z⊗ Z −→ 0,

or simply

P̄3
∂̄3−→ P̄2

∂̄2−→ P̄1
∂̄1−→ Z −→ 0,

where P̄1, P̄2 and P̄3 are the free abelian groups on the sets of formal symbols [x] (x ∈ Y ),

[r, s] ((r, s) ∈ Q) and [(r1r2, s12), (r2r3, s23)], one for each overlap from Q, respectively.

The mappings ∂̄2 : P̄2 → P̄1 and ∂̄3 : P̄3 → P̄2 are defined respectively by

∂̄2([r, s]) =
∑
x∈Y

((the number of x’s in r) − (the number of x’s in s))[x]

and

∂̄3([(r1r2, s12), (r2r3, s23)]) = [r2r3, s23]− [r1r2, s12] + Φ̄(r1s23)− Φ̄(s12r3),

where Φ̄ is defined by

Φ̄(w) =
q∑
i=1

[ri, si]

if Φ(w) =
∑q

i=1 φ(bi)[ri, si].
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Before we compute the second homology of S, H2(S) ∼= ker ∂̄2/im ∂̄3, we assume that

H2(G) ∼= ker ∂̄G2 /im ∂̄G3 where ker ∂̄G2 is the free abelian group on {Wj | j ∈ J } and im ∂̄G3

is the free abelian group on { Vl | l ∈ L } which are found by using the Squier resolution

on the Cayley table of G. Notice that since G is a finite group, H2(G) is finite, and so

|J | = |L|. Moreover, since

∂̄G2 ([x2, u1] + [u1x, u2] + · · ·+ [unx−1x, x]) = nx[x] (1)

where x ∈ X, ui = xi+1 and nx is the order of x, we have rank (im ∂̄G2 ) = |X| = |G|, and

so |J | = |L| = |G|2− |G|.
Now we find a generating set for im ∂̄3 by using the overlaps from the proof of Theorem

2.3. First observe that ∂̄3(U1,k,k′,k′′) gives a generating set which may be reduced to the

basis { Vl | l ∈ L } for im ∂̄G3 . Next we have

∂̄3(U2,k,k′,i) = [xkyi, xk]− [xk′xk, xl] + Φ̄(xk′xk) − Φ̄(xlyi)

= [xkyi, xk]− [xlyi, xl]

since Φ̄(xk′xk) = [xk′xk, xl] and Φ̄(xlyi) = [xlyi, xl]. Similarly, we compute that

∂̄3(U3,k,λ) = [x0zλ, zλ]− [xkx0, xk],

∂̄3(U4,k,i) = [x0xk, xk]− [yix0, yi],

∂̄3(U5,i,i′) = [x0yi′ , x0]− [yiyi′ , yi],

∂̄3(U6,i,λ) = [x0zλ, zλ]− [yix0, yi],

∂̄3(U7,k,i) = [yix0, yi]− [xkx0, xk],

∂̄3(U8,k,i,i′) = [yiyi′ , yi]− [xkyi′ , xk],

∂̄3(U9,i,i′) = [yi′x0, yi′]− [yix0, yi],

∂̄3(U10,i,i′,i′′ = [yi′yi′′ , yi′ ]− [yiyi′′ , yi],

∂̄3(U11,k,k′,λ) = [zλxl, xl]− [zλxk, xk],

∂̄3(U12,k,i,λ) = 0,

∂̄3(U13,λ,λ′ ) = [zλzλ′ , zλ′ ]− [zλx0, x0],
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∂̄3(U14,k,λ) = −[x0zλ, zλ] + [x0xk, xk],

∂̄3(U15,λ,λ′ ) = [x0zλ′ , zλ′ ]− [x0zλ, zλ],

∂̄3(U16,i,λ) = −[x0zλ, zλ] + [x0pλi, pλi],

∂̄3(U17,k,λ,λ
′) = [zλxk, xk]− [zλzλ′ , zλ′ ],

∂̄3(U18,λ,λ′,λ′′ ) = [zλzλ′′ , zλ′′ ]− [zλzλ′ , zλ′ ],

∂̄3(U19,i,λ,λ′ ) = −[zλzλ′ , zλ′ ] + [zλpλ′ i, pλ′i],

∂̄3(U20,i,λ) = [yix0, yi]− [pλix0, pλi],

∂̄3(U21,i,i′,λ) = [yiyi′ , yi]− [pλiyi′ , pλi].

It is easy to see that we have a smaller generating set for im ∂̄3: the generating set

{ Vl | l ∈ L } for im ∂̄G3 together with

Vk,i = [yix0, yi]− [xkx0, xk], Vk,i,i′ = [yiyi′ , yi]− [xkyi′ , xk],

Vk,λ = [x0zλ, zλ]− [x0xk, xk], Vk,λ,λ′ = [zλzλ′ , zλ′ ]− [zλxk, xk]

(0 ≤ k ≤ m; i, i′ ∈ I − {1}; λ, λ′ ∈ Λ − {1}). For example, observe that ∂̄3(U2,k,k′,i) =

Vl,i′,i−Vk,i′,i and ∂̄3(U3,k,λ) = Vk,λ−([xkx0, xk]−[x0xk, xk]) where, of course, ([xkx0, xk]−
[x0xk, xk]) ∈ im ∂̄G3 . The remaining proofs are similar. Therefore

B = { Vl, Vk,i, Vk,i,i′, Vk,λ, Vk,λ,λ′ | l ∈ L; 0 ≤ k ≤ m; i, i′ ∈ I − {1}; λ, λ
′
∈ Λ− {1} }

generates im ∂̄3.

Next we find a basis for ker ∂̄2. First notice that since ∂̄2([yi′yi, yi′]) = [yi] and

∂̄2([zλzλ′ , zλ′ ]) = [zλ], it follows from (1) that

rank (im ∂̄2) = rank (P̄1) = |G|+ (|Λ| − 1) + (|I| − 1).

Therefore

rank (ker ∂̄2) = rank (P̄2)− rank (P̄1) = (|G|2 − |G|) + |G|
(

(|Λ| − 1)

+(|I| − 1)
)

+ (|Λ| − 1)2 + (|I| − 1)2 + (|Λ| − 1)(|I| − 1).
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Since each α ∈ P̄2 has the form

α =
m∑

k,k′=0

αxk,xk′ [xkxk′ , xl] +
∑

i∈I−{1}

(
α1,i[yix0, yi] +

∑
i′∈I−{1}

α2,i,i′[yi′yi, yi′ ]

+
m∑
k=0

α3,k,i[xkyi, xk]
)

+
∑

λ∈Λ−{1}

(
β1,λ[x0zλ, zλ] +

∑
λ′∈Λ−{1}

β2,λ,λ′ [zλzλ′ , zλ′ ]

+
m∑
k=0

β3,k,λ[zλxk, xk] +
∑

i∈I−{1}
γλ,i[zλyi, pλi]

)

where all the coefficients are integers, α ∈ ker ∂̄2 if and only if

0 = ∂̄2(α) =
m∑

k,k′=0

αxk,xk′ ([xk] + [xk′]− [xl])

+
∑

i∈I−{1}

(
α1,i[x0] +

∑
i′∈I−{1}

α2,i,i′[yi] +
m∑
k=0

α3,k,i[yi]
)

+
∑

λ∈Λ−{1}

(
β1,λ[x0] +

∑
λ′∈Λ−{1}

β2,λ,λ′ [zλ] +
m∑
k=0

β3,k,λ[zλ]

+
∑

i∈I−{1}
γλ,i([zλ] + [yi]− [pλi])

)
.

Equivalently, α ∈ ker ∂̄2 if and only if

αx0,x0 = −
m∑
k=1

(αxk,x0 + αx0,xk − αxk,x−1
k

)−
∑

i∈I−{1}
α1,i −

∑
λ∈Λ−{1}

β1,λ (2)

+
∑

λ∈Λ−{1}, i∈I−{1}
pλi≡x0

γλ,i,
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0 = 2αxk,xk +
m∑
k′=1
k′ 6=k

(αxk,xk′ + αxk′ ,xk − αxk′ ,x−1
k′ xk

) (3)

−
∑

λ∈Λ−{1}, i∈I−{1}
pλi≡xk

γλ,i (1 ≤ k ≤ m),

α2,i,2 = −
( ∑
i′∈I−{1,2}

α2,i,i′ +
m∑
k=0

α3,k,i +
∑

λ∈Λ−{1}
γλ,i

)
(i ∈ I − {1}), (4)

β2,λ,2 = −
( ∑
λ
′∈Λ−{1,2}

β2,λ,λ
′ +

m∑
k=0

β3,k,λ +
∑

i∈I−{1}
γλ,i) (λ ∈ Λ− {1}). (5)

We have assumed that |I|, |Λ| ≥ 2 and that 2 is a common element. The cases |I| = 1

or |Λ| = 1 are treated similarly. By using the system of equations above, we find a basis

for ker ∂̄2. First, if we take all α1,i, α2,i,i′, α3,k,i, β1,λ, β2,λ,λ
′ , β3,k,λ and γλ,i to be zero,

we have ∑
xk,xk′∈X

αxk,xk′ ([xk] + [xk′]− [xl]) = 0,

which gives the basis {Wj | j ∈ J } of ker ∂̄G2 where H2(G) = ker ∂̄G2 /im ∂̄G3 .

Now if we fix α1,i = 1 and all the other variables on the right-hand side in (2)–(5) to

be zero, then we obtain αx0,x0 = −1. Therefore we obtain the following generators:

Wi = [yix0, yi]− [x2
0, x0] (i ∈ I − {1}).

By using similar arguments, we obtain certain other generators:

Wλ = [x0zλ, zλ]− [x2
0, x0] (λ ∈ Λ− {1}),

Wi,k = [y2yi, y2]− [xkyi, xk] (0 ≤ k ≤ m, i ∈ I − {1}),

Wλ,k = [zλz2, z2]− [zλxk, xk] (0 ≤ k ≤ m, λ ∈ Λ− {1}),

Wi,i′ = [yi′yi, yi′]− [y2yi, y2] (i, i′ ∈ I − {1}, i′ 6= 2),

Wλ,λ′ = [zλzλ′ , zλ′ ]− [zλz2, z2] (λ, λ
′ ∈ Λ− {1}, λ′ 6= 2).
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We note that to construct a basis for ker ∂̄2 we need a further (|Λ| − 1)(|I| − 1)

independent elements. We will see that we do not need to identify these remaining

elements Wλ,i (λ ∈ Λ− {1}; i ∈ I − {1}) of the basis:

Z = {Wj , Wi, Wλ, Wi,k, Wλ,k, Wi,i′ ,Wλ,λ
′ , Wλ,i, | j ∈ J ; 0 ≤ k ≤ m;

i, i′ ∈ I − {1} (i′ 6= 2); λ, λ
′
∈ Λ− {1} (λ

′
6= 2) }.

Now we express the V ’s in B in terms of the W ’s in Z. First, for each l ∈ L, write

Vl(W ) for the expression of Vl in terms of the Wj (j ∈ J) as in the calculation of H2(G).

Now observe that

V0,i = Wi, Vk,i = Wi + ∂̄3([(xkx0, xk), (x0x0, x0)] (k 6= 0),

V0,λ = Wλ, Vk,λ = Wλ − ∂̄3([(x0x0, x0), (x0xk, xk)] (k 6= 0),

Vk,2,i = Wi,k, Vk,i′,i = Wi,i′ + Wi,k (i′ 6= 2),

Vk,λ,2 = Wλ,k, Vk,λ,λ′ = Wλ,λ
′ + Wλ,k (λ

′ 6= 2).

We obtain the following abelian group presentation for H2(S):

〈 Z | Vl(W ) = 0, Wi = 0, Wi + Vk(W ) = 0 (k 6= 0), Wλ = 0,

Wλ + V ′k(W ) = 0 (k 6= 0), Wi,k = 0, Wi,i′ +Wi,k = 0,

Wλ,k = 0, Wλ,λ′ +Wλ,k = 0 (l ∈ L; 0 ≤ k ≤ m;

λ ∈ Λ− {1}; λ′ ∈ Λ− {1, 2}; i ∈ I − {1}; i′ ∈ I − {1, 2}) 〉

where Vk(W ) expresses ∂̄3([(xkx0, xk), (x0x0, x0)] in terms of the Wj, and similarly for

V ′k(W ). It is clear that some of the generators in the above presentation are redundant.

By eliminating these redundant generators, we obtain the abelian group presentation:

〈 Vj , Wλ,i (j ∈ J ; λ ∈ Λ− {1}; i ∈ I − {1}) | Vl(W ) = 0 (l ∈ L) 〉

which defines the abelian group

H2(G)× Z(|I|−1)(|Λ|−1),

as required. 2
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4. A small presentation for Rees matrix semigroups

Consider the presentation for S = M[G; I,Λ;P ], a Rees matrix semigroup with P

normal, which is given in Theorem 2.2 by

P1 = 〈 Y | R,yie = yi, eyi = e (2 ≤ i ≤ m), (6)

zλe = e, ezλ = zλ (2 ≤ λ ≤ n), (7)

zλyi = pλi (2 ≤ i ≤ m, 2 ≤ λ ≤ n) 〉

where e is a non-empty representative of the identity of G, and where I = {1, . . . , m} and

Λ = {1, . . . , n}. From now on, we write S =M[G;m, n;P ] instead of S =M[G; I,Λ;P ].

The deficiency of P1 is def (P1) = def (PG) + (m−1)(n−1) +(m−1) +(n− 1), where

PG = 〈 X | R 〉 is a semigroup presentation for G. With the above notation, we give a

presentation for S with deficiency def (PG) + (m−1)(n−1) +1, which is one higher than

the rank of H2(S) (see Theorem 3.4), provided that PG is an efficient presentation for G.

Proposition 4.5 The presentation

P2 = 〈 Y | R,ey2 = e, yiyi+1 = yi (2 ≤ i ≤ m− 1), (8)

ez2 = z2, zλzλ+1 = zλ+1 (2 ≤ λ ≤ n− 1), (9)

ymzne = ym, (10)

zλyi = pλi (2 ≤ i ≤ m, 2 ≤ λ ≤ n) 〉

defines the Rees matrix semigroup S =M[G;m, n;P ] with m, n > 1.

Proof. From (6), we have

yiyi+1 = (yie)yi+1 ≡ yi(eyi+1) = yie = yi (2 ≤ i ≤ m− 1).

Similarly, from (7), we have

zλzλ+1 = zλ+1 (2 ≤ λ ≤ n− 1).

Moreover, from (7) and (6), we have

ymzne = yme = ym.
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Therefore, every relation in P2 holds in S. Now we show that every relation in P1 is a

consequence of the relations in P2.

By induction, it follows from (8) that yiyi′ = yi (2 ≤ i < i′ ≤ m). In particular,

yiym = yi and y2yi = y2 (2 ≤ i ≤ m). (11)

Similarly, from (9),

zλzn = zn and z2zλ = zλ (2 ≤ λ ≤ n). (12)

Since G is finite and e is a representative of the identity of G, there exists k ∈ N such that

the relation pknm = e holds in G, and so (znym)k = e is a consequence of the relations

from R ∪ { znym = pnm }. It follows from (12), (9) and (10) that

zne = (z2zn)e = (ez2)zne = ezne = (znym)k−1zn(ymzne) = (znym)k = e. (13)

Moreover, since e2 = e is a consequence of the relations from R, it follows from (10) that

yme = (ymzne)e = ymzne = ym. (14)

Next, from (11) and (14), we have

yie = (yiym)e ≡ yi(yme) = yiym = yi (2 ≤ i ≤m− 1)

and, from (8) and (11), we have

eyi = (ey2)yi ≡ e(y2yi) = ey2 = e (3 ≤ i ≤ m).

Similarly, from (9), (12) and (13), we have ezλ = zλ (3 ≤ λ ≤ n) and zλe = e

(2 ≤ λ ≤ n− 1), as required. 2

5. Efficiency of Rees matrix semigroups

The presentation P2 is not efficient, but it proves useful in the following results.

In [1] we proved that finite abelian groups and dihedral groups D2r with r even are

efficient (as semigroups). In particular, we found efficient semigroup presentations of the

form 〈X | R1, x
k+1 = x 〉 with identity xk. In the following theorem we use semigroup

presentations for groups of a similar form in P2 to obtain efficient semigroup presentations

for Rees matrix semigroups.
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Theorem 5.6 Let S =M[G;m, n;P ] be a finite Rees matrix semigroup with P normal.

If G has a semigroup presentation of the form PG = 〈X |R1, xux = x 〉 with identity xu

(x ∈ X, u ∈ X+), then S has a semigroup presentation whose deficiency is def (PG) +

(m− 1)(n− 1).

Proof. First assume that m, n > 1 and consider the presentation P2 for S. Take e ≡ xu.

Since, from (8) and (13), the relations xuy2 = xu, znx = x and xux = x hold in S, we

have

xuy2znx ≡ (xuy2)znx = xu(znx) = xux = x.

Therefore, S is a homomorphic image of the semigroup T defined by the presentation

obtained from P2 by adding the relation xuy2znx = x and removing the relations

xuy2 = xu and xux = x:

P3 = 〈 Y | R1, xuy2znx = x, (15)

yiyi+1 = yi (2 ≤ i ≤ m− 1), (16)

xuz2 = z2, (17)

zλzλ+1 = zλ+1 (2 ≤ λ ≤ n− 1), (18)

ymznxu = ym, (19)

zλyi = pλi (2 ≤ i ≤ m, 2 ≤ λ ≤ n) 〉.

Note that if m = 2, then (16) is absent and if n = 2, then (18) is absent. Now we show

that the relations xuy2 = xu and xux = x hold in T so that S ∼= T .

As before, from (16), (18) and (17), we have

y2ym = y2, z2zn = zn and xuzn = zn. (20)

It follows from (20), (19) and (15) that

xuy2 = xu(y2ym) = xuy2(ymznxu) = (xuy2znx)u = xu (21)

and also that

znx = (z2zn)x = (xuz2)znx = xuznx = (xuy2)znx = x. (22)
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Therefore, from (15), (21), (20) and (22), we have

xux = xu(xuy2znx) = xu(xuzn)x = (xuzn)x = znx = x

and hence S is efficient, as required.

Similarly, it may be shown that if m = 1, then

P ′3 = 〈X, z2, ..., zn | R1, uxz2 = z2, zλzλ+1 = zλ+1 (2 ≤ λ ≤ n − 1), xznux = x 〉

is an efficient presentation for S. Similarly, if n = 1, then

P
′′

3 = 〈X, y2, ..., ym | R1, xuy2x = x, yiyi+1 = yi (2 ≤ i ≤ m− 1), ymxu = ym 〉

is an efficient presentation for S. The proof is now complete. 2

As we mentioned at the beginning of this section, finite abelian groups and dihedral

groups D2r with r even, have efficient semigroup presentations of the required form (see

[1]). (For further examples of groups which are efficient as semigroups, see [2].) Therefore

we have the following result.

Corollary 5.7 Finite Rees matrix semigroups over finite abelian groups or dihedral

groups with even degree are efficient. 2

6. Efficient non-simple semigroups

All the efficient semigroups in [1] and in this paper so far are simple. In this section, we

give a family of efficient non-simple semigroups which have non-trivial second homology.

Consider the following presentation:

〈 a1, ..., ar | ani+1
i = ai (1 ≤ i ≤ r), ajai = aiaj (1 ≤ i < j ≤ r) 〉

where n1 > 1 and ni divides ni+1 for i = 1, ..., r− 1.

This semigroup presentation is related to the standard group presentation of the

abelian group Cn1 × · · · ×Cnr , where Cni is the cyclic group of order ni. For r ≥ 2, it is

clear that this semigroup presentation defines a commutative semigroup S which is not

a group. For r ≥ 2, the subset I = {am1
1 · · ·amrr | 1 ≤ mi ≤ ni for i = 1, ..., r} is a proper

(minimal) ideal of S, so that S is not simple.
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Theorem 6.8 Let S be the semigroup defined by the presentation

〈 a1, . . . , ar | ani+1
i = ai (1 ≤ i ≤ r), ajai = aiaj (1 ≤ i < j ≤ r) 〉

where n1 > 1 and ni divides ni+1 for i = 1, ..., r− 1. Then the second homology of S is

H2(S) = C(r−1)
n1

×C
(r−2)

n2
× · · · × Cnr−1.

In particular, S is an efficient semigroup.

Proof. Since the system of relations is uniquely terminating, use the Squier resolution

[8] to determine the second homology. 2
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