On the Efficiency of Finite Simple Semigroups

H. Ayık, C. M. Campbell, J.J.O'Connor, N. Ruškuc*

Abstract

Let S be a finite simple semigroup, given as a Rees matrix semigroup $\mathcal{M}[G ; I, \Lambda ; P]$ over a group G.

We prove that the second homology of S is $H_{2}(S)=H_{2}(G) \times \mathbb{Z}^{(|I|-1)(|\Lambda|-1)}$. It is known that for any finite presentation $\langle A \mid R\rangle$ of S we have $|R|-|A| \geq$ $\operatorname{rank}\left(H_{2}(S)\right)$; we say that S is efficient if equality is attained for some presentation. Given a presentation $\left\langle A_{1} \mid R_{1}\right\rangle$ for G, we find a presentation $\langle A \mid R\rangle$ for S such that $|R|-|A|=\left|R_{1}\right|-\left|A_{1}\right|+(|I|-1)(|\Lambda|-1)+1$. Further, if R_{1} contains a relation of a special form, we show that $|R|-|A|$ can be reduced by one. We use this result to prove that S is efficient whenever G is finite abelian or dihedral of even degree.

1. Introduction

The purpose of this paper is to investigate the efficiency of finite simple semigroups. It is well known that a finite semigroup S is simple if and only if is isomorphic to a finite Rees matrix semigroup $\mathcal{M}[G ; I, \Lambda ; P]$. Here G is a group, I and Λ are nonempty sets, and $P=\left(p_{\lambda i}\right)$ is a $\Lambda \times I$ matrix with entries from G. Then the Rees matrix semigroup $\mathcal{M}[G ; I, \Lambda ; P]$ is the set $I \times G \times \Lambda=\{(i, a, \lambda) \mid i \in I, a \in G, \lambda \in \Lambda\}$ with the multiplication

$$
(i, a, \lambda)(j, b, \mu)=\left(i, a p_{\lambda j} b, \mu\right)
$$

It is known that the matrix P can be chosen to be normal, that is $p_{\lambda 1}=p_{1 i}=1_{G}$ for all

[^0]
AYIK, CAMPBELL, O'CONNOR, RUŠKUC

$\lambda \in \Lambda, i \in I$, where 1_{G} is the identity of G; see for example [7] or [4].
Let A be an alphabet and let A^{+}denote the free semigroup on A. A presentation is an ordered pair $\langle A \mid R\rangle$, where $R \subseteq A^{+} \times A^{+}$. A semigroup S is said to be defined by $\langle A \mid R\rangle$ if $S \cong A^{+} / \rho$ where ρ is the congruence generated by R. If both A and R are finite sets then $\langle A \mid R\rangle$ is said to be a finite presentation and S is said to be finitely presented. The deficiency of a finite presentation $\mathcal{P}=\langle A \mid R\rangle$ is defined to be $|R|-|A|$ and is denoted by $\operatorname{def}(\mathcal{P})$. The deficiency of a finitely presented semigroup S is defined by

$$
\operatorname{def}(S)=\min \{\operatorname{def}(\mathcal{P}) \mid \mathcal{P} \text { is a finite presentation for } S\}
$$

For a semigroup S, let S^{1} denote the monoid S with an identity adjoined to it. For a finite semigroup S, it is well-known that $\operatorname{def}(S) \geq 0$. Recently it has been shown by S . J. Pride (unpublished) that there exists a better lower bound for the deficiency of finite semigroups, namely

$$
\operatorname{def}(S) \geq \operatorname{rank}\left(H_{2}(S)\right)
$$

where $H_{2}(S)$ is the second integral homology of S^{1}.
We call a finite semigroup S efficient if S has a presentation $\mathcal{P}=\langle A \mid R\rangle$ such that $\operatorname{def}(\mathcal{P})=\operatorname{rank}\left(H_{2}(S)\right)$ and inefficient otherwise. Examples of both efficient semigroups and of inefficient semigroups are given in [1], where it is also shown that finite rectangular bands are efficient. Of course rectangular bands are simple. In this paper we first compute the second integral homology of a general finite simple semigroup $S=\mathcal{M}[G ; I, \Lambda ; P]$. If G is efficient, then we find a presentation \mathcal{P} for S with $\operatorname{def}(\mathcal{P})=\operatorname{rank}\left(H_{2}(S)\right)+1$. We are able to modify this presentation to reduce the deficiency by one and hence show that S is efficient when G is a finite abelian group or a dihedral group $D_{2 n}$ with even n. It is not known whether this can be done for an arbitrary finite group, or whether there exists a finite group G such that $\operatorname{def}(S)=\operatorname{rank}\left(H_{2}(S)\right)+1$. Finally, we show that there exist non-simple efficient semigroups which have non-trivial second homology.

2. A rewriting system for Rees matrix semigroups

In [1] the bar resolution was used to compute the second homology of rectangular bands $R_{m, n}$ to be $\mathbb{Z}^{(m-1)(n-1)}$, and the nth $(n \geq 1)$ homology of semigroups with a left or a right zero to be trivial. Here we use another resolution which is described by Squier

AYIK, CAMPBELL, O'CONNOR, RUŠKUC

in [8]. Since this resolution is defined by using a presentation in which the set of relations is a uniquely terminating rewriting system, we first find a presentation for a Rees matrix semigroup in which the set of relations forms such a system. We begin by introducing some elementary concepts about rewriting systems.

Let A be a set and let A^{*} be the free monoid on A. A rewriting system R on A is a subset of $A^{*} \times A^{*}$. For $w_{1}, w_{2} \in A^{*}$, we write $w_{1} \equiv w_{2}$ if they are identical words. We say that w_{1} rewrites to w_{2} if there exist $b, c \in A^{*}$ and $(u, v) \in R$ such that $w_{1} \equiv b u c$ and $w_{2} \equiv b v c$ and we write $w_{1} \rightarrow w_{2}$. We denote by $\xrightarrow{*}$ the reflexive transitive closure of \rightarrow and by \sim the equivalence relation generated by \rightarrow.

For a word w we say that w is reducible if there is a word z such that $w \rightarrow z$; otherwise we call w irreducible. If $w \xrightarrow{*} y$ and y is irreducible, then we say that y is an irreducible form of w. A rewriting system R is said to be terminating if there is no infinite sequence $\left(w_{n}\right)$ such that $w_{n} \rightarrow w_{n+1}$ for all $n \geq 1$. We denote by $|w|$ the length of the word w. We call R length-reducing if $|u|>|v|$ for all $(u, v) \in R$. It is clear that if R is a length-reducing rewriting system, then R is a terminating rewriting system.

We say that R is confluent if, for any $x, y, z \in A^{*}$ such that $x \xrightarrow{*} y, x \xrightarrow{*} z$, there exists $w \in A^{*}$ such that $y \xrightarrow{*} w, z \xrightarrow{*} w$. A rewriting system R is complete if it is both terminating and confluent. For a given R, define $R_{1} \subseteq A^{*}$ to consist of all $r \in A^{*}$ such that there exists $(r, s) \in R$ for some $s \in A^{*}$. The system R is said to be reduced provided that, for each $(r, s) \in R$, we have $R_{1} \cap A^{*} r A^{*}=\{r\}$ and s is R-irreducible. A reduced complete rewriting system $R \subseteq A^{*} \times A^{*}$ is called a uniquely terminating rewriting system.

Lemma 2.1 Let R be a terminating rewriting system. Then the following are equivalent:
(i) R is confluent (and hence complete);
(ii) for any $\left(r_{1} r_{2}, s_{12}\right),\left(r_{2} r_{3}, s_{23}\right) \in R$, where r_{2} is non-empty, there exists a word $w \in A^{*}$ such that $s_{12} r_{3} \xrightarrow{*} w, r_{1} s_{23} \xrightarrow{*} w$; for any $\left(r_{1} r_{2} r_{3}, s_{12}\right),\left(r_{2}, s_{23}\right) \in R$, there exists a word $w \in A^{*}$ such that $s_{12} \xrightarrow{*} w, r_{1} s_{23} r_{3} \xrightarrow{*} w$;
(iii) any word $w \in A^{*}$ has exactly one irreducible form. Moreover $w \sim w^{\prime}$ if and only if w and w^{\prime} have the same irreducible form.

For a proof see [3] or [8].
We define the overlaps to be the ordered pairs of the form $\left[\left(r_{1} r_{2}, s_{12}\right),\left(r_{2} r_{3}, s_{23}\right)\right]$

AYIK, CAMPBELL, O'CONNOR, RUŠKUC

and $\left[\left(r_{4} r_{5} r_{6}, s_{45}\right),\left(r_{5}, s_{56}\right)\right]$ where $\left(r_{1} r_{2}, s_{12}\right),\left(r_{2} r_{3}, s_{23}\right),\left(r_{4} r_{5} r_{6}, s_{45}\right),\left(r_{5}, s_{56}\right) \in R$, and r_{2} and r_{5} are non-empty.

First, we give a presentation for a Rees matrix semigroup with a normal matrix. For ease of notation we assume that I and Λ contain a distinguished element denoted by 1 .

Theorem 2.2 Let $S=\mathcal{M}[G ; I, \Lambda ; P]$ be a Rees matrix semigroup, where G is a group and $P=\left(p_{\lambda i}\right)$ is a normal $\Lambda \times I$ matrix with entries from G. Let $\langle X \mid R\rangle$ be a semigroup presentation for G, let $e \in X^{+}$be a non-empty word representing the identity of G, and let $Y=X \cup\left\{y_{i} \mid i \in I-\{1\}\right\} \cup\left\{z_{\lambda} \mid \lambda \in \Lambda-\{1\}\right\}$. Then the presentation

$$
\begin{aligned}
& \langle Y| R, y_{i} e=y_{i}, \quad e y_{i}=e, \quad z_{\lambda} e=e, \quad e z_{\lambda}=z_{\lambda}, \quad z_{\lambda} y_{i}=p_{\lambda i} \\
& \quad(i \in I-\{1\}, \lambda \in \Lambda-\{1\})\rangle
\end{aligned}
$$

defines S in terms of the generating set $\{(1, x, 1) \mid x \in X\} \cup\{(i, e, 1) \mid i \in I-\{1\}\} \cup$ $\{(1, e, \lambda) \mid \lambda \in \Lambda-\{1\}\}$.

Proof. The result is a special case of Theorem 6.2 in [5].

In the previous presentation, there are some overlaps, for example $\left[y_{i} e=y_{i}, e y_{i}=e\right]$, which show that the set of the relations is not a uniquely terminating rewriting system. Now we construct a new presentation with a uniquely terminating rewriting system of relations. We can take the presentation $\langle X \mid R\rangle$ to be the Cayley table, that is $X=G$ and $R=\left\{\left(x_{1} x_{2}, x_{3}\right) \mid x_{1}, x_{2}, x_{3} \in X, x_{1} x_{2}=x_{3}\right.$ in $\left.G\right\}$. It is clear that R is a uniquely terminating rewriting system on X. Let $x_{0} \in X$ represent the identity of G. Then, taking $e \equiv x_{0}$ and adding the new relations $x y_{i}=x, z_{\lambda} x=x, y_{i} y_{i^{\prime}}=y_{i}$ and $z_{\lambda} z_{\lambda^{\prime}}=z_{\lambda^{\prime}}$ $\left(x \in X-\left\{x_{0}\right\} ; i, i^{\prime} \in I-\{1\} ; \lambda, \lambda^{\prime} \in \Lambda-\{1\}\right)$, which are easily seen to hold in S, yields the presentation

$$
\begin{aligned}
& \langle Y| R, \quad y_{i} x_{0}=y_{i}, \quad x y_{i}=x, \quad y_{i} y_{i^{\prime}}=y_{i}, \quad z_{\lambda} x=x, \quad x_{0} z_{\lambda}=z_{\lambda}, \quad z_{\lambda} z_{\lambda^{\prime}}=z_{\lambda^{\prime}}, \\
& \left.\quad z_{\lambda} y_{i}=p_{\lambda i}\left(i, i^{\prime} \in I-\{1\}, \lambda, \lambda^{\prime} \in \Lambda-\{1\}, x \in X\right)\right\rangle
\end{aligned}
$$

which defines $S=\mathcal{M}[G ; I, \Lambda ; P]$.
For ease of notation, we assume that G is finite and $X=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$. We further assume that the entries $p_{\lambda i}$ of the matrix P are represented by the words of length one.

Theorem 2.3 Let $\langle X \mid R\rangle$ be the Cayley table of the finite group G and let $x_{0} \in X$ be the representative of the identity. With the above notation, the presentation

$$
\begin{aligned}
& \mathcal{P}=\langle Y| R, \quad y_{i} x_{0}=y_{i}, \quad x_{k} y_{i}=x_{k}, \quad y_{i} y_{i^{\prime}}=y_{i}, \quad z_{\lambda} x_{k}=x_{k}, \quad x_{0} z_{\lambda}=z_{\lambda}, \\
& \left.z_{\lambda} z_{\lambda^{\prime}}=z_{\lambda^{\prime}}, \quad z_{\lambda} y_{i}=p_{\lambda i}\left(0 \leq k \leq m, \quad i, i^{\prime} \in I-\{1\}, \quad \lambda, \lambda^{\prime} \in \Lambda-\{1\}\right)\right\rangle
\end{aligned}
$$

which defines $S=\mathcal{M}[G ; I, \Lambda ; P]$, has a uniquely terminating rewriting system of relations on Y.

Proof. Let Q denote the set of relations of \mathcal{P}. Recall that all rewriting rules in R have the form $\left(x_{1} x_{2}, x_{3}\right)\left(x_{1}, x_{2}, x_{3} \in X\right)$ so that all the rewriting rules in Q are lengthreducing. Therefore Q is terminating. It is clear that Q is reduced. To prove that Q is confluent, we list the overlaps:

$$
\begin{aligned}
& U_{1, k, k^{\prime}, k^{\prime \prime}}=\left[\left(x_{k} x_{k^{\prime}}, x_{l}\right),\left(x_{k^{\prime}} x_{k^{\prime \prime}}, x_{l^{\prime}}\right)\right], \quad U_{2, k, k^{\prime}, i}=\left[\left(x_{k^{\prime}} x_{k}, x_{l}\right),\left(x_{k} y_{i}, x_{k}\right)\right], \\
& U_{3, k, \lambda}=\left[\left(x_{k} x_{0}, x_{k}\right),\left(x_{0} z_{\lambda}, z_{\lambda}\right)\right], \quad U_{4, k, i}=\left[\left(y_{i} x_{0}, y_{i}\right),\left(x_{0} x_{k}, x_{k}\right)\right], \\
& U_{5, i, i^{\prime}}=\left[\left(y_{i} x_{0}, y_{i}\right),\left(x_{0} y_{i^{\prime}}, x_{0}\right)\right], \quad U_{6, i, \lambda}=\left[\left(y_{i} x_{0}, y_{i}\right),\left(x_{0} z_{\lambda}, z_{\lambda}\right)\right], \\
& U_{7, k, i}=\left[\left(x_{k} y_{i}, x_{k}\right),\left(y_{i} x_{0}, y_{i}\right)\right], \quad U_{8, k, i, i^{\prime}}=\left[\left(x_{k} y_{i}, x_{k}\right),\left(y_{i} y_{i^{\prime}}, y_{i}\right)\right], \\
& U_{9, i, i^{\prime}}=\left[\left(y_{i} y_{i^{\prime}}, y_{i}\right),\left(y_{i^{\prime}} x_{0}, y_{i^{\prime}}\right)\right], \quad U_{10, i, i^{\prime}, i^{\prime \prime}}=\left[\left(y_{i} y_{i^{\prime}}, y_{i}\right),\left(y_{i^{\prime}} y_{i^{\prime \prime}}, y_{i^{\prime}}\right)\right] \text {, } \\
& U_{11, k, k^{\prime}, \lambda}=\left[\left(z_{\lambda} x_{k}, x_{k}\right),\left(x_{k} x_{k^{\prime}}, x_{l}\right)\right], \quad U_{12, k, i, \lambda}=\left[\left(z_{\lambda} x_{k}, x_{k}\right),\left(x_{k} y_{i}, x_{k}\right)\right], \\
& U_{13, \lambda, \lambda^{\prime}}=\left[\left(z_{\lambda} x_{0}, x_{0}\right),\left(x_{0} z_{\lambda^{\prime}}, z_{\lambda^{\prime}}\right)\right], \quad U_{14, k, \lambda}=\left[\left(x_{0} z_{\lambda}, z_{\lambda}\right),\left(z_{\lambda} x_{k}, x_{k}\right)\right], \\
& U_{15, \lambda, \lambda^{\prime}}=\left[\left(x_{0} z_{\lambda}, z_{\lambda}\right),\left(z_{\lambda} z_{\lambda^{\prime}}, z_{\lambda^{\prime}}\right)\right], \quad U_{16, i, \lambda}=\left[\left(x_{0} z_{\lambda}, z_{\lambda}\right),\left(z_{\lambda} y_{i}, p_{\lambda i}\right)\right], \\
& U_{17, k, \lambda, \lambda^{\prime}}=\left[\left(z_{\lambda} z_{\lambda^{\prime}}, z_{\lambda^{\prime}}\right),\left(z_{\lambda^{\prime}} x_{k}, x_{k}\right)\right], \quad U_{18, \lambda, \lambda^{\prime}, \lambda^{\prime \prime}}=\left[\left(z_{\lambda} z_{\lambda^{\prime}}, z_{\lambda^{\prime}}\right),\left(z_{\lambda^{\prime}} z_{\lambda^{\prime \prime}}, z_{\lambda^{\prime \prime}}\right)\right], \\
& U_{19, i, \lambda, \lambda^{\prime}}=\left[\left(z_{\lambda} z_{\lambda^{\prime}}, z_{\lambda^{\prime}}\right),\left(z_{\lambda^{\prime}} y_{i}, p_{\lambda^{\prime} i}\right)\right], \quad U_{20, i, \lambda}=\left[\left(z_{\lambda} y_{i}, p_{\lambda i}\right),\left(y_{i} x_{0}, y_{i}\right)\right], \\
& U_{21, i, i^{\prime}, \lambda}=\left[\left(z_{\lambda} y_{i}, p_{\lambda i}\right),\left(y_{i} y_{i^{\prime}}, y_{i}\right)\right],
\end{aligned}
$$

$\left(i, i^{\prime}, i^{\prime \prime} \in I-\{1\} ; \lambda, \lambda^{\prime}, \lambda^{\prime \prime} \in \Lambda-\{1\} ; 1 \leq k, k^{\prime}, k^{\prime \prime} \leq m\right.$), and then apply Lemma 2.1(ii), which is straightforward.

3. The second homology of Rees matrix semigroups

Now we describe the resolution of \mathbb{Z} given by Squier in [8], which we use to compute the second homology of a finite Rees matrix semigroup.

AYIK, CAMPBELL, O'CONNOR, RUŠKUC

Let S be a monoid and let $\langle A \mid R\rangle$ be a presentation for S in which R is a uniquely terminating rewriting system. Then Squier defined the free resolution of \mathbb{Z} as follows:

$$
P_{3} \xrightarrow{\partial_{3}} P_{2} \xrightarrow{\partial_{2}} P_{1} \xrightarrow{\partial_{1}} P_{0} \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

where P_{0} is the free $\mathbb{Z} S$-module on a single formal symbol [], the augmentation map $\varepsilon: P_{0} \longrightarrow \mathbb{Z}$ is defined by $\varepsilon([])=1, P_{1}$ is the free $\mathbb{Z} S$-module on the set of formal symbols $[x]$ for all $x \in A$ and $\partial_{1}: P_{1} \longrightarrow P_{0}$ is defined by

$$
\partial_{1}([x])=(x-1)[]
$$

where $x \in A$. Further P_{2} is the free $\mathbb{Z} S$-module on the set of formal symbols $[r, s]$, one for each $(r, s) \in R$. For $x \in A$, we define a function $\partial / \partial_{x}: A^{*} \longrightarrow \mathbb{Z} A^{*}$ inductively by

$$
\begin{array}{lll}
\partial / \partial_{x}(1) & =0 & \\
\partial / \partial_{x}(w x) & =\partial / \partial_{x}(w)+w & \left(w \in A^{*}\right) \\
\partial / \partial_{x}(w y) & =\partial / \partial_{x}(w) & \left(w \in A^{*} \text { and } y \neq x\right)
\end{array}
$$

This function is called a derivation.
Now we define $\partial_{2}: P_{2} \longrightarrow P_{1}$ by

$$
\partial_{2}([r, s])=\sum_{x \in A} \phi\left(\partial / \partial_{x}(r)-\partial / \partial_{x}(s)\right)[x]
$$

where $\phi: \mathbb{Z} A^{*} \longrightarrow \mathbb{Z} S$ is induced by the natural homomorphism from A^{*} to S.
Next, P_{3} is the free $\mathbb{Z} S$-module on the set of overlaps $\left[\left(r_{1} r_{2}, s_{12}\right),\left(r_{2} r_{3}, s_{23}\right)\right]$ from R. Let w be in A^{*} and let u be the irreducible form of w. Then we have a sequence $w \equiv b_{1} r_{1} c_{1}, b_{1} s_{1} c_{1} \equiv b_{2} r_{2} c_{2}, \ldots, b_{q} s_{q} c_{q} \equiv u$ where $b_{i}, c_{i} \in A^{*}$ and $\left(r_{i}, s_{i}\right) \in R$ for all $i=1, \ldots, q$. Define $\Phi: A^{*} \longrightarrow P_{2}$ by

$$
\Phi(w)=\sum_{i=1}^{q} \phi\left(b_{i}\right)\left[r_{i}, s_{i}\right] .
$$

Now we define $\partial_{3}: P_{3} \longrightarrow P_{2}$ by

$$
\partial_{3}\left(\left[\left(r_{1} r_{2}, s_{12}\right),\left(r_{2} r_{3}, s_{23}\right)\right]\right)=r_{1}\left[r_{2} r_{3}, s_{23}\right]-\left[r_{1} r_{2}, s_{12}\right]+\Phi\left(r_{1} s_{23}\right)-\Phi\left(s_{12} r_{3}\right)
$$

Squier [8] showed that $P_{3} \xrightarrow{\partial_{3}} P_{2} \xrightarrow{\partial_{2}} P_{1} \xrightarrow{\partial_{1}} P_{0} \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0$ is an exact sequence when R is a uniquely terminating rewriting system.

We now use this resolution to compute the second homology of a finite Rees matrix semigroup $\mathcal{M}[G ; I, \Lambda ; P]$.

Theorem 3.4 Let $S=\mathcal{M}[G ; I, \Lambda ; P]$ be a finite Rees matrix semigroup. Then the second integral homology of S is

$$
H_{2}(S)=H_{2}(G) \times \mathbb{Z}^{(|I|-1)(|\Lambda|-1)}
$$

Proof. Without loss of generality we may assume that P is normal. We consider the uniquely terminating rewriting system Q on Y given in Theorem 2.3 and the resolution of \mathbb{Z} arising from it. By applying the functor $\mathbb{Z} \otimes_{\mathbb{Z} S^{1}}-$ to this resolution, we obtain the chain complex of abelian groups

$$
\mathbb{Z} \otimes P_{3} \xrightarrow{1 \otimes \partial_{3}} \mathbb{Z} \otimes P_{2} \xrightarrow{1 \otimes \partial_{2}} \mathbb{Z} \otimes P_{1} \xrightarrow{1 \otimes \partial_{1}} \mathbb{Z} \otimes P_{0} \xrightarrow{1 \otimes \varepsilon} \mathbb{Z} \otimes \mathbb{Z} \longrightarrow 0
$$

or simply

$$
\bar{P}_{3} \xrightarrow{\bar{\partial}_{3}} \bar{P}_{2} \xrightarrow{\bar{\partial}_{2}} \bar{P}_{1} \xrightarrow{\bar{\partial}_{1}} \mathbb{Z} \longrightarrow 0
$$

where \bar{P}_{1}, \bar{P}_{2} and \bar{P}_{3} are the free abelian groups on the sets of formal symbols $[x](x \in Y)$, $[r, s]((r, s) \in Q)$ and $\left[\left(r_{1} r_{2}, s_{12}\right),\left(r_{2} r_{3}, s_{23}\right)\right]$, one for each overlap from Q, respectively. The mappings $\bar{\partial}_{2}: \bar{P}_{2} \rightarrow \bar{P}_{1}$ and $\bar{\partial}_{3}: \bar{P}_{3} \rightarrow \bar{P}_{2}$ are defined respectively by

$$
\bar{\partial}_{2}([r, s])=\sum_{x \in Y}((\text { the number of } x \text { 's in } r)-(\text { the number of } x \text { 's in } s))[x]
$$

and

$$
\bar{\partial}_{3}\left(\left[\left(r_{1} r_{2}, s_{12}\right),\left(r_{2} r_{3}, s_{23}\right)\right]\right)=\left[r_{2} r_{3}, s_{23}\right]-\left[r_{1} r_{2}, s_{12}\right]+\bar{\Phi}\left(r_{1} s_{23}\right)-\bar{\Phi}\left(s_{12} r_{3}\right)
$$

where $\bar{\Phi}$ is defined by

$$
\bar{\Phi}(w)=\sum_{i=1}^{q}\left[r_{i}, s_{i}\right]
$$

if $\Phi(w)=\sum_{i=1}^{q} \phi\left(b_{i}\right)\left[r_{i}, s_{i}\right]$.

AYIK, CAMPBELL, O'CONNOR, RUŠKUC

Before we compute the second homology of $S, H_{2}(S) \cong \operatorname{ker} \bar{\partial}_{2} / \operatorname{im} \bar{\partial}_{3}$, we assume that $H_{2}(G) \cong \operatorname{ker} \bar{\partial}_{2}^{G} / \operatorname{im} \bar{\partial}_{3}^{G}$ where $\operatorname{ker} \bar{\partial}_{2}^{G}$ is the free abelian group on $\left\{W_{j} \mid j \in J\right\}$ and $\operatorname{im} \bar{\partial}_{3}^{G}$ is the free abelian group on $\left\{V_{l} \mid l \in L\right\}$ which are found by using the Squier resolution on the Cayley table of G. Notice that since G is a finite group, $H_{2}(G)$ is finite, and so $|J|=|L|$. Moreover, since

$$
\begin{equation*}
\bar{\partial}_{2}^{G}\left(\left[x^{2}, u_{1}\right]+\left[u_{1} x, u_{2}\right]+\cdots+\left[u_{n_{x}-1} x, x\right]\right)=n_{x}[x] \tag{1}
\end{equation*}
$$

where $x \in X, u_{i}=x^{i+1}$ and n_{x} is the order of x, we have $\operatorname{rank}\left(\operatorname{im} \bar{\partial}_{2}^{G}\right)=|X|=|G|$, and so $|J|=|L|=|G|^{2}-|G|$.

Now we find a generating set for $\operatorname{im} \bar{\partial}_{3}$ by using the overlaps from the proof of Theorem 2.3. First observe that $\bar{\partial}_{3}\left(U_{1, k, k^{\prime}, k^{\prime \prime}}\right)$ gives a generating set which may be reduced to the basis $\left\{V_{l} \mid l \in L\right\}$ for $\operatorname{im} \bar{\partial}_{3}^{G}$. Next we have

$$
\begin{aligned}
\bar{\partial}_{3}\left(U_{2, k, k^{\prime}, i}\right) & =\left[x_{k} y_{i}, x_{k}\right]-\left[x_{k^{\prime}} x_{k}, x_{l}\right]+\bar{\Phi}\left(x_{k^{\prime}} x_{k}\right)-\bar{\Phi}\left(x_{l} y_{i}\right) \\
& =\left[x_{k} y_{i}, x_{k}\right]-\left[x_{l} y_{i}, x_{l}\right]
\end{aligned}
$$

since $\bar{\Phi}\left(x_{k^{\prime}} x_{k}\right)=\left[x_{k^{\prime}} x_{k}, x_{l}\right]$ and $\bar{\Phi}\left(x_{l} y_{i}\right)=\left[x_{l} y_{i}, x_{l}\right]$. Similarly, we compute that

$$
\begin{aligned}
\bar{\partial}_{3}\left(U_{3, k, \lambda}\right) & =\left[x_{0} z_{\lambda}, z_{\lambda}\right]-\left[x_{k} x_{0}, x_{k}\right], \\
\bar{\partial}_{3}\left(U_{4, k, k}\right) & =\left[x_{0} x_{k}, x_{k}\right]-\left[y_{i} x_{0}, y_{i}\right], \\
\bar{\partial}_{3}\left(U_{5, i, i^{\prime}}\right) & =\left[x_{0} y_{i^{\prime}}, x_{0}\right]-\left[y_{i} y_{i^{\prime}}, y_{i}\right], \\
\bar{\partial}_{3}\left(U_{6, i, \lambda}\right) & =\left[x_{0} z_{\lambda}, z_{\lambda}\right]-\left[y_{i} x_{0}, y_{i}\right], \\
\bar{\partial}_{3}\left(U_{7, k, i}\right) & =\left[y_{i} x_{0}, y_{i}\right]-\left[x_{k} x_{0}, x_{k}\right], \\
\bar{\partial}_{3}\left(U_{8, k, i, i^{\prime}}\right) & =\left[y_{i} y_{i^{\prime}}, y_{i}\right]-\left[x_{k} y_{i^{\prime}}, x_{k}\right], \\
\bar{\partial}_{3}\left(U_{9, i, i^{\prime}}\right) & =\left[y_{i^{\prime}} x_{0}, y_{i^{\prime}}\right]-\left[y_{i} x_{0}, y_{i}\right], \\
\bar{\partial}_{3}\left(U_{10, i, i^{\prime}, i^{\prime \prime}}\right. & =\left[y_{i^{\prime}} y_{i^{\prime \prime}}, y_{i^{\prime}}\right]-\left[y_{i} y_{i^{\prime \prime}}, y_{i}\right], \\
\bar{\partial}_{3}\left(U_{11, k, k^{\prime}, \lambda}\right) & =\left[z_{\lambda} x_{l}, x_{l}\right]-\left[z_{\lambda} x_{k}, x_{k}\right], \\
\bar{\partial}_{3}\left(U_{12, k, i, \lambda}\right) & =0, \\
\bar{\partial}_{3}\left(U_{13, \lambda, \lambda^{\prime}}\right) & =\left[z_{\lambda} z_{\lambda^{\prime}}, z_{\lambda^{\prime}}\right]-\left[z_{\lambda} x_{0}, x_{0}\right],
\end{aligned}
$$

$$
\begin{aligned}
\bar{\partial}_{3}\left(U_{14, k, \lambda}\right) & =-\left[x_{0} z_{\lambda}, z_{\lambda}\right]+\left[x_{0} x_{k}, x_{k}\right], \\
\bar{\partial}_{3}\left(U_{15, \lambda, \lambda^{\prime}}\right) & =\left[x_{0} z_{\lambda^{\prime}}, z_{\lambda^{\prime}}\right]-\left[x_{0} z_{\lambda}, z_{\lambda}\right], \\
\bar{\partial}_{3}\left(U_{16, i, \lambda}\right) & =-\left[x_{0} z_{\lambda}, z_{\lambda}\right]+\left[x_{0} p_{\lambda i}, p_{\lambda i}\right], \\
\bar{\partial}_{3}\left(U_{17, k, \lambda, \lambda^{\prime}}\right) & =\left[z_{\lambda} x_{k}, x_{k}\right]-\left[z_{\lambda} z_{\lambda^{\prime}}, z_{\lambda^{\prime}}\right], \\
\bar{\partial}_{3}\left(U_{18, \lambda, \lambda^{\prime}, \lambda^{\prime \prime}}\right) & =\left[z_{\lambda} z_{\lambda^{\prime \prime}}, z_{\lambda^{\prime \prime}}\right]-\left[z_{\lambda} z_{\lambda^{\prime}}, z_{\lambda^{\prime}}\right], \\
\bar{\partial}_{3}\left(U_{19, i, \lambda, \lambda^{\prime}}\right) & =-\left[z_{\lambda} z_{\lambda^{\prime}}, z_{\lambda^{\prime}}\right]+\left[z_{\lambda} p_{\lambda^{\prime} i}, p_{\lambda^{\prime} i}\right], \\
\bar{\partial}_{3}\left(U_{20, i, \lambda}\right) & =\left[y_{i} x_{0}, y_{i}\right]-\left[p_{\lambda i} x_{0}, p_{\lambda i}\right], \\
\bar{\partial}_{3}\left(U_{21, i, i^{\prime}, \lambda}\right) & =\left[y_{i} y_{i^{\prime}}, y_{i}\right]-\left[p_{\lambda i} y_{i^{\prime}}, p_{\lambda i}\right] .
\end{aligned}
$$

It is easy to see that we have a smaller generating set for im $\bar{\partial}_{3}$: the generating set $\left\{V_{l} \mid l \in L\right\}$ for im $\bar{\partial}_{3}^{G}$ together with

$$
\begin{gathered}
V_{k, i}=\left[y_{i} x_{0}, y_{i}\right]-\left[x_{k} x_{0}, x_{k}\right], \quad V_{k, i, i^{\prime}}=\left[y_{i} y_{i^{\prime}}, y_{i}\right]-\left[x_{k} y_{i^{\prime}}, x_{k}\right], \\
V_{k, \lambda}=\left[x_{0} z_{\lambda}, z_{\lambda}\right]-\left[x_{0} x_{k}, x_{k}\right], \quad V_{k, \lambda, \lambda^{\prime}}=\left[z_{\lambda} z_{\lambda^{\prime}}, z_{\lambda^{\prime}}\right]-\left[z_{\lambda} x_{k}, x_{k}\right]
\end{gathered}
$$

$\left(0 \leq k \leq m ; i, i^{\prime} \in I-\{1\} ; \lambda, \lambda^{\prime} \in \Lambda-\{1\}\right)$. For example, observe that $\bar{\partial}_{3}\left(U_{2, k, k^{\prime}, i}\right)=$ $V_{l, i^{\prime}, i}-V_{k, i^{\prime}, i}$ and $\bar{\partial}_{3}\left(U_{3, k, \lambda}\right)=V_{k, \lambda}-\left(\left[x_{k} x_{0}, x_{k}\right]-\left[x_{0} x_{k}, x_{k}\right]\right)$ where, of course, $\left(\left[x_{k} x_{0}, x_{k}\right]-\right.$ $\left.\left[x_{0} x_{k}, x_{k}\right]\right) \in \operatorname{im} \bar{\partial}_{3}^{G}$. The remaining proofs are similar. Therefore

$$
B=\left\{V_{l}, V_{k, i}, V_{k, i, i^{\prime}}, V_{k, \lambda}, V_{k, \lambda, \lambda^{\prime}} \mid l \in L ; 0 \leq k \leq m ; i, i^{\prime} \in I-\{1\} ; \lambda, \lambda^{\prime} \in \Lambda-\{1\}\right\}
$$

generates $\operatorname{im} \bar{\partial}_{3}$.
Next we find a basis for ker $\bar{\partial}_{2}$. First notice that since $\bar{\partial}_{2}\left(\left[y_{i^{\prime}} y_{i}, y_{i^{\prime}}\right]\right)=\left[y_{i}\right]$ and $\bar{\partial}_{2}\left(\left[z_{\lambda} z_{\lambda^{\prime}}, z_{\lambda^{\prime}}\right]\right)=\left[z_{\lambda}\right]$, it follows from (1) that

$$
\operatorname{rank}\left(\operatorname{im} \bar{\partial}_{2}\right)=\operatorname{rank}\left(\bar{P}_{1}\right)=|G|+(|\Lambda|-1)+(|I|-1)
$$

Therefore

$$
\begin{aligned}
\operatorname{rank}\left(\operatorname{ker} \bar{\partial}_{2}\right)= & \operatorname{rank}\left(\bar{P}_{2}\right)-\operatorname{rank}\left(\bar{P}_{1}\right)=\left(|G|^{2}-|G|\right)+|G|((|\Lambda|-1) \\
& +(|I|-1))+(|\Lambda|-1)^{2}+(|I|-1)^{2}+(|\Lambda|-1)(|I|-1)
\end{aligned}
$$

Since each $\alpha \in \bar{P}_{2}$ has the form

$$
\begin{aligned}
\alpha= & \sum_{k, k^{\prime}=0}^{m} \alpha_{x_{k}, x_{k^{\prime}}}\left[x_{k} x_{k^{\prime}}, x_{l}\right]+\sum_{i \in I-\{1\}}\left(\alpha_{1, i}\left[y_{i} x_{0}, y_{i}\right]+\sum_{i^{\prime} \in I-\{1\}} \alpha_{2, i, i^{\prime}}\left[y_{i^{\prime}} y_{i}, y_{i^{\prime}}\right]\right. \\
& \left.+\sum_{k=0}^{m} \alpha_{3, k, i}\left[x_{k} y_{i}, x_{k}\right]\right)+\sum_{\lambda \in \Lambda-\{1\}}\left(\beta_{1, \lambda}\left[x_{0} z_{\lambda}, z_{\lambda}\right]+\sum_{\lambda^{\prime} \in \Lambda-\{1\}} \beta_{2, \lambda, \lambda^{\prime}}\left[z_{\lambda} z_{\lambda^{\prime}}, z_{\lambda^{\prime}}\right]\right. \\
& \left.+\sum_{k=0}^{m} \beta_{3, k, \lambda}\left[z_{\lambda} x_{k}, x_{k}\right]+\sum_{i \in I-\{1\}} \gamma_{\lambda, i}\left[z_{\lambda} y_{i}, p_{\lambda i}\right]\right)
\end{aligned}
$$

where all the coefficients are integers, $\alpha \in \operatorname{ker} \bar{\partial}_{2}$ if and only if

$$
\begin{aligned}
0=\bar{\partial}_{2}(\alpha)= & \sum_{k, k^{\prime}=0}^{m} \alpha_{x_{k}, x_{k^{\prime}}}\left[\left[x_{k}\right]+\left[x_{k^{\prime}}\right]-\left[x_{l}\right]\right) \\
& +\sum_{i \in I-\{1\}}\left(\alpha_{1, i}\left[x_{0}\right]+\sum_{i^{\prime} \in I-\{1\}} \alpha_{2, i, i^{\prime}}\left[y_{i}\right]+\sum_{k=0}^{m} \alpha_{3, k, i}\left[y_{i}\right]\right) \\
& +\sum_{\lambda \in \Lambda-\{1\}}\left(\beta_{1, \lambda}\left[x_{0}\right]+\sum_{\lambda^{\prime} \in \Lambda-\{1\}} \beta_{2, \lambda, \lambda^{\prime}}\left[z_{\lambda}\right]+\sum_{k=0}^{m} \beta_{3, k, \lambda}\left[z_{\lambda}\right]\right. \\
& \left.+\sum_{i \in I-\{1\}} \gamma_{\lambda, i}\left(\left[z_{\lambda}\right]+\left[y_{i}\right]-\left[p_{\lambda i}\right]\right)\right) .
\end{aligned}
$$

Equivalently, $\alpha \in \operatorname{ker} \bar{\partial}_{2}$ if and only if

$$
\begin{align*}
\alpha_{x_{0}, x_{0}}= & -\sum_{k=1}^{m}\left(\alpha_{x_{k}, x_{0}}+\alpha_{x_{0}, x_{k}}-\alpha_{x_{k}, x_{k}^{-1}}\right)-\sum_{i \in I-\{1\}} \alpha_{1, i}-\sum_{\lambda \in \Lambda-\{1\}} \beta_{1, \lambda} \tag{2}\\
& +\sum_{\substack{\lambda \in \Lambda-\left\{\sum_{i \in i \in I-\{1\}} p_{\lambda}=x_{0}\right.}} \gamma_{\lambda, i},
\end{align*}
$$

$$
\begin{align*}
0= & 2 \alpha_{x_{k}, x_{k}}+\sum_{\substack{k^{\prime}=1 \\
k^{\prime} \neq k}}^{m}\left(\alpha_{x_{k}, x_{k^{\prime}}}+\alpha_{x_{k^{\prime}}, x_{k}}-\alpha_{x_{k^{\prime}}, x_{k^{\prime}}^{-1} x_{k}}\right) \tag{3}\\
& -\sum_{\substack{\lambda \in \Lambda-\{1\}, i \in I-\{1\} \\
p_{\lambda i}=\equiv_{k}}} \gamma_{\lambda, i}(1 \leq k \leq m), \\
\alpha_{2, i, 2}= & -\left(\sum_{i^{\prime} \in I-\{1,2\}} \alpha_{2, i, i^{\prime}}+\sum_{k=0}^{m} \alpha_{3, k, i}+\sum_{\lambda \in \Lambda-\{1\}} \gamma_{\lambda, i}\right)(i \in I-\{1\}), \tag{4}\\
\beta_{2, \lambda, 2}= & -\left(\sum_{\lambda^{\prime} \in \Lambda-\{1,2\}} \beta_{2, \lambda, \lambda^{\prime}}+\sum_{k=0}^{m} \beta_{3, k, \lambda}+\sum_{i \in I-\{1\}} \gamma_{\lambda, i}\right)(\lambda \in \Lambda-\{1\}) . \tag{5}
\end{align*}
$$

We have assumed that $|I|,|\Lambda| \geq 2$ and that 2 is a common element. The cases $|I|=1$ or $|\Lambda|=1$ are treated similarly. By using the system of equations above, we find a basis for ker $\bar{\partial}_{2}$. First, if we take all $\alpha_{1, i}, \alpha_{2, i, i^{\prime}}, \alpha_{3, k, i}, \beta_{1, \lambda}, \beta_{2, \lambda, \lambda^{\prime}}, \beta_{3, k, \lambda}$ and $\gamma_{\lambda, i}$ to be zero, we have

$$
\sum_{x_{k}, x_{k^{\prime}} \in X} \alpha_{x_{k}, x_{k^{\prime}}}\left(\left[x_{k}\right]+\left[x_{k^{\prime}}\right]-\left[x_{l}\right]\right)=0
$$

which gives the basis $\left\{W_{j} \mid j \in J\right\}$ of $\operatorname{ker} \bar{\partial}_{2}^{G}$ where $H_{2}(G)=\operatorname{ker} \bar{\partial}_{2}^{G} / \operatorname{im} \bar{\partial}_{3}^{G}$.
Now if we fix $\alpha_{1, i}=1$ and all the other variables on the right-hand side in (2)-(5) to be zero, then we obtain $\alpha_{x_{0}, x_{0}}=-1$. Therefore we obtain the following generators:

$$
W_{i}=\left[y_{i} x_{0}, y_{i}\right]-\left[x_{0}^{2}, x_{0}\right] \quad(i \in I-\{1\}) .
$$

By using similar arguments, we obtain certain other generators:

$$
\begin{array}{lll}
W_{\lambda} & =\left[x_{0} z_{\lambda}, z_{\lambda}\right]-\left[x_{0}^{2}, x_{0}\right] & (\lambda \in \Lambda-\{1\}), \\
W_{i, k} & =\left[y_{2} y_{i}, y_{2}\right]-\left[x_{k} y_{i}, x_{k}\right] & (0 \leq k \leq m, i \in I-\{1\}), \\
W_{\lambda, k} & =\left[z_{\lambda} z_{2}, z_{2}\right]-\left[z_{\lambda} x_{k}, x_{k}\right] & (0 \leq k \leq m, \lambda \in \Lambda-\{1\}), \\
W_{i, i^{\prime}} & =\left[y_{i^{\prime}} y_{i}, y_{i^{\prime}}\right]-\left[y_{2} y_{i}, y_{2}\right] & \left(i, i^{\prime} \in I-\{1\}, i^{\prime} \neq 2\right), \\
W_{\lambda, \lambda^{\prime}} & =\left[z_{\lambda} z_{\lambda^{\prime}}, z_{\lambda^{\prime}}\right]-\left[z_{\lambda} z_{2}, z_{2}\right] & \left(\lambda, \lambda^{\prime} \in \Lambda-\{1\}, \lambda^{\prime} \neq 2\right) .
\end{array}
$$

We note that to construct a basis for ker $\bar{\partial}_{2}$ we need a further $(|\Lambda|-1)(|I|-1)$ independent elements. We will see that we do not need to identify these remaining elements $W_{\lambda, i}(\lambda \in \Lambda-\{1\} ; i \in I-\{1\})$ of the basis:

$$
\begin{gathered}
Z=\left\{W_{j}, W_{i}, W_{\lambda}, W_{i, k}, W_{\lambda, k}, W_{i, i^{\prime}}, W_{\lambda, \lambda^{\prime}}, W_{\lambda, i}, \mid j \in J ; 0 \leq k \leq m ;\right. \\
\left.i, i^{\prime} \in I-\{1\}\left(i^{\prime} \neq 2\right) ; \lambda, \lambda^{\prime} \in \Lambda-\{1\}\left(\lambda^{\prime} \neq 2\right)\right\}
\end{gathered}
$$

Now we express the V 's in B in terms of the W^{\prime} 's in Z. First, for each $l \in L$, write $V_{l}(W)$ for the expression of V_{l} in terms of the $W_{j}(j \in J)$ as in the calculation of $H_{2}(G)$. Now observe that

$$
\begin{array}{lll}
V_{0, i}=W_{i}, & V_{k, i}=W_{i}+\bar{\partial}_{3}\left(\left[\left(x_{k} x_{0}, x_{k}\right),\left(x_{0} x_{0}, x_{0}\right)\right]\right. & (k \neq 0) \\
V_{0, \lambda}=W_{\lambda}, & V_{k, \lambda}=W_{\lambda}-\bar{\partial}_{3}\left(\left[\left(x_{0} x_{0}, x_{0}\right),\left(x_{0} x_{k}, x_{k}\right)\right]\right. & (k \neq 0) \\
V_{k, 2, i}=W_{i, k}, & V_{k, i^{\prime}, i}=W_{i, i^{\prime}}+W_{i, k} & \left(i^{\prime} \neq 2\right) \\
V_{k, \lambda, 2}=W_{\lambda, k}, & V_{k, \lambda, \lambda^{\prime}}=W_{\lambda, \lambda^{\prime}}+W_{\lambda, k} & \left(\lambda^{\prime} \neq 2\right) .
\end{array}
$$

We obtain the following abelian group presentation for $\mathrm{H}_{2}(\mathrm{~S})$:

$$
\begin{aligned}
& \langle Z| \quad V_{l}(W)=0, W_{i}=0, W_{i}+V_{k}(W)=0(k \neq 0), W_{\lambda}=0 \\
& \quad W_{\lambda}+V_{k}^{\prime}(W)=0(k \neq 0), W_{i, k}=0, W_{i, i^{\prime}}+W_{i, k}=0 \\
& W_{\lambda, k}=0, W_{\lambda, \lambda^{\prime}}+W_{\lambda, k}=0 \quad(l \in L ; 0 \leq k \leq m ; \\
& \left.\left.\lambda \in \Lambda-\{1\} ; \lambda^{\prime} \in \Lambda-\{1,2\} ; i \in I-\{1\} ; i^{\prime} \in I-\{1,2\}\right)\right\rangle
\end{aligned}
$$

where $V_{k}(W)$ expresses $\bar{\partial}_{3}\left(\left[\left(x_{k} x_{0}, x_{k}\right),\left(x_{0} x_{0}, x_{0}\right)\right]\right.$ in terms of the W_{j}, and similarly for $V_{k}^{\prime}(W)$. It is clear that some of the generators in the above presentation are redundant. By eliminating these redundant generators, we obtain the abelian group presentation:

$$
\left\langle V_{j}, W_{\lambda, i}(j \in J ; \lambda \in \Lambda-\{1\} ; i \in I-\{1\}) \mid V_{l}(W)=0(l \in L)\right\rangle
$$

which defines the abelian group

$$
H_{2}(G) \times \mathbb{Z}^{(|I|-1)(|\Lambda|-1)}
$$

as required.

AYIK, CAMPBELL, O'CONNOR, RUŠKUC

4. A small presentation for Rees matrix semigroups

Consider the presentation for $S=\mathcal{M}[G ; I, \Lambda ; P]$, a Rees matrix semigroup with P normal, which is given in Theorem 2.2 by

$$
\begin{align*}
\mathcal{P}_{1}=\langle Y| R, y_{i} e & =y_{i}, \quad e y_{i}=e \quad(2 \leq i \leq m) \tag{6}\\
z_{\lambda} e & =e, \quad e z_{\lambda}=z_{\lambda}(2 \leq \lambda \leq n) \tag{7}\\
z_{\lambda} y_{i} & \left.=p_{\lambda i} \quad(2 \leq i \leq m, 2 \leq \lambda \leq n)\right\rangle
\end{align*}
$$

where e is a non-empty representative of the identity of G, and where $I=\{1, \ldots, m\}$ and $\Lambda=\{1, \ldots, n\}$. From now on, we write $S=\mathcal{M}[G ; m, n ; P]$ instead of $S=\mathcal{M}[G ; I, \Lambda ; P]$.

The deficiency of \mathcal{P}_{1} is $\operatorname{def}\left(\mathcal{P}_{1}\right)=\operatorname{def}\left(\mathcal{P}_{G}\right)+(m-1)(n-1)+(m-1)+(n-1)$, where $\mathcal{P}_{G}=\langle X \mid R\rangle$ is a semigroup presentation for G. With the above notation, we give a presentation for S with deficiency $\operatorname{def}\left(\mathcal{P}_{G}\right)+(m-1)(n-1)+1$, which is one higher than the rank of $H_{2}(S)$ (see Theorem 3.4), provided that \mathcal{P}_{G} is an efficient presentation for G.

Proposition 4.5 The presentation

$$
\begin{align*}
& \mathcal{P}_{2}=\langle Y| R, e y_{2}=e, \quad y_{i} y_{i+1}=y_{i}(2 \leq i \leq m-1) \tag{8}\\
& e z_{2}=z_{2}, \quad z_{\lambda} z_{\lambda+1}=z_{\lambda+1}(2 \leq \lambda \leq n-1), \tag{9}\\
& y_{m} z_{n} e=y_{m}, \tag{10}\\
& z_{\lambda} y_{i}\left.=p_{\lambda i} \quad(2 \leq i \leq m, 2 \leq \lambda \leq n)\right\rangle
\end{align*}
$$

defines the Rees matrix semigroup $S=\mathcal{M}[G ; m, n ; P]$ with $m, n>1$.
Proof. From (6), we have

$$
y_{i} y_{i+1}=\left(y_{i} e\right) y_{i+1} \equiv y_{i}\left(e y_{i+1}\right)=y_{i} e=y_{i} \quad(2 \leq i \leq m-1) .
$$

Similarly, from (7), we have

$$
z_{\lambda} z_{\lambda+1}=z_{\lambda+1} \quad(2 \leq \lambda \leq n-1)
$$

Moreover, from (7) and (6), we have

$$
y_{m} z_{n} e=y_{m} e=y_{m}
$$

AYIK, CAMPBELL, O'CONNOR, RUŠKUC

Therefore, every relation in \mathcal{P}_{2} holds in S. Now we show that every relation in \mathcal{P}_{1} is a consequence of the relations in \mathcal{P}_{2}.

By induction, it follows from (8) that $y_{i} y_{i^{\prime}}=y_{i}\left(2 \leq i<i^{\prime} \leq m\right)$. In particular,

$$
\begin{equation*}
y_{i} y_{m}=y_{i} \text { and } y_{2} y_{i}=y_{2} \quad(2 \leq i \leq m) . \tag{11}
\end{equation*}
$$

Similarly, from (9),

$$
\begin{equation*}
z_{\lambda} z_{n}=z_{n} \quad \text { and } \quad z_{2} z_{\lambda}=z_{\lambda} \quad(2 \leq \lambda \leq n) \tag{12}
\end{equation*}
$$

Since G is finite and e is a representative of the identity of G, there exists $k \in \mathbb{N}$ such that the relation $p_{n m}^{k}=e$ holds in G, and so $\left(z_{n} y_{m}\right)^{k}=e$ is a consequence of the relations from $R \cup\left\{z_{n} y_{m}=p_{n m}\right\}$. It follows from (12), (9) and (10) that

$$
\begin{equation*}
z_{n} e=\left(z_{2} z_{n}\right) e=\left(e z_{2}\right) z_{n} e=e z_{n} e=\left(z_{n} y_{m}\right)^{k-1} z_{n}\left(y_{m} z_{n} e\right)=\left(z_{n} y_{m}\right)^{k}=e . \tag{13}
\end{equation*}
$$

Moreover, since $e^{2}=e$ is a consequence of the relations from R, it follows from (10) that

$$
\begin{equation*}
y_{m} e=\left(y_{m} z_{n} e\right) e=y_{m} z_{n} e=y_{m} \tag{14}
\end{equation*}
$$

Next, from (11) and (14), we have

$$
y_{i} e=\left(y_{i} y_{m}\right) e \equiv y_{i}\left(y_{m} e\right)=y_{i} y_{m}=y_{i} \quad(2 \leq i \leq m-1)
$$

and, from (8) and (11), we have

$$
e y_{i}=\left(e y_{2}\right) y_{i} \equiv e\left(y_{2} y_{i}\right)=e y_{2}=e \quad(3 \leq i \leq m)
$$

Similarly, from (9), (12) and (13), we have $e z_{\lambda}=z_{\lambda}(3 \leq \lambda \leq n)$ and $z_{\lambda} e=e$ $(2 \leq \lambda \leq n-1)$, as required.

5. Efficiency of Rees matrix semigroups

The presentation \mathcal{P}_{2} is not efficient, but it proves useful in the following results. In [1] we proved that finite abelian groups and dihedral groups $D_{2 r}$ with r even are efficient (as semigroups). In particular, we found efficient semigroup presentations of the form $\left\langle X \mid R_{1}, x^{k+1}=x\right\rangle$ with identity x^{k}. In the following theorem we use semigroup presentations for groups of a similar form in \mathcal{P}_{2} to obtain efficient semigroup presentations for Rees matrix semigroups.

Theorem 5.6 Let $S=\mathcal{M}[G ; m, n ; P]$ be a finite Rees matrix semigroup with P normal. If G has a semigroup presentation of the form $\mathcal{P}_{G}=\langle X| R_{1}$, xux $\left.=x\right\rangle$ with identity xu $\left(x \in X, u \in X^{+}\right)$, then S has a semigroup presentation whose deficiency is $\operatorname{def}\left(\mathcal{P}_{G}\right)+$ $(m-1)(n-1)$.

Proof. First assume that $m, n>1$ and consider the presentation \mathcal{P}_{2} for S. Take $e \equiv x u$. Since, from (8) and (13), the relations $x u y_{2}=x u, z_{n} x=x$ and $x u x=x$ hold in S, we have

$$
x u y_{2} z_{n} x \equiv\left(x u y_{2}\right) z_{n} x=x u\left(z_{n} x\right)=x u x=x
$$

Therefore, S is a homomorphic image of the semigroup T defined by the presentation obtained from \mathcal{P}_{2} by adding the relation $x u y_{2} z_{n} x=x$ and removing the relations $x u y_{2}=x u$ and $x u x=x:$

$$
\begin{align*}
& \mathcal{P}_{3}=\langle Y| R_{1}, \quad x u y_{2} z_{n} x=x, \tag{15}\\
& \tag{16}\\
& y_{i} y_{i+1}=y_{i} \quad(2 \leq i \leq m-1) \tag{17}\\
& x u z_{2}=z_{2} \tag{18}\\
& \tag{19}\\
& z_{\lambda} z_{\lambda+1}=z_{\lambda+1}(2 \leq \lambda \leq n-1) \\
& \\
& y_{m} z_{n} x u=y_{m} \\
& \\
& \left.z_{\lambda} y_{i}=p_{\lambda i}(2 \leq i \leq m, 2 \leq \lambda \leq n)\right\rangle
\end{align*}
$$

Note that if $m=2$, then (16) is absent and if $n=2$, then (18) is absent. Now we show that the relations $x u y_{2}=x u$ and $x u x=x$ hold in T so that $S \cong T$.

As before, from (16), (18) and (17), we have

$$
\begin{equation*}
y_{2} y_{m}=y_{2}, \quad z_{2} z_{n}=z_{n} \text { and } x u z_{n}=z_{n} \tag{20}
\end{equation*}
$$

It follows from (20), (19) and (15) that

$$
\begin{equation*}
x u y_{2}=x u\left(y_{2} y_{m}\right)=x u y_{2}\left(y_{m} z_{n} x u\right)=\left(x u y_{2} z_{n} x\right) u=x u \tag{21}
\end{equation*}
$$

and also that

$$
\begin{equation*}
z_{n} x=\left(z_{2} z_{n}\right) x=\left(x u z_{2}\right) z_{n} x=x u z_{n} x=\left(x u y_{2}\right) z_{n} x=x \tag{22}
\end{equation*}
$$

AYIK, CAMPBELL, O'CONNOR, RUŠKUC

Therefore, from (15), (21), (20) and (22), we have

$$
x u x=x u\left(x u y_{2} z_{n} x\right)=x u\left(x u z_{n}\right) x=\left(x u z_{n}\right) x=z_{n} x=x
$$

and hence S is efficient, as required.
Similarly, it may be shown that if $m=1$, then

$$
\mathcal{P}_{3}^{\prime}=\left\langle X, z_{2}, \ldots, z_{n} \mid R_{1}, \quad u x z_{2}=z_{2}, \quad z_{\lambda} z_{\lambda+1}=z_{\lambda+1}(2 \leq \lambda \leq n-1), \quad x z_{n} u x=x\right\rangle
$$

is an efficient presentation for S. Similarly, if $n=1$, then

$$
\mathcal{P}_{3}^{\prime \prime}=\left\langle X, y_{2}, \ldots, y_{m} \mid R_{1}, \quad x u y_{2} x=x, \quad y_{i} y_{i+1}=y_{i}(2 \leq i \leq m-1), \quad y_{m} x u=y_{m}\right\rangle
$$

is an efficient presentation for S. The proof is now complete.

As we mentioned at the beginning of this section, finite abelian groups and dihedral groups $D_{2 r}$ with r even, have efficient semigroup presentations of the required form (see [1]). (For further examples of groups which are efficient as semigroups, see [2].) Therefore we have the following result.

Corollary 5.7 Finite Rees matrix semigroups over finite abelian groups or dihedral groups with even degree are efficient.

6. Efficient non-simple semigroups

All the efficient semigroups in [1] and in this paper so far are simple. In this section, we give a family of efficient non-simple semigroups which have non-trivial second homology. Consider the following presentation:

$$
\left\langle a_{1}, \ldots, a_{r} \mid a_{i}^{n_{i}+1}=a_{i}(1 \leq i \leq r), \quad a_{j} a_{i}=a_{i} a_{j}(1 \leq i<j \leq r)\right\rangle
$$

where $n_{1}>1$ and n_{i} divides n_{i+1} for $i=1, \ldots, r-1$.
This semigroup presentation is related to the standard group presentation of the abelian group $C_{n_{1}} \times \cdots \times C_{n_{r}}$, where $C_{n_{i}}$ is the cyclic group of order n_{i}. For $r \geq 2$, it is clear that this semigroup presentation defines a commutative semigroup S which is not a group. For $r \geq 2$, the subset $I=\left\{a_{1}^{m_{1}} \cdots a_{r}^{m_{r}} \mid 1 \leq m_{i} \leq n_{i}\right.$ for $\left.i=1, \ldots, r\right\}$ is a proper (minimal) ideal of S, so that S is not simple.

Theorem 6.8 Let S be the semigroup defined by the presentation

$$
\left\langle a_{1}, \ldots, a_{r} \mid a_{i}^{n_{i}+1}=a_{i}(1 \leq i \leq r), a_{j} a_{i}=a_{i} a_{j} \quad(1 \leq i<j \leq r)\right\rangle
$$

where $n_{1}>1$ and n_{i} divides n_{i+1} for $i=1, \ldots, r-1$. Then the second homology of S is

$$
H_{2}(S)=C_{n_{1}}^{(r-1)} \times C_{n_{2}}^{(r-2)} \times \cdots \times C_{n_{r-1}}
$$

In particular, S is an efficient semigroup.

Proof. Since the system of relations is uniquely terminating, use the Squier resolution [8] to determine the second homology.

References

[1] Ayık, H., Campbell, C.M., O'Connor, J.J., and Ruškuc, N.: Minimal presentations and efficiency of semigroups, Semigroup Forum 60, 231-242 (2000).
[2] Ayık, H., Campbell, C.M., O'Connor, J.J, and Ruškuc, N.: The semigroup efficiency of groups, Proc. Roy. Irish Acad. Sect. A, to appear.
[3] Guba, V.S., and Pride, S.J.: Low dimensional (co)homology of free Burnside monoids, J. Pure Appl. Algebra 108, 61-79 (1996).
[4] Howie, J.M.: Fundamentals of Semigroup Theory, Oxford University Press, Oxford, 1995.
[5] Howie, J.M., and Ruškuc, N.: Constructions and presentations for monoids, Comm. Algebra 22, 6209-6224 (1994).
[6] Karpilovsky, G.: The Schur Multiplier, Oxford University Press, Oxford, 1987.
[7] Rees, D.: On semi-groups, Proc. Cambridge Philos. Soc. 36, 387-400 (1940).
[8] Squier, C.: Word problems and a homological finiteness condition for monoids, J. Pure Appl. Algebra 49, 201-217 (1987).

AYIK, CAMPBELL, O'CONNOR, RUŠKUC
H. AYIK

Received 20.01.2000
Çukurova Üniversitesi,
Matematik Bölümü,
Adana-TURKEY
C. M. CAMPBELL, J. J. O'CONNOR, N. RUŠKUC

Mathematical Institute,
University of St Andrews,
St Andrews KY16 9SS, SCOTLAND

[^0]: AMS Mathematics Subject Classification: 20M05, 20M50
 *The corresponding author

