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A Generalized Trapezoid Inequality for Functions of

Bounded Variation
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Abstract

We establish a generalization of a recent trapezoid inequality for functions of
bounded variation. A number of special cases are considered. Applications are
made to quadrature formulæ, probability theory, special means and the estimation
of the beta function.
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1. Introduction

In [1], Dragomir proved the following trapezoid inequality for functions of bounded
variation. Here and subsequently in the paper, if f is of bounded variation on [a,b], we

denote its total variation on that interval by
b∨
a

(f).

Theorem A. Let f : [a, b]→ R be of bounded variation on [a, b]. Then∣∣∣∣∣∣
b∫
a

f (t) dt− f (a) + f (b)
2

(b− a)

∣∣∣∣∣∣ ≤ 1
2

(b− a)
b∨
a

(f) . (1.1)

The constant 1/2 is best possible.

We introduce the notation In : a = x0 < x1 < ... < xn−1 < xn = b for a division of
the interval [a, b], with hi := xi+1−xi (0 ≤ i < n) and ν (h) := max {hi | i = 0, ..., n− 1}
for the norm of the division. Then we may deduce from Theorem A that
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b∫
a

f (t) dt = T (f, In) + R (f, In) , (1.2)

where

T (f, In) :=
1
2

n−1∑
i=0

[f (xi) + f (xi+1)]hi, (1.3)

and that the remainder term satisfies

|R (f, In)| ≤ 1
2
ν (h)

b∨
a

(f) . (1.4)

Here the constant 1/2 is also best possible.

The main aim of this paper is to compare
b∫
a

f (t) dt with

f (a) (x− a) + f (b) (b− x) ,

where x ∈ [a, b] is a free parameter. The choice x = (a+b)/2 gives the trapezoid estimate

f (a) + f (b)
2

(b− a)

for mappings of bounded variation.
In Section 2 we derive our basic estimate, which provides an upper bound for the

difference between
∫ b
a
f(t)dt and the estimate proposed above for the case when f is a

function of bounded variation. We examine the important special cases when f has a
continuous derivative or is Lipschitz, monotone or convex. In Section 3 these results are
applied to the estimation of the error term in some quadrature formulæ and in Section
4 to some estimates in probability theory, in particular, that of the mean E(X) of a
random variable X. Section 5 uses particular choices of f to obtain some apparently new
inequalities subsisting amongst various well–known means of a pair of positive numbers.
Finally a further special choice is taken in Section 6 to address the estimation of Euler’s
beta function.

For a compendious treatment of other inequalities of trapezoid type, see [2] and the
references therein.
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2. Some Integral Inequalities

We start with a basic integral inequality for mappings of bounded variation. For
convenience we set

J(x) :=

b∫
a

f (t) dt− f (a) (x− a)− f (b) (b− x) .

Theorem 1 Let f : [a, b]→ R be a mapping of bounded variation. Then

|J(x)| ≤
[

1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣] b∨
a

(f) (2.1)

for all x ∈ [a, b]. The constant 1/2 is best possible.

Proof. By the integration by parts formula for a Riemann–Stieltjes integral, we have

b∫
a

(x− t) df (t) = (x− t) f (t)|ba +

b∫
a

f (t) dt,

whence we derive the identity

b∫
a

f (t) dt = (b− x) f (b) + (x− a) f (a) +

b∫
a

(x− t) df (t) (2.2)

for all x ∈ [a, b] .
If g, v : [a, b]→ R are such that g is continuous and v of bounded variation on [a, b],

then
b∫
a

g (t) dv (t) exists and

∣∣∣∣∣∣
b∫
a

g (t) dv (t)

∣∣∣∣∣∣ ≤ sup
t∈[a,b]

|g (t)|
b∨
a

(v) .

Thus ∣∣∣∣∣∣
b∫
a

(x− t) df (t)

∣∣∣∣∣∣ ≤ sup
t∈[a,b]

|x− t|
b∨
a

(f) . (2.3)
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As

sup
t∈[a,b]

|x− t| = max{x− a, b− x} =
1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣ ,
(2.1) follows from (2.3) and (2.2).

Now suppose that (2.1) holds with a constant c > 0, that is,

|J(x)| ≤
[
c (b− a) +

∣∣∣∣x− a+ b

2

∣∣∣∣] b∨
a

(f)

for all x ∈ [a, b] . For x = (a + b)/2, we get∣∣∣∣∣∣
b∫
a

f (t) dt− f (a) + f (b)
2

(b− a)

∣∣∣∣∣∣ ≤ c (b− a)
b∨
a

(f) . (2.4)

Define f : [a, b]→ R by

f (x) =


0 if x = a

1 if x ∈ (a, b)

0 if x = b.

Then f is of bounded variation on [a, b] and

b∫
a

f (x) dx = b− a,
b∨
a

(f) = 2.

For this choice of f , (2.4) provides

b− a ≤ 2c (b− a)

or c ≥ 1/2, concluding the proof. 2
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Remark 1 a) The choice x = b supplies the “left rectangle” inequality

∣∣∣∣∣∣
b∫
a

f (x)dx− f (a) (b − a)

∣∣∣∣∣∣ ≤ (b− a)
b∨
a

(f) .

b) Setting x = a yields the “right rectangle” inequality

∣∣∣∣∣∣
b∫
a

f (x)dx− f (b) (b− a)

∣∣∣∣∣∣ ≤ (b− a)
b∨
a

(f) .

c) For x = (a + b)/2 we obtain the known “trapezoid” inequality (1.1). This is the
best possible inequality we can derive from (2.1) in the sense that the constant 1/2
is best possible.

Further standard assumptions about f lead to useful corollaries.

Corollary 1 Suppose f ∈ C(1) [a, b] . Then

|J(x)| ≤
[

1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣] ‖f ′‖1
for all x ∈ [a, b]. Here as subsequently ‖·‖1 is the L1-norm

‖f ′‖1 :=

b∫
a

|f ′ (t)| dt.

Corollary 2 Let f : [a, b]→ R be a Lipschitzian mapping with the constant
L > 0. Then

|J(x)| ≤
[

1
2

(b− a) +
∣∣∣∣x− a + b

2

∣∣∣∣] (b− a)L

for all x ∈ [a, b] .

151



CERONE, DRAGOMIR, PEARCE

Proof. As f is L−Lipschitzian on [a, b], it is also of bounded variation. If Div[a, b]
denotes the family of divisions on [a, b], then

b∨
a

(f) = sup
In∈Div[a,b]

n−1∑
i=0

|f (xi+1)− f (xi)|

≤ L sup
In∈Div[a,b]

|xi+1 − xi|

= (b− a)L,

and the desired result is proved. 2

Corollary 3 Let f : [a, b]→ R be a monotone mapping on [a, b] . Then

|J(x)| ≤
[

1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣] |f (b)− f (a)|

for all x ∈ [a, b] .

For f : [a, b]→ R convex on [a, b], we have the Hermite–Hadamard inequality

f

(
a+ b

2

)
≤ 1
b− a

b∫
a

f (x) dx ≤ f (a) + f (b)
2

.

The above results enable us to place bounds on the difference between the two sides of the
second inequality. Thus if f is convex and of bounded variation on [a, b], (1.1) provides

0 ≤ f (a) + f (b)
2

− 1
b− a

b∫
a

f (t) dt ≤ 1
2

b∨
a

(f) .

If f is convex and Lipschitzian with the constant L on [a, b] , then Corollary 2.3 yields

0 ≤ f (a) + f (b)
2

− 1
b− a

b∫
a

f (t) dt ≤ 1
2

(b− a)L.
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If f is convex and monotonic on [a, b] , then by Corollary 2.4

0 ≤ f (a) + f (b)
2

− 1
b− a

b∫
a

f (t) dt ≤ 1
2
|f (b) − f (a)| .

Finally, if f ∈ C(1)[a, b] and convex, then by Corollary 2.2

0 ≤ f (a) + f (b)
2

− 1
b− a

b∫
a

f (t) dt ≤ 1
2
‖f ′‖1 .

3. Applications to Quadrature Formulæ

We now introduce the intermediate points ξi ∈ [xi, xi+1] (i = 0, ..., n − 1) in the
division In of [a, b] and define

TP (f, In, ξ) :=
n−1∑
i=0

[(ξi − xi) f (xi) + (xi+1 − ξi) f (xi+1)] .

We have the following result concerning the approximation by TP of the integral
b∫
a

f (x) dx.

Theorem 2 Let f : [a, b]→ R be of bounded variation on [a, b]. Then

b∫
a

f (x) dx = TP (f, In, ξ) + RP (f, In, ξ) , (3.1)

with remainder term satisfying

|RP (f, In, ξ)| ≤
[

1
2
ν (h) + max

0≤i<n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] b∨
a

(f) ≤ ν (h)
b∨
a

(f) . (3.2)

The constant 1/2 is best possible.

Proof. Application of Theorem 1 to the intervals [xi, xi+1] (i = 0, ..., n− 1) gives∣∣∣∣∣∣
xi+1∫
xi

f (t) dt− [f (xi) (ξi − xi) + f (xi+1) (xi+1 − ξi)]

∣∣∣∣∣∣
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≤
[

1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] xi+1∨
xi

(f)

for all i ∈ {0, ..., n− 1}.
By this and the generalized triangle inequality,

|RP (f, In, ξ)| ≤
n−1∑
i=0

∣∣∣∣∣∣
xi+1∫
xi

f (t) dt− [f (xi) (ξi − xi) + f (xi+1) (xi+1 − ξi)]

∣∣∣∣∣∣
≤

n−1∑
i=0

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] xi+1∨
xi

(f)

≤ max
0≤i<n

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] n−1∑
i=0

xi+1∨
xi

(f)

≤
[

1
2
ν (h) + max

0≤i<n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] b∨
a

(f)

and the first inequality in (3.2) is proved.
For the second, we observe that∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣ ≤ 1
2
hi, i = 0, ..., n− 1

so that

max
0≤i<n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣ ≤ 1
2
ν (h) ,

proving the theorem. 2

Remark 2 a) Choosing ξi = xi+1 (i = 0, ..., n− 1) provides

b∫
a

f (x)dx = DL (f, In) + RL (f, In) .
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Here DL (f, In) is constructed from the left rectangle rule

DL (f, In) =
n−1∑
i=0

f (xi)hi

and the remainder satisfies

|RL (f, In)| ≤ ν (h)
b∨
a

(f) .

b) Taking ξi = xi (i = 0, ..., n− 1) gives

b∫
a

f (x) dx = DR (f, In) + RR (f, In) ,

where DR (f, In) is built from the right rectangle rule

DR (f, In) =
n−1∑
i=0

f (xi+1)hi

and the remainder term satifies

|RR (f, In)| ≤ ν (h)
b∨
a

(f) .

c) Finally, if we choose ξi = (xi + xi+1)/2, we get (1.2) with (1.3) and (1.4).

Corollary 4 Let f : [a, b]→ R be Lipschitzian with constant L > 0. Then we have (3.1)
and the remainder satisfies

|RT (f, In, ξ)| ≤ L
[

1
2
ν (h) + max

0≤i<n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] ≤ Lν (h) .

Corollary 5 Let f : [a, b] → R be monotone on [a, b] . Then we have the quadrature
formula (3.1) and the remainder satisfies

|RT (f, In, ξ)| ≤
[

1
2
ν (h) + max

0≤i<n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] |f (b)− f (a)|

≤ ν (h) |f (b)− f (a)| .
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4. Applications to Probability

Proposition 1 Let f : [a, b]→ R be a probability density function of bounded variation
on [a, b] and F : [a, b]→ R the corresponding distribution function

F (x) =

x∫
a

f (t) dt, x ∈ [a, b] .

Then

|F (x)− [f (a) (y − a) + f (x) (x− y)]| ≤
[

1
2

(x− a) +
∣∣∣∣y − a+ x

2

∣∣∣∣] x∨
a

(f) (4.1)

for all a ≤ y ≤ x. In particular, choosing y = (a + x)/2 gives∣∣∣∣F (x)− f (a) + f (x)
2

(x− a)
∣∣∣∣ ≤ 1

2
(x− a)

x∨
a

(f) (4.2)

for all x ∈ [a, b] . The constant 1/2 in (4.1) and (4.2) is best possible.

Proof. The result is immediate from Theorem 1. 2

The following approximation holds for the expectation of a random variable.

Proposition 2 Let X be a random variable having distribution function F and expecta-
tion E (X). Then∣∣∣∣∣E (X) −

n−1∑
i=0

F (xi) (ξi+1 − ξi)− ξn−1

∣∣∣∣∣ ≤ 1
2
ν (h) + max

0≤i<n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣ . (4.3)

Proof. We apply Theorem 2 to F to get∣∣∣∣∣∣
b∫
a

F (t) dt−
n−1∑
i=0

F (xi) (ξi − xi) −
n−1∑
i=0

F (xi+1) (xi+1 − ξi)

∣∣∣∣∣∣ (4.4)

≤
[

1
2
ν (h) + max

0≤i<n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] b∨
a

(F ) .
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But

b∨
a

(F ) = F (b)− F (a) = 1

and

b∫
a

F (t) dt = tF (t)|ba −
b∫
a

tf (t) dt = bF (b)− aF (a)− E (X) = b− E (X) .

By (4.4), ∣∣∣∣∣b− E (X) − F (a) (ξ0 − a)−
n−1∑
i=1

F (xi) (ξi − xi)

−
n−2∑
i=0

F (xi+1) (xi+1 − ξi)− F (b) (b− ξn−1)

∣∣∣∣∣
≤ 1

2
ν (h) + max

0≤i<n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣
or ∣∣∣∣∣−E (X) −

n−1∑
i=1

F (xi) (ξi − ξi−1) + ξn−1

∣∣∣∣∣ ≤ 1
2
ν (f) + max

0≤i<n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣
and the proposition is proved. 2

Remark 3 a) Suppose the division is reduced to the endpoints, that is, a = x0 < x1 =
b and ξ1 = ξ ∈ [a, b]. Then by (4.3)

|E (X) − ξ| ≤ 1
2

(b− a) +
∣∣∣∣ξ − a+ b

2

∣∣∣∣
for all ξ ∈ [a, b] .
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b) Suppose a = x0 < x < x2 = b and ξ ∈ [a, x] , µ ∈ [x, b] .
Then by (4.3)

|E (X) − F (x) (ξ − µ)− µ|

≤ 1
2

max{|x− a| , |b− x|}+ max
{∣∣∣∣ξ − a+ x

2

∣∣∣∣ , ∣∣∣∣µ− x+ b

2

∣∣∣∣}
=

1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣+ max
{∣∣∣∣ξ − a+ x

2

∣∣∣∣ , ∣∣∣∣µ− x− b
2

∣∣∣∣}
for all a ≤ ξ ≤ x ≤ µ ≤ b.

In particular, if ξ = (a+ x)/2 and µ = (x+ b)/2, then∣∣∣∣E (X) − 1
2
F (x) (a− b)− x+ b

2

∣∣∣∣ ≤ 1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣
for all x ∈ [a, b] .

5. Applications to Special Means

We now derive some results for various well–known means. For a, b ≥ 0 we have the
arithmetic mean

A = A (a, b) := (a + b)/2

and the geometric mean

G = G (a, b) :=
√
ab.

For a, b > 0 we have the harmonic mean

H = H (a, b) := 2/
(
a−1 + b−1

)
,

the logarithmic mean

L = L (a, b) :=


a if a = b

b− a
ln b− ln a

if a 6= b,

the identric mean
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I := I (a, b) =


a if a = b

1
e

(
bb

aa

) 1
b−a

if a 6= b

and for p ∈ R\ {−1, 0}, the p–logarithmic mean

Lp = Lp (a, b) :=


[
bp+1 − ap+1

(p+ 1) (b− a)

]1/p

if a 6= b;

a if a = b.

It is well–known that with L−1 := L and L0 := I, the net (Lp) is monotone nonde-
creasing in p ∈ R. In particular, we have the inequalities

H ≤ G ≤ L ≤ I ≤ A.

In what follows we establish some rather more involved inequalities for the above
means by the use of (2.1), which we express in the equivalent form∣∣∣∣∣∣ 1

b− a

b∫
a

f (t) dt− bf (b)− af (a)
b− a + x · f (b)− f (a)

b− a

∣∣∣∣∣∣ (5.1)

≤
[

1
2

(b− a) + |x−A|
]

1
b− a

b∨
a

(f) .

Define f : [a, b] ⊂ (0,∞)→ R by f (x) = xp, p ∈ R\ {−1, 0} . Then

1
b− a

b∫
a

f (t) dt = Lpp (a, b) ,

bf (b)− af (a)
b− a = (p+ 1)Lpp (a, b) ,

f (b)− f (a)
b− a = pLp−1

p−1 (a, b) ,
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1
b− a

b∨
a

(f) =
1

b− a

b∫
a

|f ′ (t)|dt = |p|Lp−1
p−1 (a, b) .

We deduce from (5.1) that

∣∣∣Lpp − (p+ 1)Lpp + pxLp−1
p−1

∣∣∣ ≤ [1
2

(b− a) + |x−A|
]
|p|Lp−1

p−1,

which is equivalent to

∣∣∣xLp−1
p−1 − Lpp

∣∣∣ ≤ [1
2

(b− a) + |x− A|
]
Lp−1
p−1, x ∈ [a, b] .

The choice x = A yields ∣∣∣ALp−1
p−1 − Lpp

∣∣∣ ≤ 1
2

(b− a)Lp−1
p−1.

If instead we define f : [a, b] ⊂ (0,∞)→ R by f (x) = 1/x, then

1
b − a

b∫
a

f (t) dt = L−1 (a, b) ,

bf (b) − af (a)
b− a = 0,

f (b)− f (a)
b− a = −G−2 (a, b) ,

1
b − a

b∨
a

(f) =
1

b− a

b∫
a

|f ′ (t)| dt = G−2 (a, b) .

From (5.1) , we deduce that

∣∣L−1 − xG−2
∣∣ ≤ [1

2
(b− a) + |x− A|

]
G−2,
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or equivalently ∣∣xL−G2
∣∣ ≤ 1

2
[(b− a) + |x− A|]L, x ∈ [a, b] .

Choosing x = A, we get

0 ≤ AL −G2 ≤ 1
2

(b− a) .

Finally, define f : [a, b] ⊂ (0,∞)→ R by f (x) = lnx, so that

1
b− a

b∫
a

f (t) dt = ln I (a, b) ,

bf (b)− af (a)
b− a = ln I (a, b) + 1,

f (b)− f (a)
b− a = L−1 (a, b) ,

1
b− a

b∫
a

|f ′ (t)| dt = L−1 (a, b) .

From (5.1) , we deduce that

|x− L| ≤ 1
2

(b− a) + |x− A| , x ∈ [a, b] .

With x = A, we get

0 ≤ A− L ≤ 1
2

(b− a) .

6. Application to Euler’s Beta Function

Let β be the Euler beta function given by

β (p, q) :=

1∫
0

tp−1 (1− t)q−1 dt, p, q > 0.
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Proposition 3 If p, q > 1, then

β (p, q) = T (p, q, In, ξ) + R (p, q, In, ξ) ,

where

T (p, q, In, ξ) =
n−1∑
i=0

[
(ξi − xi)xp−1

i (1− xi)q−1 + (xi+1 − ξi)xp−1
i+1 (1− xi+1)q−1

]

and the remainder R (p, q, In, ξ) satisfies

|R| ≤
[

1
2
ν (h) + max

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣]max (p− 1, q − 1)β (p− 1, q− 1) .

Proof. For p, q > 1 define fp,q : (0, 1)→ R by

fp,q (t) = tp−1 (1− t)q−1
.

We have

f ′p,q (t) = [(p+ q − 2) t− q + 1] tp−2 (1− t)q−2
,

so that

1∨
0

(fp,q) =

1∫
0

∣∣f ′p,q (t)
∣∣dt

≤
1∫

0

|(p+ q − 2) t− q + 1| tp−2 (1− t)q−2
dt

≤ max (q − 1, p− 1)

1∫
0

tp−2 (1− t)q−2 dt

= max (q − 1, p− 1)β (p− 1, q− 1)

and the proposition is proved. 2
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Remark 4 The choice ξi = (xi + xi+1)/2 yields

β (p, q) = T (p, q, In) + R (p, q, In)

where

T (p, q, In) :=
1
2

n−1∑
i=0

[
xp−1
i (1− xi)q−1 + xp−1

i+1 (1− xi+1)q−1
]
hi

corresponds to the trapezoid rule and the remainder satisfies

|R (p, q, In)| ≤ 1
2
ν (h) max (p− 1, q − 1)β (p− 1, q − 1)

for all p, q > 1.
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