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Some Commutativity Results for S-unital Rings

Moharram A. Khan

Abstract
In the present paper, it is shown that if R is a left ( resp. right) s-unital
ring satisfying [f(y™x"y®) + z'y,x] = 0 (resp. [f(y"x"y®) + yz',x] = 0), where
m,r,s,t are fixed non-negative integers and f()) is a polynomial in A\2Z[)\], then R
is commutative. Commutativity of R has also been investigated under different sets
of constraints on integral exponents.
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1. Introduction

Throughout this paper, R will denote an associative ring (may be without unity 1),
N(R) the set of nilpotent elements of R, U(R) the group of units of R and Z[X] the
totality of polynomials in X with coefficients in Z, the ring of integers. As usual, [z, y]
will denote the commutator zy — yx.

Following [3], a ring R is said to be a left (resp. right) s-unital ring if € Rx (resp.
x € xR) for each z € R. Further R is called s-unital if it is left as well as right s-unital.

Now, we consider the following ring properties:
(C) Let m,r,s and t be fixed non-negative integers. For each z,y € R, there exists a
polynomial f(\) € A?Z[\] such that

[fly"a"y®) + 2'y, 2] = 0.

(C*) For each z,y € R, there exist a polynomial f(\) € A2Z[)\] and non-negative integers
m,r,s,t such that
[f(y™a"y®) £ 2’y 2] = 0.
Mathematics Subject Classification: Primary 16U80; Secondary 16U99.
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(C1) Let m,r, s and t be fixed non-negative integers. For each x,y € R, there exists a
polynomial f(A) in A2Z[)] such that

[flyma"y®) + yat,z] = 0.

(C}) For each z,y € R, there exist a polynomial f(\) € A2Z[)\] and non-negative integers

m,r,s,t such that
[fly™a"y®) £ ya' 2] = 0.

(C3) For each y € R, there exist polynomials f(\), p(\) € A2Z[)] such that

Pz, fW)la(z) = £2'la™,y] and p(y)[z, f(y)la(z) = £2'[2",y]

for all z € R, where ¢(\) € Z[)A] is a fixed polynomial with ¢(1) = £1, and m,n, ¢

are fixed positive integers such that (m,n) = 1.

(C3) For every z,y € R, there exist polynomials f(\),p(\) € A2Z[)\] and non-negative
integers m > 1,n > 1 and ¢ with (m,n) =1 such that

Pz, f(y)la(z) = £2'la™,y] and p(y)[z, f(y)le(z) = £2'[2",y]

where g(A\) € Z[)] is a fixed polynomial.
(C3) For each y € R, there exist polynomials f(\), p(\) € A2Z[)] such that

Pz, fW)la(z) = £[z™, ylz" and p(y)[z, f(y)la(z) = £[2", y]a’

for all z € R, where g(\) € Z[)] is a fixed polynomial with ¢(1) = £1, and m,n, ¢t

are fixed positive integers such that (m,n) = 1.

(C%) For every z,y € R, there exist polynomials f(\), p(A) € A?Z[)\] and non-negative
integers m > 1,n > 1 and ¢ with (m,n) = 1, such that

Pz, fW)la(z) = £[z™, ylz" and p(y)[z, f(y)la(z) = £[z", y]a’

where g(A\) € Z[)] is a fixed polynomial.

(CH) For every z,y € R, there exist f()\), h(\) € A2Z[\] such that [z — f(z),y—h(y)] = 0.
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A well-known theorem of Herstein [2] asserts that if for each x,y € R, there exists a
polynomial f(t) € t?Z[t] such that [z — f(x),y] = 0, then R is commutative. Further,
the author jointly with Bell and Quadri [1], established the commutativity of R with
identity 1 satisfying the polynomial identity [zy — f(zy),z] = 0, where f(t) € t?Z[t].
More recently, several commutativity theorems have been found when the underlying
polynomials f(A),p(N), € AN2Z[)], and ¢(\) € Z[)] in (C), (C1), (C2) and (C3) are
particularly assumed to be monomials [ 3, 5, 6, 7, 10]. In the present paper, our

objective is to extend these results to the rings satisfying the above properties. Moreover,
commutativity theorems for one-sided s-unital rings are obtained under different sets of

conditions. Finally, commutativity of rings satisfying Chacron’s criterion (CH) together
with any one of the properties (C*), (C7), (C3) and (C%) has been studied. In fact, our
results generalise many well-known commutativity theorems namely; [1, Theorems 2 and
3], [5, Theorem 2], [6, Theorems 1-3], [7, Theorem], [8, Theorem| and [10, Theorem)].

2. Preliminary Results

Consider the following types of rings.

(i) (GFO(p) GFo(p)> P2 prime.

o (3 S5O e

. GF(p) GF(p) .
(i) ( Op GF(£)>,papr1me.

@ 210 ={ (5 o)

automorphism o.

a, b€ F}, where F is a finite field with a non-trivial

(iii) A non-commutative ring with no non-zero divisors of zero.
(iv) S=<1>+4T,T isnon-commutative subring of S such that T[T, T] = [T, T)|T = 0.

In a recent paper [11], Streb classified non-commutative rings, which have been used
effectively to establish several commutativity theorems [5, 6, 7, 8, 9]. One can easily
observe, from the proof of [9, Corollary 1], that if R is a non-commutative s-unital ring,
then there exists a factor subring S of R which is of type (¢);, (ii), (iii) or (iv). This

gives the following result which plays a vital role in our subsequent discussion [9, Meta
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theorem].

Lemma 2.1. Let P be a ring property which is inherited by factor subrings. If no
ring of type (4);, (ii), (iii) or (iv) satisfies (P), then every left s-unital ring satisfying P is
commutative.

Remark 2.1. We pause to remark that the dual of the above lemma holds; if P is

a ring property which is inherited by factorsubrings, and if no ring of type (¢),, (ii), (iii)

or (iv) satisfies (P), then every right s-unital ring satisfying P is commutative.

3. Main Results
The main results of the present paper are as follows.
Theorem 3.1. Let R be a left (resp. right) s-unital ring satisfying (C) (resp. (C1)).

Then R is commutative.
Theorem 3.2. Let R be a left (resp. right) s-unital ring satisfying (Cs) (resp. (Cs3)).

Then R is commutative.
We need the following known results.

Lemma 3.1 [5]. Let f be a polynomial in n non-commuting indeterminates

1, T2, ..., Ty with relatively prime integer coefficients. Then the following statements are
equivalent :

(a) For any ring R satisfying f = 0, the commutator ideal of R is nil ideal.
(b) For every prime p, the ring (GF(p)). fails to satisfy f = 0.
Lemma 3.2 [8]. Let R be a left (resp. right) s-unital ring which is not right (resp.
left) s-unital. Then R has a factor subring of type (i); (resp. (7))
Lemma 3.3 [9]. Let R be a ring with unity 1 satisfying (CH). If R is
non-commutative, then there exists a factorsubring of R which is of type (i) or (ii).
Proof of Theorem 3.1. Let S be any ring of type (i);, and let f(A\) € A?Z[)]. Then

[f(ehel efs) £ elqerz, e11] = £ein # 0

hence S does not satisfy (C). It follows by Lemma 3.2 that if R is any left s-unital ring
satisfying (C), then R is right s-unital as well. Thus, in view of Proposition 1 of [3], we
may assume that R has unity 1.

a 0

Suppose that R = M, (F), is the ring of type (i7). Taking x = (0 U(a)> (o(a) #
a),y = ez in (C) we get
[f(y™a"y®) £ a'y, o] = £a'(a — o(a))er2 # 0,

for every f(\) € A2Z[)\] and then R does not satisfy (C).
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Let R be a ring of type (#¢). Since = ezs and y = eg; do not satisfy (C), by Lemma
3.1, we see that the commutator ideal of R is nil and hence no ring of type (iii) satisfies
(C).

Let R be a ring of type (iv) and let a,b € T such that [a, b] # 0. Then by hypothesis,
we have

(14 a)'[a,b] = £[1 +a, f(1 +a)™b" (1 +a)®)] = 0.
This implies that [a, b] = 0, which gives a contradiction.

Hence we have seen that no ring of type (i);, (i¢), (i74) or (iv) satisfies (C) and by
Lemma 2.1, R is commutative.

Using the similar arguments as above we see that no ring of type (i),, (ii), (iii), or
(iv) satisfies the property (C1) (see also Remark 2.1).

Proof of Theorem 3.2. Let S be of type (i), and let f(A\) € N2Z[)], g(A\) € N2Z[)]
and h(\) € A2Z[)\]. Taking x = e11 + e12,y = e12 in (Ca), we get

'™, y] = £g(y)[z, f(y)]h(z) = e12 # 0,

because zt[z™,y] = e12 # 0 and +g(y)[z, f(y)]h(z) = 0. Hence, R does not satisfy (Cs).
It follows by Lemma 3.2 that if R is any left s-unital ring satisfy (C3), then R is right
s-unital and hence, s-unital. In view of Proposition 1 of [3], we may assume that the ring
R has unity 1.

Consider the ring R = M, (F), a ring of type (#i). Notice that N(R) = Fejo. Hence
for b € N(R) and arbitrary unit v € U(R), we obtain that there exists a polynomial
f(A) € A2Z[)] such that

u'lu™, b] = £g(b)[u, f(b)]h(u) =0,

and
u[u”, ] = £g(b)[u, F(B)]h(u) = 0.

Since b = 0 and u is a unit of R, the last two equations yield [u™,b] = 0 and [u",b] = 0.
This implies that [u, b] = 0. Now, particularly for non-central element b = ey, [u, e12] = 0.
This gives that ejo is central which is a contradiction.

Let R be a ring of type (ii7). By hypothesis we have

pW)le, fW)la(z) = £a'lz™, y]. (1)

Replacing 2 by 2 + 1 in (1), we get

Pz, f(W)lal@ +1) = £(z + D'[(z +1)™, ). (2)
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Multiply (1) (resp. (2)) by q(z + 1)(resp. ¢(x)) on the right and compare the equations
so obtained to get

(z 4+ )" [(z + 1), ylg(x) = «*[2™, ylq(x + 1).

This is a polynomial identity, and © = e13 —eg2 and y = e12 in (GF (p))2 fail to satisfy this
equality. Hence, by Lemma 3.1, the commutator ideal of R is nil, yields a contradiction.

Finally, let R be a ring of type (iv) and let [a,b] # 0, where a,b € T. There exists
f(A\) in A2Z[)] such that

mla,b] = (1+a)")[(1 +a)™,b] = £p(b)[a, F(D)]a(1 +a) = 0,

and
nla,b] = (1 +a)'[(1 + a)", b] = £p(b)[a, f(b)lg(1 + a) = 0.

Since (m,n) =1, we get [a,b] = 0, and this gives a contradiction.

Hence, no ring of type (i);, (#), (ii4) or (iv) satisfies (C3) and by Lemma 2.1, R is
commutative.

We remark that the same conclusion holds; if R satisfies (C3), then trivially, we see

that no ring of type ()., (ii), (iii) or (iv) satisfies (C)s.
From the previous proofs of Theorems 3.1 and 3.2, we see that no ring of type (i);
satisfies (C*) or (C%), and no ring of type (i), satisfies (C7) or (C%).
Combining this fact with Lemma 3.2, we obtain the following;:
Theorem 3.3 Let R satisfy (C'H). Then the following are equivalent:
(I) R is commutative.
(IT) R is left (resp. right) s-unital ring satisfying (C*) (resp. (C7)).
(IIT) R is left (resp. right) s-unital ring satisfying (C3) (resp. (C%)).
Remark 3.1 The following example shows that in the hypotheses of Theorem 3.2,
the existence of both conditions in (C3) are not superfluous ( even if R has unity 1).
Example 3.1. Let

a B v
Rz{ 0 a 9 a,ﬁ,’y,éEGF(Q)}.
0 0 «

Then R is a non-commutative ring with unity satisfying the condition zt[z%, y] = y*[z, v*],

where s and t are fixed non-negative integers.
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Remark 3.2. The following example demonstrates that there are non-commutative
(resp. right) s-unital rings satisfying (Cy) (resp.(C)).
Example 3.2. Let

{3066 )
o (390 069G )

be subring of 2 x 2 matrices over GF'(2). Then for any fixed positive integers m,n,r, s, t

larger than 1, Ry (resp. Ry) satisfies [(y™z"y®)" + yxt, 2] =0

(resp. [(y™a"y*)" +xly, 2] = 0). However, R; (resp. Rs) is a non-commutative left (resp.

right) s-unital ring.

(1]

(6]

(7l

(8]

(9]

(10]
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