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Some Commutativity Results for S-unital Rings

Moharram A. Khan

Abstract

In the present paper, it is shown that if R is a left ( resp. right) s-unital

ring satisfying [f(ymxrys) ± xty, x] = 0 (resp. [f(ymxrys) ± yxt, x] = 0), where

m, r, s, t are fixed non-negative integers and f(λ) is a polynomial in λ2Z[λ], then R

is commutative. Commutativity of R has also been investigated under different sets
of constraints on integral exponents.
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1. Introduction

Throughout this paper, R will denote an associative ring (may be without unity 1),
N(R) the set of nilpotent elements of R, U(R) the group of units of R and Z[X] the
totality of polynomials in X with coefficients in Z, the ring of integers. As usual, [x, y]
will denote the commutator xy − yx.

Following [3], a ring R is said to be a left (resp. right) s-unital ring if x ∈ Rx (resp.
x ∈ xR) for each x ∈ R. Further R is called s-unital if it is left as well as right s-unital.

Now, we consider the following ring properties:

(C) Let m, r, s and t be fixed non-negative integers. For each x, y ∈ R, there exists a

polynomial f(λ) ∈ λ2Z[λ] such that

[f(ymxrys)± xty, x] = 0.

(C∗) For each x, y ∈ R, there exist a polynomial f(λ) ∈ λ2Z[λ] and non-negative integers
m, r, s, t such that

[f(ymxrys)± xty, x] = 0.
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(C1) Let m, r, s and t be fixed non-negative integers. For each x, y ∈ R, there exists a

polynomial f(λ) in λ2Z[λ] such that

[f(ymxrys)± yxt, x] = 0.

(C∗1) For each x, y ∈ R, there exist a polynomial f(λ) ∈ λ2Z[λ] and non-negative integers
m, r, s, t such that

[f(ymxrys)± yxt, x] = 0.

(C2) For each y ∈ R, there exist polynomials f(λ), p(λ) ∈ λ2Z[λ] such that

p(y)[x, f(y)]q(x) = ±xt[xm, y] and p(y)[x, f(y)]q(x) = ±xt[xn, y]

for all x ∈ R, where q(λ) ∈ Z[λ] is a fixed polynomial with q(1) = ±1, and m, n, t

are fixed positive integers such that (m, n) = 1.

(C∗2) For every x, y ∈ R, there exist polynomials f(λ), p(λ) ∈ λ2Z[λ] and non-negative
integers m ≥ 1, n ≥ 1 and t with (m, n) = 1 such that

p(y)[x, f(y)]q(x) = ±xt[xm, y] and p(y)[x, f(y)]q(x) = ±xt[xn, y]

where q(λ) ∈ Z[λ] is a fixed polynomial.

(C3) For each y ∈ R, there exist polynomials f(λ), p(λ) ∈ λ2Z[λ] such that

p(y)[x, f(y)]q(x) = ±[xm, y]xt and p(y)[x, f(y)]q(x) = ±[xn, y]xt

for all x ∈ R, where q(λ) ∈ Z[λ] is a fixed polynomial with q(1) = ±1, and m, n, t

are fixed positive integers such that (m, n) = 1.

(C∗3) For every x, y ∈ R, there exist polynomials f(λ), p(λ) ∈ λ2Z[λ] and non-negative
integers m ≥ 1, n ≥ 1 and t with (m, n) = 1, such that

p(y)[x, f(y)]q(x) = ±[xm, y]xt and p(y)[x, f(y)]q(x) = ±[xn, y]xt

where q(λ) ∈ Z[λ] is a fixed polynomial.

(CH) For every x, y ∈ R, there exist f(λ), h(λ) ∈ λ2Z[λ] such that [x−f(x), y−h(y)] = 0.
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A well-known theorem of Herstein [2] asserts that if for each x, y ∈ R, there exists a

polynomial f(t) ∈ t2Z[t] such that [x − f(x), y] = 0, then R is commutative. Further,
the author jointly with Bell and Quadri [1], established the commutativity of R with

identity 1 satisfying the polynomial identity [xy − f(xy), x] = 0, where f(t) ∈ t2Z[t].
More recently, several commutativity theorems have been found when the underlying
polynomials f(λ), p(λ),∈ λ2Z[λ], and q(λ) ∈ Z[λ] in (C), (C1), (C2) and (C3) are
particularly assumed to be monomials [ 3, 5, 6, 7, 10]. In the present paper, our
objective is to extend these results to the rings satisfying the above properties. Moreover,
commutativity theorems for one-sided s-unital rings are obtained under different sets of
conditions. Finally, commutativity of rings satisfying Chacron’s criterion (CH) together
with any one of the properties (C∗), (C∗1 ), (C∗2) and (C∗3 ) has been studied. In fact, our
results generalise many well-known commutativity theorems namely; [1, Theorems 2 and
3], [5, Theorem 2], [6, Theorems 1-3], [7, Theorem], [8, Theorem] and [10, Theorem].

2. Preliminary Results

Consider the following types of rings.

(i)l

(
GF (p) GF (p)

0 0

)
, p a prime.

(i)r

(
0 GF (p)
0 GF (p)

)
, p a prime.

(i)
(
GF (p) GF (p)

0 GF (p)

)
, p a prime.

(ii) Mσ(F ) =
{(

a b
0 σ(a)

)∣∣∣∣ a, b ∈ F

}
, where F is a finite field with a non-trivial

automorphism σ.

(iii) A non-commutative ring with no non-zero divisors of zero.

(iv) S =< 1 > +T, T is non-commutative subring of S such that T [T, T ] = [T, T ]T = 0.

In a recent paper [11], Streb classified non-commutative rings, which have been used
effectively to establish several commutativity theorems [5, 6, 7, 8, 9]. One can easily
observe, from the proof of [9, Corollary 1], that if R is a non-commutative s-unital ring,
then there exists a factor subring S of R which is of type (i)l , (ii), (iii) or (iv). This
gives the following result which plays a vital role in our subsequent discussion [9, Meta
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theorem].
Lemma 2.1. Let P be a ring property which is inherited by factor subrings. If no

ring of type (i)l , (ii), (iii) or (iv) satisfies (P ), then every left s-unital ring satisfying P is
commutative.

Remark 2.1. We pause to remark that the dual of the above lemma holds; if P is
a ring property which is inherited by factorsubrings, and if no ring of type (i)r , (ii), (iii)
or (iv) satisfies (P ), then every right s-unital ring satisfying P is commutative.

3. Main Results

The main results of the present paper are as follows.
Theorem 3.1. Let R be a left (resp. right) s-unital ring satisfying (C) (resp. (C1)).

Then R is commutative.
Theorem 3.2. Let R be a left (resp. right) s-unital ring satisfying (C2) (resp. (C3)).

Then R is commutative.
We need the following known results.
Lemma 3.1 [5]. Let f be a polynomial in n non-commuting indeterminates

x1, x2, ..., xn with relatively prime integer coefficients. Then the following statements are
equivalent :
(a) For any ring R satisfying f = 0, the commutator ideal of R is nil ideal.
(b) For every prime p, the ring (GF (p))2 fails to satisfy f = 0.

Lemma 3.2 [8]. Let R be a left (resp. right) s-unital ring which is not right (resp.
left) s-unital. Then R has a factor subring of type (i)l (resp. (i)r).

Lemma 3.3 [9]. Let R be a ring with unity 1 satisfying (CH). If R is
non-commutative, then there exists a factorsubring of R which is of type (i) or (ii).

Proof of Theorem 3.1. Let S be any ring of type (i)l , and let f(λ) ∈ λ2Z[λ]. Then

[f(em12e
r
11e

s
12) ± et11e12, e11] = ±e12 6= 0

hence S does not satisfy (C). It follows by Lemma 3.2 that if R is any left s-unital ring
satisfying (C), then R is right s-unital as well. Thus, in view of Proposition 1 of [3], we
may assume that R has unity 1.

Suppose that R = Mσ(F ), is the ring of type (ii). Taking x =
(
a 0
0 σ(a)

)
(σ(a) 6=

a), y = e12 in (C) we get

[f(ymxrys)± xty, x] = ±at(a− σ(a))e12 6= 0,

for every f(λ) ∈ λ2Z[λ] and then R does not satisfy (C).
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Let R be a ring of type (iii). Since x = e22 and y = e21 do not satisfy (C), by Lemma
3.1, we see that the commutator ideal of R is nil and hence no ring of type (iii) satisfies
(C).

Let R be a ring of type (iv) and let a, b ∈ T such that [a, b] 6= 0. Then by hypothesis,
we have

(1 + a)t[a, b] = ±[1 + a, f(1 + a)mbr(1 + a)s)] = 0.

This implies that [a, b] = 0, which gives a contradiction.
Hence we have seen that no ring of type (i)l, (ii), (iii) or (iv) satisfies (C) and by

Lemma 2.1, R is commutative.
Using the similar arguments as above we see that no ring of type (i)r , (ii), (iii), or

(iv) satisfies the property (C1) (see also Remark 2.1).

Proof of Theorem 3.2. Let S be of type (i)l and let f(λ) ∈ λ2Z[λ], g(λ) ∈ λ2Z[λ]

and h(λ) ∈ λ2Z[λ]. Taking x = e11 + e12, y = e12 in (C2), we get

xt[xm, y] = ±g(y)[x, f(y)]h(x) = e12 6= 0,

because xt[xm, y] = e12 6= 0 and ±g(y)[x, f(y)]h(x) = 0. Hence, R does not satisfy (C2).
It follows by Lemma 3.2 that if R is any left s-unital ring satisfy (C2), then R is right
s-unital and hence, s-unital. In view of Proposition 1 of [3], we may assume that the ring
R has unity 1.

Consider the ring R = Mσ(F ), a ring of type (ii). Notice that N(R) = Fe12. Hence
for b ∈ N(R) and arbitrary unit u ∈ U(R), we obtain that there exists a polynomial

f(λ) ∈ λ2Z[λ] such that

ut[um, b] = ±g(b)[u, f(b)]h(u) = 0,

and
ut[un, b] = ±g(b)[u, f(b)]h(u) = 0.

Since b2 = 0 and u is a unit of R, the last two equations yield [um, b] = 0 and [un, b] = 0.
This implies that [u, b] = 0. Now, particularly for non-central element b = e12, [u, e12] = 0.
This gives that e12 is central which is a contradiction.

Let R be a ring of type (iii). By hypothesis we have

p(y)[x, f(y)]q(x) = ±xt[xm, y]. (1)

Replacing x by x+ 1 in (1), we get

p(y)[x, f(y)]q(x + 1) = ±(x+ 1)t[(x+ 1)m, y]. (2)
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Multiply (1) (resp. (2)) by q(x+ 1)(resp. q(x)) on the right and compare the equations
so obtained to get

(x+ 1)t[(x+ 1)m, y]q(x) = xt[xm, y]q(x+ 1).

This is a polynomial identity, and x = e12−e22 and y = e12 in (GF (p))2 fail to satisfy this
equality. Hence, by Lemma 3.1, the commutator ideal of R is nil, yields a contradiction.

Finally, let R be a ring of type (iv) and let [a, b] 6= 0, where a, b ∈ T. There exists

f(λ) in λ2Z[λ] such that

m[a, b] = (1 + a)t)[(1 + a)m, b] = ±p(b)[a, f(b)]q(1 + a) = 0,

and
n[a, b] = (1 + a)t[(1 + a)n, b] = ±p(b)[a, f(b)]q(1 + a) = 0.

Since (m, n) = 1, we get [a, b] = 0, and this gives a contradiction.

Hence, no ring of type (i)l, (ii), (iii) or (iv) satisfies (C2) and by Lemma 2.1, R is
commutative.

We remark that the same conclusion holds; if R satisfies (C3), then trivially, we see
that no ring of type (i)r , (ii), (iii) or (iv) satisfies (C)3.

From the previous proofs of Theorems 3.1 and 3.2, we see that no ring of type (i)l
satisfies (C∗) or (C∗2 ), and no ring of type (i)r satisfies (C∗1 ) or (C∗3 ).

Combining this fact with Lemma 3.2, we obtain the following:
Theorem 3.3 Let R satisfy (CH). Then the following are equivalent:

(I) R is commutative.

(II) R is left (resp. right) s-unital ring satisfying (C∗) (resp. (C∗1 )).

(III) R is left (resp. right) s-unital ring satisfying (C∗2 ) (resp. (C∗3 )).
Remark 3.1 The following example shows that in the hypotheses of Theorem 3.2,

the existence of both conditions in (C2) are not superfluous ( even if R has unity 1).
Example 3.1. Let

R =
{α β γ

0 α δ
0 0 α

∣∣∣∣α, β, γ, δ ∈ GF (2)
}
.

Then R is a non-commutative ring with unity satisfying the condition xt[x4, y] = ys[x, y4],
where s and t are fixed non-negative integers.
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Remark 3.2. The following example demonstrates that there are non-commutative
left (resp. right) s-unital rings satisfying (C1) (resp.(C)).

Example 3.2. Let

R1 =
{(

0 0
0 0

)
,

(
1 0
1 0

)
,

(
0 1
0 1

)
,

(
1 1
1 1

)}

(resp.R2 =
{(

0 0
0 0

)
,

(
1 1
0 0

)
,

(
0 0
1 1

)
,

(
1 1
1 1

)}
)

be subring of 2× 2 matrices over GF (2). Then for any fixed positive integers m, n, r, s, t

larger than 1, R1 (resp. R2) satisfies [(ymxrys)n ± yxt, x] = 0

(resp. [(ymxrys)n±xty, x] = 0). However, R1 (resp. R2) is a non-commutative left (resp.
right) s-unital ring.
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