Turk J Math 24 (2000) , 173 – 183. © TÜBİTAK

Applications of the Tachibana Operator on Problems of Lifts

A. Mağden, E. Kadıoğlu and A.A. Salimov

Abstract

The purpose of the present paper is to study, using the Tachibana operator, the complete lifts of affinor structures along a pure cross-section of the tensor bundle and to investigate their transfers. The results obtained are to some extent similar to results previously established for tangent (cotangent) bundles [1]. However there are various important differences and it appears that the problem of lifting affinor structures to the tensor bundle on the pure cross-section presents difficulties which are not encountered in the case of the tangent (cotangent) bundle.

Key words and phrases. Tensor, bundle, affinor, complete lift, pure cross-section, Tachibana operator

1. Introduction

Let M_n be a differentiable manifold of class C^{∞} and finite dimension n, and let $T_q^p(M_n), p+q > 0$ be the bundle over M_n of tensors of type (p,q): $T_q^p(M_n) = \bigcup_{P \in M_n} T_q^p(P)$, where $T_q^p(P)$ denotes the tensor(vector) spaces of tensors of type (p,q) at $P \in M_n$.

We list below notations used in this paper.

i. $\pi: T^p_q(M_n) \mapsto M_n$ is the projection $T^p_q(M_n)$ onto M_n .

ii. The indices i, j, \cdots run from 1 to n, the indices $\overline{i}, \overline{j}, \cdots$ from n + 1 to $n + n^{p+q} = \dim T^p_q(M_n)$ and the indices $I = (i, \overline{i}), J = (j, \overline{j}), \ldots$ from 1 to $n + n^{p+q}$. The so-called Einsteins summation convention is used.

iii. $\mathfrak{F}(M)$ is the ring of real-valued C^{∞} functions on M_n . $\mathfrak{T}^p_q(M_n)$ is the module over $\mathfrak{F}(M)$ of C^{∞} tensor fields of type (p,q).

iv. Vector fields in M_n are denoted by V, W, \dots . The Lie derivation with respect to V is denoted by L_V . Affinor fields (tensor fields of type (1, 1)) are denoted by φ, ψ, \dots .

Subject classification number: Primary 53A45, Secondary 53C55.

Denoting by x^j the local coordinates of $P = \pi(\widetilde{P})$ $(\widetilde{P} \in T^p_q(M_n))$ in a neighborhood $U \subset M_n$ and if we make $(x^j, t^{i_1 \cdots i_p}_{j_1 \cdots j_q}) = (x^j, x^{\overline{j}})$ correspond to the point $\widetilde{P} \in \pi^{-1}(U)$, we can introduce a system of local coordinates $(x^j, x^{\overline{j}})$ in a neighborhood $\pi^{-1}(U) \subset T^p_q(M_n)$, where $t^{i_1 \cdots i_p}_{j_1 \cdots j_q} \stackrel{def}{=} x^{\overline{j}}$ are components of $t \in T^p_q(P)$ with respect to the natural frame ∂_i .

If $\alpha \in \mathfrak{T}_p^q(M_n)$, it is regarded, in a natural way(by contraction), as a function in $T_q^p(M_n)$, which we denote by $i\alpha$. If α has the local expression $\alpha = \alpha_{i_1\cdots i_p}^{j_1\cdots j_q}\partial_{j_1}\otimes\cdots\otimes$ $\partial_{j_q}\otimes dx^{i_1}\otimes\cdots\otimes dx^{i_p}$ in a coordinate neighborhood $U(x^i)\subset M_n$, then $i\alpha$ has the local expression

$$\alpha = \alpha(t) = \alpha_{i_1 \cdots i_p}^{j_1 \cdots j_q} t_{j_1 \cdots j_q}^{i_1 \cdots i_p}$$

with respect to the coordinates $(x^j, x^{\overline{j}})$ in $\pi^{-1}(U)$.

Suppose that $A \in \mathfrak{T}_q^p(M_n)$. We define the vertical lift ${}^V A \in \mathfrak{T}_0^1(T_q^p(M_n))$ of A to $T_q^p(M_n)$ (see [2]) by

$${}^{V}A(\imath\alpha) = \alpha(A) \circ \pi = {}^{V}(\alpha(A))$$

where ${}^{V}(\alpha(A))$ is the vertical lift of the function $\alpha(A) \in \mathfrak{F}(M_n)$. The vertical lift ${}^{V}A$ of A to $T^{p}_{q}(M_n)$ has components

$${}^{V}A = \begin{pmatrix} {}^{V}A^{j} \\ {}^{V}A^{\overline{j}} \end{pmatrix} = \begin{pmatrix} 0 \\ A^{i_{1}\cdots i_{p}} \\ j_{1}\cdots j_{q} \end{pmatrix}$$
(1.1)

with respect to the coordinates $(x^j, x^{\overline{j}})$ in $T^p_a(M_n)$.

We define the complete lift ${}^{c}V = \overline{L}_{V} \in \mathfrak{T}_{0}^{1}(T_{q}^{p}(M_{n}))$ of $V \in \mathfrak{T}_{0}^{1}(M_{n})$ to $T_{q}^{p}(M_{n})$ [2] by

$${}^{c}V(\imath\alpha) = \imath(L_{V}\alpha) , \ \alpha \in \mathfrak{T}_{p}^{q}(M_{n}).$$

The complete lift ${}^{c}V$ of $V \in \mathfrak{T}_{0}^{1}(M_{n})$ to $T_{q}^{p}(M_{n})$ has components

$${}^{c}V^{j} = V^{j}, \ {}^{c}V^{\bar{j}} = \sum_{\mu=1}^{p} t^{i_{1}\cdots s\cdots i_{p}}_{j_{1}\cdots j_{q}} \partial_{s}V^{i_{\mu}} - \sum_{\lambda=1}^{q} t^{i_{1}\cdots i_{p}}_{j_{1}\cdots s\cdots j_{q}} \partial_{j_{\lambda}}V^{s}$$
(1.2)

with respect to the coordinates $(x^j, x^{\overline{j}})$ in $T^p_q(M_n)$.

Suppose that there is given a tensor field $\xi \in \mathfrak{T}_q^p(M_n)$. Then the correspondence $x \mapsto \xi_x$, ξ_x being the value of ξ at $x \in M_n$, determines a mapping $\sigma_{\xi} : M_n \mapsto T_q^p(M_n)$, such that $\pi \circ \sigma_{\xi} = id_{M_n}$, and the *n* dimensional submanifold $\sigma_{\xi}(M_n)$ of $T_q^p(M_n)$ is called the cross-section determined by ξ . If the tensor field ξ has the local components $\xi_{k_1 \cdots k_q}^{l_1 \cdots l_p}(x^k)$, the cross-section $\sigma_{\xi}(M_n)$ is locally expressed by

$$\begin{cases} x^k &= x^k \\ x^{\overline{k}} &= \xi^{l_1 \cdots l_p}_{k_1 \cdots k_q}(x^k) \end{cases}$$
(1.3)

with respect to the coordinates $(x^k, x^{\overline{k}})$ in $T^p_q(M_n)$. Differentiating (1.3) by x^j , we see that the *n* tangent vector fields B_j to $\sigma_{\xi}(M_n)$ have components

$$(B_j^K) = \left(\frac{\partial x^K}{\partial x^j}\right) = \begin{pmatrix} \delta_j^k \\ \partial_j \ \xi_{k_1 \cdots k_q}^{l_1 \cdots l_p} \end{pmatrix},\tag{1.4}$$

with respect to the natural frame $\{\partial_k, \partial_{\overline{k}}\}$ in $T^p_q(M_n)$.

On the other hand, the fibre is locally expressed by

$$\begin{cases} x^k &= const, \\ t^{l_1 \cdots l_p}_{k_1 \cdots k_q} &= t^{l_1 \cdots l_p}_{k_1 \cdots k_q}, \end{cases}$$

 $t_{k_1\cdots k_q}^{l_1\cdots l_p}$ being consider as parameters. Thus, on differentiating with respect to $x^{\overline{j}} = t_{j_1\cdots j_q}^{i_1\cdots i_p}$, we see that the n^{p+q} tangent vector fields $C_{\overline{j}}$ to the fibre have components

$$(C_{\overline{j}}^{K}) = \left(\frac{\partial x^{K}}{\partial x^{\overline{j}}}\right) = \begin{pmatrix} 0\\ \delta_{k_{1}}^{j_{1}} \cdots \delta_{k_{q}}^{j_{q}} \delta_{i_{1}}^{l_{1}} \cdots \delta_{i_{p}}^{l_{p}} \end{pmatrix}$$
(1.5)

with respect to the natural frame $\{\partial_k, \partial_{\overline{k}}\}$ in $T^p_q(M_n)$.

We consider in $\pi^{-1}(U) \subset T_q^p(M_n)$, $n + n^{p+q}$ local vector fields B_j and $C_{\overline{j}}$ along $\sigma_{\xi}(M_n)$. They form a local family of frames $\{B_j, C_{\overline{j}}\}$ along $\sigma_{\xi}(M_n)$, which is called the adapted (B, C)-frame of $\sigma_{\xi}(M_n)$ in $\pi^{-1}(U)$. Taking account of (1.2), we can prove that, the complete lift ${}^{c}V$ has along $\sigma_{\xi}(M_n)$ components of the form

$${}^{c}V = \begin{pmatrix} {}^{c}\widetilde{V}{}^{j} \\ {}^{c}\widetilde{V}{}^{j} \end{pmatrix} = \begin{pmatrix} V^{j} \\ -(L_{V}\xi)^{i_{1}\cdots i_{p}} \\ j_{1}\cdots j_{q} \end{pmatrix}$$
(1.6)

with respect to the adapted (B, C)-frame [3], where $(L_V \xi)_{j_1 \cdots j_q}^{i_1 \cdots i_p}$ are local components of $L_V \xi$ in M_n .

2. Complete Lifts of The Affinor field to The Tensor Bundle Along a Pure Cross- Section

Let $\varphi \in \mathfrak{T}_1^1(M_n)$. Making use of the Jacobian matrix

$$(\frac{\partial x^{I'}}{\partial x^{I}}) = \begin{pmatrix} \frac{\partial x^{i'}}{\partial x_i} & \frac{\partial x^{i'}}{\partial x_i^{i'}} \\ \frac{\partial x^{i'}}{\partial x_i} & \frac{\partial x^{i'}}{\partial x^{i}} \end{pmatrix} = \begin{pmatrix} A_i^{i'} & 0 \\ t_{(k)}^{(j)} \partial_i (A_{(i')}^{(k)} A_{(j)}^{(j')}) & A_{(i')}^{(i)} A_{(j)}^{(j')} \end{pmatrix},$$

of the coordinate transformation in $T_q^p(M_n)$: $x^{i'} = x^{i'}(x^i)$, $x^{i'} = t_{(i')}^{(j')} = A_{(i')}^{(i)} A_{(j)}^{(j')} t_{(i)}^{(j)} = A_{(i')}^{(i)} A_{(j)}^{(j')} x^{\overline{i}}$ $(t_{(i)}^{(j)} = t_{i_1 \cdots i_q}^{j_1 \cdots j_p}, A_{(i')}^{(i)} = A_{i_1}^{i_1} \cdots A_{i_q}^{i_q}, A_{i'}^i = \frac{\partial x^i}{\partial x^{i'}}, A_{(j)}^{(j')} = A_{j_1}^{j_1'} \cdots A_{j_p}^{j_p'}, A_{j'}^{j'} = \frac{\partial x^{j'}}{\partial x^{j}}$) we can define a vector field $\gamma \varphi \in \mathfrak{T}_0^1(T_q^p(M_n))$:

$$\gamma \varphi = ((\gamma \varphi)^{I}) = \begin{pmatrix} 0 \\ -\sum_{b=2}^{p} t_{k_{1} \cdots k_{q}}^{l_{1} \cdots m \cdots l_{p}} \varphi_{m}^{l_{b}}, p > 0 \\ t_{mk_{2} \cdots k_{q}}^{l_{1} \cdots l_{p}} \varphi_{k_{1}}^{m} - \sum_{b=1}^{p} t_{k_{1} \cdots k_{q}}^{l_{1} \cdots m \cdots l_{p}} \varphi_{m}^{l_{b}}, q > 0 \end{pmatrix},$$

where $\varphi_{i_1}^m$ are local components of φ in M_n . Clearly, we have $(\gamma \varphi)(^V f) = 0$ for any $f \in \mathfrak{F}(M_n)$, so that $\gamma \varphi$ is a vertical vector field. We can easily verify that the vertical vector field $\gamma \varphi$ has along $\sigma_{\xi}(M_n)$ components

$$\gamma\varphi = ((\gamma\widetilde{\varphi})^{I}) = \begin{pmatrix} 0 \\ -\sum_{b=2}^{p} \xi_{k_{1}\cdots k_{q}}^{l_{1}\cdots m \cdots l_{p}} \varphi_{m}^{l_{b}}, p > 0 \\ \xi_{mk_{2}\cdots k_{q}}^{l_{1}\cdots l_{p}} \varphi_{k_{1}}^{m} - \sum_{b=1}^{p} \xi_{k_{1}\cdots k_{q}}^{l_{1}\cdots m \cdots l_{p}} \varphi_{m}^{l_{b}}, q > 0 \end{pmatrix}$$
(2.1)

with respect to the adapted (B, C)-frame.

A tensor field $\xi \in \mathfrak{T}_q^p(M_n)$ is called pure with respect to the affinor φ -structure $(\varphi \in \mathfrak{T}_1^1(M_n))$ [4], if

$$\varphi_r^{i_1}\xi_{j_1\dots j_q}^{r_i} = \dots = \varphi_r^{i_p}\xi_{j_1\dots j_q}^{i_1\dots i_{p-1}r} = \varphi_{j_1}^r\xi_{r_{j_2}\dots j_q}^{i_1\dots i_p} = \dots = \varphi_{j_q}^r\xi_{j_1\dots j_{q-1}r}^{i_1\dots i_p} = \xi_{\varphi}^*_{j_1\dots j_q}^{i_1\dots i_p}.$$

In particular, vector(covector) fields will be considered to be pure.

Let $\mathfrak{T}_{q}^{p}(M_{n})$ denotes a module of all the tensor fields $\xi \in \mathfrak{T}_{q}^{p}(M_{n})$ which are pure with respect to φ . We consider the Tachibana operator on the module $\mathfrak{T}_{q}^{p}(M_{n})$ [4]:

$$(\Phi_{\varphi}\xi)^{i_{1}\cdots i_{p}}_{kj_{1}\cdots j_{q}} = \varphi^{m}_{k}\partial_{m}\xi^{i_{1}\cdots i_{p}}_{j_{1}\cdots j_{q}} - \partial_{k}\xi^{*}_{\varphi}^{i_{1}\cdots i_{p}}_{j_{1}\cdots j_{q}} + \sum_{a=1}^{q} (\partial_{j_{a}}\varphi^{r}_{k})\xi^{i_{1}\cdots i_{p}}_{j_{1}\cdots r\cdots j_{q}} + \sum_{b=1}^{p} (\partial_{k}\varphi^{i_{b}}_{r} - \partial_{r}\varphi^{i_{b}}_{k})\xi^{i_{1}\cdots r\cdots i_{p}}_{j_{1}\cdots j_{q}}.$$

$$(2.2)$$

where $\Phi_{\varphi}\xi \in \mathfrak{T}^p_{q+1}(M_n)$. After some calculations we have, from (2.2):

$$V^{k}(\Phi_{\varphi}\xi)^{i_{1}\cdots i_{p}}_{kj_{1}\cdots j_{q}} = \mathcal{L}_{\varphi V}\xi^{i_{1}\cdots i_{p}}_{j_{1}\cdots j_{q}} - \mathcal{L}_{V}\xi^{*}_{\varphi}^{i_{1}\cdots i_{p}}_{j_{1}\cdots j_{q}} + \sum_{b=1}^{p} (\mathcal{L}_{V}\varphi^{i_{b}}_{r})\xi^{i_{1}\cdots r\cdots i_{p}}_{j_{1}\cdots j_{q}}$$
(2.3)

for any $V \in \mathfrak{T}_0^1(M_n)$ with local components V^k .

Suppose that $A \in \mathfrak{T}_q^p(M_n)$ with local components $A_{i_1\cdots i_q}^{j_1\cdots j_p}$ in $U(x^i) \subset M_n$. From (1.1),(1.4),(1.5) and ${}^{V}A = {}^{V}\widetilde{A}{}^{i}B_i + {}^{V}\widetilde{A}{}^{\overline{i}}C_{\overline{i}}$, we easily obtain ${}^{V}\widetilde{A}{}^{i} = 0$, ${}^{V}\widetilde{A}{}^{\overline{i}} = {}^{V}A{}^{\overline{i}} = A_{i_1\cdots i_q}^{j_1\cdots j_p}$. Thus the vertical lift ${}^{V}A$ also has components of the form (1.1) with respect to the adapted (B, C)-frame of $\sigma_{\xi}(M_n)$.

Now, we consider a pure cross-section $\sigma_{\xi}^{\varphi}(M_n)$ determined by $\xi \in \mathfrak{T}_q^p(M_n)$.

We define a tensor field ${}^c\varphi \in \mathfrak{T}^1_1(T^p_q(M_n))$ along the pure cross-section $\sigma^{\varphi}_{\xi}(M_n)$ by

$$\begin{cases} {}^{c}\varphi({}^{c}V) = {}^{c}(\varphi(V)) + \gamma(L_{V}\varphi), \ \forall V \in \mathfrak{T}_{0}^{1}(M_{n}), \\ {}^{c}\varphi({}^{V}A) = {}^{V}(\varphi(A)), \ \forall A \in \mathfrak{T}_{q}^{p}(M_{n}), \end{cases}$$
(2.4)

where $\varphi(A) \in \mathfrak{T}_q^p(M_n)$ and call ${}^c\varphi$ the complete lift of $\varphi \in \mathfrak{T}_1^1(M_n)$ to $T_q^p(M_n)$ along $\sigma_{\xi}^{\varphi}(M_n)$.

Let ${}^c \widetilde{\varphi}_L^K$ be components of ${}^c \varphi$ with respect to the adapted (B, C)-frame of the pure cross-section $\sigma_{\xi}^{\varphi}(M_n)$. From (2.4) we have

$$\begin{cases} c\widetilde{\varphi}_{L}^{K} c\widetilde{V}^{L} = c (\widetilde{\varphi}(V))^{K} + \gamma (L_{V}^{\sim} \varphi)^{K} , & (i) \\ c\widetilde{\varphi}_{L}^{K} V\widetilde{A}^{L} = V (\widetilde{\varphi}(A))^{K} , & (ii) \end{cases}$$
(2.5)

where (see (2.1))

$$\begin{split} \gamma(L_{V}^{\sim}\varphi)^{K}) &= \begin{pmatrix} 0 \\ \left\{ \sum_{b=2}^{p} \xi_{k_{1}\cdots k_{q}}^{l_{1}\cdots m \cdots l_{p}} (L_{V}\varphi)_{m}^{l_{b}}, p > 0 \\ \xi_{mk_{2}\cdots k_{q}}^{l_{1}\cdots l_{p}} (L_{V}\varphi)_{k_{1}}^{m} - \sum_{b=1}^{p} \xi_{k_{1}\cdots k_{q}}^{l_{1}\cdots m \cdots l_{p}} (L_{V}\varphi)_{m}^{l_{b}}, q > 0 \end{pmatrix}, \\ (^{V}(\overset{\sim}{\varphi(A)})^{K}) &= \begin{pmatrix} 0 \\ \left\{ \varphi_{m}^{l_{1}}A_{k_{1}\cdots k_{q}}^{ml_{2}\cdots l_{p}}, p > 0 \\ \varphi_{m}^{k_{1}}A_{mk_{2}\cdots k_{q}}^{l_{1}\cdots l_{p}}, q > 0 \end{pmatrix}. \end{split}$$

First, consider the case where K = k. In this case, (i) of (2.5) reduces to

$${}^{c}\widetilde{\varphi}_{l}^{k}{}^{c}\widetilde{V}^{l} + {}^{c}\widetilde{\varphi}_{\overline{l}}^{k}{}^{c}\widetilde{V}^{\overline{l}} = {}^{c}(\widetilde{\varphi(V)})^{k} = (\varphi(V))^{k} = \varphi_{l}^{k}V^{l}.$$
(2.6)

Since the right-hand side of (2.6) are functions depending only on the base coordinates x^i , the left-hand side of (2.6) are too. Then, since ${}^c \widetilde{V} {}^{\overline{l}}$ depend on fibre coordinates, from (2.6) we obtain

$${}^c \widetilde{\varphi} \, \frac{k}{l} = 0. \tag{2.7}$$

From (2.6) and (2.7), we have ${}^c \widetilde{\varphi} {}^k_l {}^c V^l = {}^c \widetilde{\varphi} {}^k_l V^l = \varphi^k_l V^l$, V^i being arbitrary, which implies

$${}^{c}\widetilde{\varphi}{}^{k}_{l} = \varphi^{k}_{l}. \tag{2.8}$$

When K = k, (ii) of (2.5) can be rewritten, by virtue of (1.1), (2.7) and (2.8), as 0 = 0. When $K = \overline{k}$, (ii) of (2.5) reduces to

$${}^{c} \widetilde{\varphi}_{l}^{\overline{k}} {}^{V} \widetilde{A}^{l} + {}^{c} \widetilde{\varphi}_{\overline{l}}^{\overline{k}} {}^{V} \widetilde{A}^{\overline{l}} = {}^{V} (\widetilde{\varphi(A)})^{\overline{k}}$$

or

$${}^c\widetilde{\varphi}_{\overline{l}}^{\overline{k}}A_{r_1\cdots r_q}^{s_1\cdots s_p} = \varphi_m^{l_1}A_{k_1\cdots k_q}^{ml_2\cdots l_p} = \varphi_{s_1}^{l_1}\delta_{s_2}^{l_2}\cdots\delta_{s_p}^{l_p}\delta_{k_1}^{r_1}\cdots\delta_{k_q}^{r_q}A_{r_1\cdots r_q}^{s_1\cdots s_p}, p > 0$$

for all $A \in \mathfrak{T}_q^p(M_n)$, which implies

$${}^c \widetilde{\varphi} \frac{\overline{k}}{\overline{l}} = \varphi_{s_1}^{l_1} \delta_{s_2}^{l_2} \cdots \delta_{s_p}^{l_p} \delta_{k_1}^{r_1} \cdots \delta_{k_q}^{r_q} \quad , \ p > 0 \, ,$$

where δ_k^r is the Kronecker symbol, $x^{\overline{l}} = t_{r_1 \cdots r_q}^{s_1 \cdots s_p}, x^{\overline{k}} = t_{k_1 \cdots k_q}^{l_1 \cdots l_p}$.

By similar devices, we have

$${}^{c}\widetilde{\varphi}_{\overline{l}}^{\overline{k}} = \delta_{s_{1}}^{l_{1}} \cdots \delta_{s_{p}}^{l_{p}} \varphi_{k_{1}}^{r_{1}} \delta_{k_{2}}^{r_{2}} \cdots \delta_{k_{q}}^{r_{q}} \quad , \ q > 0.$$

We shall investigate components ${}^{c}\widetilde{\varphi}_{l}^{\overline{k}}$. Suppose for example that p = 0 and q = 2. In this case, when $K = \overline{k}$, (i) of (2.5) reduces to

$${}^{c}\widetilde{\varphi}_{l}^{\bar{k}}{}^{c}\widetilde{V}^{l} + {}^{c}\widetilde{\varphi}_{\bar{l}}^{\bar{k}}{}^{c}\widetilde{V}^{\bar{l}} = {}^{c}(\widetilde{\varphi}(V))^{\bar{k}} + \xi_{lk_{2}}(L_{V}\varphi)_{k_{1}}^{l}.$$

 \mathbf{or}

$${}^{c}\widetilde{\varphi}_{l}^{\overline{k}}{}^{c}\widetilde{V}^{l} + \varphi_{k_{1}}^{r_{1}}\delta_{k_{2}}^{r_{2}}{}^{c}\widetilde{V}^{\overline{l}} - \xi_{lk_{2}}(L_{V}\varphi)_{k_{1}}^{l} = {}^{c}(\widetilde{\varphi(V)})^{\overline{k}}.$$

$$(2.9)$$

From (2.3) we get

$$V^{l}(\Phi_{\varphi}\xi)_{lk_{1}k_{2}} = (L_{\varphi}V\xi)_{k_{1}k_{2}} - (L_{V}\xi)_{\varphi}^{*}_{\varphi}_{k_{1}k_{2}}$$

or

$$V^{l}(\Phi_{\varphi}\xi)_{lk_{1}k_{2}} + \varphi^{l}_{k_{1}}(L_{V}\xi)_{lk_{2}} + \xi_{lk_{2}}(L_{V}\varphi)^{l}_{k_{1}} = (L_{\varphi V}\xi)_{k_{1}k_{2}}, \qquad (2.10)$$

for any $V \in \mathfrak{T}_0^1(M_n)$. Using (1.6), from (2.10) we have

$$V^{l}(\Phi_{\varphi}\xi)_{lk_{1}k_{2}} + \varphi^{l}_{k_{1}}(L_{V}\xi)_{lk_{2}} + \xi_{lk_{2}}(L_{V}\varphi)^{l}_{k_{1}} = V^{l}(\Phi_{\varphi}\xi)_{lk_{1}k_{2}} +$$
$$+\varphi^{r_{1}}_{k_{1}}\delta^{r_{2}}_{k_{2}}(L_{V}\xi)_{r_{1}r_{2}} + \xi_{lk_{2}}(L_{V}\varphi)^{l}_{k_{1}} = {}^{c}V^{l}(\Phi_{\varphi}\xi)_{lk_{1}k_{2}} -$$
$$-\varphi^{r_{1}}_{k_{1}}\delta^{r_{2}}_{k_{2}}cV^{\bar{l}} + \xi_{lk_{2}}(L_{V}\varphi)^{l}_{k_{1}} = -{}^{c}(\varphi(V))^{\bar{l}}$$

or

$$(\Phi_{\varphi}\xi)_{lk_{1}k_{2}} {}^{c}V^{l} - \varphi_{k_{1}}^{r_{1}} \delta_{k_{2}}^{r_{2}} {}^{c}V^{\overline{l}} + \xi_{lk_{2}} (L_{V}\varphi)_{k_{1}}^{l} = -{}^{c} (\varphi(V))^{\overline{l}} , \qquad (2.11)$$

Comparing (2.9) and (2.11), we get

$${}^c\varphi_l^k = -(\Phi_\varphi\xi)_{lk_1k_2} \,.$$

In general case, by similar devices, we can prove:

$${}^c\varphi_l^{\overline{k}} = -(\Phi_\varphi\xi)_{lk_1\cdots k_q}^{l_1\cdots l_p}.$$

Thus the complete lift ${}^{c}\varphi$ of φ has along the pure cross-section $\sigma_{\xi}(M_{n})$ components

$${}^{c}\widetilde{\varphi}_{l}^{k} = \varphi_{l}^{k} , \quad {}^{c}\widetilde{\varphi}_{\overline{l}}^{k} = 0 , {}^{c}\widetilde{\varphi}_{l}^{\overline{k}} = -(\Phi_{\varphi}\xi)_{lk_{1}\cdots k_{q}}^{l_{1}\cdots l_{p}}, \qquad (2.12)$$
$${}^{c}\widetilde{\varphi}_{\overline{l}}^{\overline{k}} = \varphi_{s_{1}}^{l_{1}}\delta_{s_{2}}^{l_{2}}\cdots\delta_{s_{p}}^{l_{p}}\delta_{k_{1}}^{r_{1}}\cdots\delta_{k_{q}}^{r_{q}} , \quad p > 0$$
$${}^{c}\widetilde{\varphi}_{\overline{l}}^{\overline{k}} = \delta_{s_{1}}^{l_{1}}\cdots\delta_{s_{p}}^{l_{p}}\varphi_{k_{1}}^{r_{1}}\delta_{k_{2}}^{r_{2}}\cdots\delta_{k_{q}}^{r_{q}} , \quad q > 0$$

with respect to the adapted (B,C)-frame of $\sigma_{\xi}(M_n)$, where $\Phi_{\varphi}\xi$ is the Tachibana operator.

3. Transfer of The Complete Lift of The Affinor Structure

Let M_n be a paracompact manifold with a Riemannian metric. We shall mean by the Riemannian metric a symmetric covariant tensor field g of degree 2 which is nondegenerate. If g is a pure tensor field, then a manifold M_n with an affinor φ -structure is called an almost B-manifold [5, p. 31] and this will be denoted V_n

Suppose that $T_q^p(V_n)$ and $T_{q+1}^{p-1}(V_n)$ are the tensor bundle of type (p,q) and (p-1,q+1)over V_n , respectively. Clearly that $\dim T_q^p(V_n) = \dim T_{q+1}^{p-1}(V_n) = n + n^{p+q}$. Let the diffeomorphism $f: T_q^p(V_n) \to T_{q+1}^{p-1}(V_n), y^I = y^I(x^J), I, J = 1, ..., n + n^{p+q}$, be defined by a local expression such that

$$\begin{cases} y^{i} = x^{i} = \delta_{k}^{i} x^{k}, \\ y^{\overline{i}} = t_{ij_{1}\cdots j_{q}}^{\cdot i_{2}\cdots i_{p}} = g_{im} t_{j_{1}\cdots j_{q}}^{mi_{2}\cdots i_{p}} = g_{il_{1}} t_{k_{1}\cdots k_{q}}^{l_{1}l_{2}\cdots l_{p}} \delta_{l_{2}}^{i_{2}} \cdots \delta_{l_{p}}^{i_{p}} \delta_{j_{1}}^{k_{1}} \cdots \delta_{j_{q}}^{k_{q}} = g_{il_{1}} \delta_{l_{2}}^{i_{2}} \cdots \delta_{l_{p}}^{i_{p}} \delta_{j_{1}}^{k_{1}} \cdots \delta_{j_{q}}^{k_{q}} x^{\overline{k}}. \end{cases}$$

Since

$$x^{\overline{k}} = t^{l_1 \cdots l_p}_{k_1 \cdots k_q},$$

$$\frac{\partial y^{\overline{i}}}{\partial x^{\overline{k}}} = g_{il_1} \delta_{l_2}^{i_2} \cdots \delta_{l_p}^{i_p} \delta_{j_1}^{k_1} \cdots \delta_{j_q}^{k_q} ,$$
$$0 = \frac{\partial y^{\overline{i}}}{\partial x^k} = \frac{\partial}{\partial x^k} (g_{im} t_{j_1 \cdots j_q}^{mi_2 \cdots i_p}) = (\partial_k g_{im}) t_{j_1 \cdots j_q}^{mi_2 \cdots i_p} ,$$

we have

$$A = \left(\frac{\partial y^{I}}{\partial x^{K}}\right) = \begin{pmatrix}\frac{\partial y^{i}}{\partial x_{k}^{k}} & \frac{\partial y^{i}}{\partial x^{k}}\\ \frac{\partial y^{i}}{\partial x^{k}} & \frac{\partial y^{i}}{\partial x^{k}}\end{pmatrix} = \begin{pmatrix}\delta_{k}^{i} & 0\\ 0 & g_{il_{1}}\delta_{l_{2}}^{i_{2}}\cdots\delta_{l_{p}}^{i_{p}}\delta_{j_{1}}^{k_{1}}\cdots\delta_{j_{q}}^{k_{q}}\end{pmatrix}.$$

The inverse of the mapping f is written as

$$x^{l} = y^{l}, \ x^{\overline{l}} = t^{s_{1} \dots s_{p}}_{r_{1} \dots r_{q}} = g^{s_{1}m} t^{\cdot s_{2} \dots s_{p}}_{mr_{1} \dots r_{q}}.$$

Suppose that $y^{\overline{j}} = t^{k_2 \cdots k_p}_{ll_1 \cdots l_q}$, we have

$$A^{-1} = \left(\frac{\partial x^L}{\partial y^J}\right) = \left(\begin{matrix}\delta_j^l & 0\\ 0 & g^{s_1l}\delta_{r_1}^{l_1}\cdots\delta_{r_q}^{l_q}\delta_{k_2}^{s_2}\cdots\delta_{k_p}^{s_p}\end{matrix}\right),$$

which is the Jacobian matrix of inverse mapping f^{-1} .

Let us consider the pure cross-section $\xi_{j_1\cdots j_q}^{i_1\cdots i_p}(x)$ of $T_q^p(V_n)$. We can easily verify that the image $\xi_{ij_1\cdots j_q}^{\cdot i_2\cdots i_p}(y)$ of this cross-section under the diffeomorphism f is the pure crosssection in $T_{q+1}^{p-1}(V_n)$. In fact, we see that

$$\begin{split} \xi_{kj_1\cdots j_q}^{i_2\cdots i_p}\varphi_i^k &= (g_{km}\xi_{j_1\cdots j_q}^{mi_2\cdots i_p})\varphi_i^k = g_{ik}\xi_{j_1\cdots j_q}^{mi_2\cdots i_p}\varphi_m^k \\ &= g_{ik}\xi_{mj_2\cdots j_q}^{ki_2\cdots i_p}\varphi_{j_1}^m = \xi_{imj_2\cdots j_q}^{i_2\cdots i_p}\varphi_{j_1}^m. \end{split}$$

Theorem. Suppose that ${}^{c}\varphi_{1}$ and ${}^{c}\varphi_{2}$ denote the complete lift of the affinor φ -structure to $T^{p}_{q}(V_{n})$ and $T^{p-1}_{q+1}(V_{n})$ along the pure cross-sections $\xi^{i_{1}\cdots i_{p}}_{j_{1}\cdots j_{q}}(x)$ and $\xi^{\cdot i_{2}\cdots i_{p}}_{i_{j_{1}}\cdots j_{q}}(y)$, respectively. If $\Phi_{\varphi}g = 0$, then ${}^{c}\varphi_{2}$ is transferred from ${}^{c}\varphi_{1}$ by means of the diffeomorphism f, where $\Phi_{\varphi}g$ denotes the Tachibana operator.

Proof. Let $(\Phi_{\varphi}g)_{kij} \stackrel{\text{def}}{=} \Phi_{\varphi} kg_{ij} = 0$. If we take account of (2.12) and a fomula due to Tachibana [4]

$$\Phi_{\varphi} j(g_{im}\xi_{j_1\cdots j_q}^{mi_2\cdots i_p}) = (\Phi_{\varphi} jg_{im})\xi_{j_1\cdots j_q}^{mi_2\cdots i_p} + g_{im}\Phi_{\varphi} j\xi_{j_1\cdots j_q}^{mi_2\cdots i_p} ,$$

then we have

 $\begin{pmatrix} \delta_j^l & 0\\ 0 & g^{s_1l}\delta_{r_1}^{l_1}\cdots \delta_{r_q}^{l_q}\delta_{k_2}^{s_2}\cdots \delta_{k_p}^{s_p} \end{pmatrix} = A^c \varphi A^{-1}, \text{ where } x^{\overline{l}} = t_{r_1\cdots r_q}^{s_1\cdots s_p}, x^{\overline{k}} = t_{k_1\cdots k_q}^{l_1\cdots l_p}, y^{\overline{i}} = t_{i_1j\cdots i_q}^{(i_2\cdots i_p)}, y^{\overline{j}} = t_{ll_1\cdots l_q}^{(k_2\cdots k_p)}. \text{ To show (3.1), we have taken account of}$

$$g_{il_1}\delta_{l_2}^{i_2}\cdots\delta_{l_p}^{i_p}\delta_{j_1}^{k_1}\cdots\delta_{j_q}^{k_q}\varphi_{s_1}^{l_1}\delta_{s_2}^{l_2}\cdots\delta_{s_p}^{l_p}\delta_{k_1}^{r_1}\cdots\delta_{k_q}^{r_q}g^{s_1l}\delta_{r_1}^{l_1}\cdots\delta_{r_q}^{l_q}\delta_{k_2}^{s_2}\cdots\delta_{k_p}^{s_p} = \\ = \varphi_i^l\delta_{j_1}^{l_1}\cdots\delta_{j_q}^{l_q}\delta_{k_2}^{i_2}\cdots\delta_{k_p}^{i_p}$$

and used that g_{ij} is the pure tensor field. \Box

Remark. In a manifold with affinor φ -structure, a pure tensor field g is called an almost analytic tensor field if $(\Phi_{\varphi}g)_{kij} = 0$ [6].

References

- A.Mağden, M.Kamali, A.A.Salimov, The Tachibana operator and transfer of lifts. Turkish J. of Math., 22(1998), No.1, 109-117.
- [2] A.Ledger, K.Yano, Almost complex structures on tensor bundles. J. Diff. Geom., 1(1967), No.4, 355-366.
- [3] A.A.Salimov, A.Mağden, Complete lifts of tensor fields on a pure cross-section in the tensor bundle $T_q^1(M_n)$. Note di Matematica, Lecce(Italy), 18(1998), No.1, 27-37.
- [4] S. Tachibana, Analytic tensor and its generalization. Tohoku Math. J., 12(1960), 201-221.
- [5] V.V. Vishnevskii, A.P. Shirokov and V.V. Shurygin, Spaces over algebras. Kazan Gos. Univ., Kazan, (1985) (Russian).
- [6] A.A. Salimov, Almost analytic Riemannian metric and integrable structure. Trudy Geom. Sem. Kazan Univ., 15(1983), 72-78.

Received 12.07.1999

A. MAĞDEN, E. KADIOĞLU, A.A. SALIMOV Atatürk University Faculty of Arts and Sciences Department of Mathematics 25240 Erzurum-TURKEY