Applications of the Tachibana Operator on Problems of Lifts

A. Mağden, E. Kadıoğlu and A.A. Salimov

Abstract

The purpose of the present paper is to study, using the Tachibana operator, the complete lifts of affinor structures along a pure cross-section of the tensor bundle and to investigate their transfers. The results obtained are to some extent similar to results previously established for tangent (cotangent) bundles [1]. However there are various important differences and it appears that the problem of lifting affinor structures to the tensor bundle on the pure cross-section presents difficulties which are not encountered in the case of the tangent (cotangent) bundle.

Key words and phrases. Tensor, bundle, affinor, complete lift, pure cross-section, Tachibana operator

1. Introduction

Let M_{n} be a differentiable manifold of class C^{∞} and finite dimension n, and let $T_{q}^{p}\left(M_{n}\right), p+$ $q>0$ be the bundle over M_{n} of tensors of type $(p, q): T_{q}^{p}\left(M_{n}\right)=\bigcup_{P \in M_{n}} T_{q}^{p}(P)$, where $T_{q}^{p}(P)$ denotes the tensor(vector) spaces of tensors of type (p, q) at $P \in M_{n}$.

We list below notations used in this paper.
i. $\pi: T_{q}^{p}\left(M_{n}\right) \mapsto M_{n}$ is the projection $T_{q}^{p}\left(M_{n}\right)$ onto M_{n}.
ii.The indices i, j, \cdots run from 1 to n, the indices \bar{i}, \bar{j}, \cdots from $n+1$ to $n+n^{p+q}=$ $\operatorname{dim} T_{q}^{p}\left(M_{n}\right)$ and the indices $I=(i, \bar{i}), J=(j, \bar{j}), \ldots$ from 1 to $n+n^{p+q}$. The so-called Einsteins summation convention is used.
iii. $\mathfrak{F}(M)$ is the ring of real-valued C^{∞} functions on $M_{n} . \mathfrak{T}_{q}^{p}\left(M_{n}\right)$ is the module over $\mathfrak{F}(M)$ of C^{∞} tensor fields of type (p, q).
$i v$. Vector fields in M_{n} are denoted by V, W, \ldots. The Lie derivation with respect to V is denoted by L_{V}. Affinor fields (tensor fields of type $\left.(1,1)\right)$ are denoted by φ, ψ, \ldots.

[^0]
MAĞDEN, KADIOĞLU, SALIMOV

Denoting by x^{j} the local coordinates of $P=\pi(\tilde{P})\left(\tilde{P} \in T_{q}^{p}\left(M_{n}\right)\right)$ in a neighborhood $U \subset M_{n}$ and if we make $\left(x^{j}, t_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}\right)=\left(x^{j}, x^{\bar{j}}\right)$ correspond to the point $\widetilde{P} \in \pi^{-1}(U)$, we can introduce a system of local coordinates $\left(x^{j}, x^{\bar{j}}\right)$ in a neighborhood $\pi^{-1}(U) \subset T_{q}^{p}\left(M_{n}\right)$, where $t_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}} \stackrel{\text { def }}{=} x^{\bar{j}}$ are components of $t \in T_{q}^{p}(P)$ with respect to the natural frame ∂_{i}.

If $\alpha \in \mathfrak{T}_{p}^{q}\left(M_{n}\right)$, it is regarded, in a natural way(by contraction), as a function in $T_{q}^{p}\left(M_{n}\right)$, which we denote by $\imath \alpha$. If α has the local expression $\alpha=\alpha_{i_{1} \cdots i_{p}}^{j_{1} \cdots j_{q}} \partial_{j_{1}} \otimes \cdots \otimes$ $\partial_{j_{q}} \otimes d x^{i_{1}} \otimes \cdots \otimes d x^{i_{p}}$ in a coordinate neighborhood $U\left(x^{i}\right) \subset M_{n}$, then $\imath \alpha$ has the local expression

$$
\imath \alpha=\alpha(t)=\alpha_{i_{1} \cdots i_{p}}^{j_{1} \cdots j_{q}} t_{j_{1} \cdots j_{q} \cdots i_{p}}^{i_{1} \cdots}
$$

with respect to the coordinates $\left(x^{j}, x^{j}\right)$ in $\pi^{-1}(U)$.
Suppose that $A \in \mathfrak{T}_{q}^{p}\left(M_{n}\right)$. We define the vertical lift ${ }^{V} A \in \mathfrak{T}_{0}^{1}\left(T_{q}^{p}\left(M_{n}\right)\right)$ of A to $T_{q}^{p}\left(M_{n}\right)$ (see [2]) by

$$
{ }^{V} A(\imath \alpha)=\alpha(A) \circ \pi={ }^{V}(\alpha(A))
$$

where ${ }^{V}(\alpha(A))$ is the vertical lift of the function $\alpha(A) \in \mathfrak{F}\left(M_{n}\right)$. The vertical lift ${ }^{V} A$ of A to $T_{q}^{p}\left(M_{n}\right)$ has components

$$
\begin{equation*}
{ }^{V} A=\binom{{ }^{V} A^{j}}{{ }^{V} A^{\bar{j}}}=\binom{0}{A_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}} \tag{1.1}
\end{equation*}
$$

with respect to the coordinates $\left(x^{j}, x^{\bar{j}}\right)$ in $T_{q}^{p}\left(M_{n}\right)$.
We define the complete lift ${ }^{c} V=\bar{L}_{V} \in \mathfrak{T}_{0}^{1}\left(T_{q}^{p}\left(M_{n}\right)\right)$ of $V \in \mathfrak{T}_{0}^{1}\left(M_{n}\right)$ to $T_{q}^{p}\left(M_{n}\right)$ [2] by

$$
{ }^{c} V(\imath \alpha)=\imath\left(L_{V} \alpha\right), \quad \alpha \in \mathfrak{T}_{p}^{q}\left(M_{n}\right) .
$$

The complete lift ${ }^{c} V$ of $V \in \mathfrak{T}_{0}^{1}\left(M_{n}\right)$ to $T_{q}^{p}\left(M_{n}\right)$ has components

$$
\begin{equation*}
{ }^{c} V^{j}=V^{j},{ }^{c} V^{\bar{j}}=\sum_{\mu=1}^{p} t_{j_{1} \cdots j_{q}}^{i_{1} \cdots s \cdots i_{p}} \partial_{s} V^{i_{\mu}}-\sum_{\lambda=1}^{q} t_{j_{1} \cdots s \cdots j_{q}}^{i_{1} \cdots i_{p}} \partial_{j_{\lambda}} V^{s} \tag{1.2}
\end{equation*}
$$

MAĞDEN, KADIOĞLU, SALIMOV

with respect to the coordinates $\left(x^{j}, x^{\bar{j}}\right)$ in $T_{q}^{p}\left(M_{n}\right)$.
Suppose that there is given a tensor field $\xi \in \mathfrak{T}_{q}^{p}\left(M_{n}\right)$. Then the correspondence $x \mapsto \xi_{x}, \xi_{x}$ being the value of ξ at $x \in M_{n}$, determines a mapping $\sigma_{\xi}: M_{n} \mapsto T_{q}^{p}\left(M_{n}\right)$, such that $\pi \circ \sigma_{\xi}=i d_{M_{n}}$, and the n dimensional submanifold $\sigma_{\xi}\left(M_{n}\right)$ of $T_{q}^{p}\left(M_{n}\right)$ is called the cross-section determined by ξ. If the tensor field ξ has the local components $\xi_{k_{1} \cdots k_{q}}^{l_{1} \cdots l_{p}}\left(x^{k}\right)$, the cross-section $\sigma_{\xi}\left(M_{n}\right)$ is locally expressed by

$$
\left\{\begin{array}{l}
x^{k}=x^{k} \tag{1.3}\\
x^{\bar{k}}=\xi_{k_{1} \cdots k_{q}}^{l_{1} \cdots l_{p}}\left(x^{k}\right)
\end{array}\right.
$$

with respect to the coordinates $\left(x^{k}, x^{\bar{k}}\right)$ in $T_{q}^{p}\left(M_{n}\right)$. Differentiating (1.3) by x^{j}, we see that the n tangent vector fields B_{j} to $\sigma_{\xi}\left(M_{n}\right)$ have components

$$
\begin{equation*}
\left(B_{j}^{K}\right)=\left(\frac{\partial x^{K}}{\partial x^{j}}\right)=\binom{\delta_{j}^{k}}{\partial_{j} \xi_{k_{1} \cdots k_{q}}^{l_{1} \cdots l_{p}}} \tag{1.4}
\end{equation*}
$$

with respect to the natural frame $\left\{\partial_{k}, \partial_{\bar{k}}\right\}$ in $T_{q}^{p}\left(M_{n}\right)$.
On the other hand, the fibre is locally expressed by

$$
\begin{cases}x^{k} & =\text { const } \\ t_{k_{1} \cdots k_{q}}^{l_{1} \cdots l_{p}} & =t_{k_{1} \cdots k_{q}}^{l_{1} \cdots l_{p}},\end{cases}
$$

$t_{k_{1} \cdots k_{q}}^{l_{1} \cdots l_{p}}$ being consider as parameters. Thus, on differentiating with respect to $x^{\bar{j}}=t_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}$, we see that the n^{p+q} tangent vector fields $C_{\bar{j}}$ to the fibre have components

$$
\begin{equation*}
\left(C_{\bar{j}}^{K}\right)=\left(\frac{\partial x^{K}}{\partial x^{\bar{j}}}\right)=\binom{0}{\delta_{k_{1}}^{j_{1}} \cdots \delta_{k_{q}}^{j_{q}} \delta_{i_{1}}^{l_{1}} \cdots \delta_{i_{p}}^{l_{p}}} \tag{1.5}
\end{equation*}
$$

with respect to the natural frame $\left\{\partial_{k}, \partial_{\bar{k}}\right\}$ in $T_{q}^{p}\left(M_{n}\right)$.
We consider in $\pi^{-1}(U) \subset T_{q}^{p}\left(M_{n}\right), n+n^{p+q}$ local vector fields B_{j} and $C_{\bar{j}}$ along $\sigma_{\xi}\left(M_{n}\right)$. They form a local family of frames $\left\{B_{j}, C_{\bar{j}}\right\}$ along $\sigma_{\xi}\left(M_{n}\right)$, which is called the adapted (B, C)-frame of $\sigma_{\xi}\left(M_{n}\right)$ in $\pi^{-1}(U)$. Taking account of (1.2), we can prove that, the complete lift ${ }^{c} V$ has along $\sigma_{\xi}\left(M_{n}\right)$ components of the form

$$
\begin{equation*}
{ }^{c} V=\binom{{ }^{c} \tilde{V}^{j}}{{ }^{c} \tilde{V}^{\bar{j}}}=\binom{V^{j}}{-\left(L_{V} \xi\right)_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}} \tag{1.6}
\end{equation*}
$$

with respect to the adapted (B, C)-frame [3], where $\left(L_{V} \xi\right)_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}$ are local components of $L_{V} \xi$ in M_{n}.

2. Complete Lifts of The Affinor field to The Tensor Bundle Along a Pure Cross- Section

Let $\varphi \in \mathfrak{T}_{1}^{1}\left(M_{n}\right)$. Making use of the Jacobian matrix

$$
\left(\frac{\partial x^{I^{\prime}}}{\partial x^{I}}\right)=\left(\begin{array}{cc}
\frac{\partial x^{i^{\prime}}}{\partial x^{i}} & \frac{\partial x^{i^{\prime}}}{\partial x^{i} i^{i}} \\
\frac{\partial \bar{x}^{i}}{\partial x i} & \frac{\partial x^{i^{i}}}{\partial x^{\bar{i}}}
\end{array}\right)=\left(\begin{array}{cc}
A_{i}^{i^{\prime}} & 0 \\
t_{(k)}^{(j)} \partial_{i}\left(A_{\left(i^{\prime}\right)}^{(k)} A_{(j)}^{\left(j^{\prime}\right)}\right) & A_{\left(i^{\prime}\right)}^{(i)} A_{(j)}^{\left(j^{\prime}\right)}
\end{array}\right)
$$

of the coordinate transformation in $T_{q}^{p}\left(M_{n}\right): x^{i^{\prime}}=x^{i^{\prime}}\left(x^{i}\right), x^{\bar{i}^{\prime}}=t_{\left(i^{\prime}\right)}^{\left(j^{\prime}\right)}=A_{\left(i^{\prime}\right)}^{(i)} A_{(j)}^{\left(j^{\prime}\right)} t_{(i)}^{(j)}=$ $A_{\left(i^{\prime}\right)}^{(i)} A_{(j)}^{\left(j^{\prime}\right)} x^{\bar{i}} \quad\left(t_{(i)}^{(j)}=t_{i_{1} \cdots i_{q}}^{j_{1} \cdots j_{p}}, A_{\left(i^{\prime}\right)}^{(i)}=A_{i_{1}^{\prime}}^{i_{1}} \cdots A_{i_{q}^{\prime}}^{i_{q}}, A_{i^{\prime}}^{i}=\frac{\partial x^{i}}{\partial x^{i}}, A_{(j)}^{\left(j^{\prime}\right)}=A_{j_{1}}^{j_{1}{ }_{1}} \cdots A_{j_{p}}^{j_{p}{ }_{p}}\right.$, $\left.A_{j}^{j^{\prime}}=\frac{\partial x^{j^{\prime}}}{\partial x^{j}}\right)$ we can define a vector field $\gamma \varphi \in \mathfrak{T}_{0}^{1}\left(T_{q}^{p}\left(M_{n}\right)\right)$:

$$
\gamma \varphi=\left((\gamma \varphi)^{I}\right)=\left(\begin{array}{c}
0 \\
-\sum_{b=2}^{p} t_{k_{1} \cdots k_{q}}^{l_{1} \cdots m l_{p}} \varphi_{m}^{l_{b}}, p>0 \\
t_{m k_{2} \cdots k_{q}}^{l_{1} \cdots l_{p}} \varphi_{k_{1}}^{m}-\sum_{b=1}^{p} t_{k_{1} \cdots k_{q}}^{l_{1} \cdots l_{p}} \varphi_{m}^{l_{b}}, q>0
\end{array}\right),
$$

where $\varphi_{i_{1}}^{m}$ are local components of φ in M_{n}. Clearly, we have $(\gamma \varphi)\left({ }^{V} f\right)=0$ for any $f \in \mathfrak{F}\left(M_{n}\right)$, so that $\gamma \varphi$ is a vertical vector field. We can easily verify that the vertical vector field $\gamma \varphi$ has along $\sigma_{\xi}\left(M_{n}\right)$ components

$$
\gamma \varphi=\left((\gamma \tilde{\varphi})^{I}\right)=\left(\begin{array}{c}
0 \tag{2.1}\\
-\sum_{b=2}^{p} \xi_{k_{1} \cdots k_{q}}^{l_{1} \cdots m l_{p}} \varphi_{m}^{l_{b}}, p>0 \\
\xi_{m k_{2} \cdots k_{q}}^{l_{1} \cdots l_{p}} \varphi_{k_{1}}^{m}-\sum_{b=1}^{p} \xi_{k_{1} \cdots k_{q}}^{l_{1} \cdots l_{p}} \varphi_{m}^{l_{b}}, q>0
\end{array}\right)
$$

with respect to the adapted (B, C)-frame.
A tensor field $\xi \in \mathfrak{T}_{q}^{p}\left(M_{n}\right)$ is called pure with respect to the affinor φ-structure $\left(\varphi \in \mathfrak{T}_{1}^{1}\left(M_{n}\right)\right)$ [4], if

In particular, vector(covector) fields will be considered to be pure.

MAĞDEN, KADIOĞLU, SALIMOV

Let $\stackrel{*}{\mathfrak{T}} \underset{q}{p}\left(M_{n}\right)$ denotes a module of all the tensor fields $\quad \xi \in \mathfrak{T}_{q}^{p}\left(M_{n}\right)$ which are pure with respect to φ. We consider the Tachibana operator on the module $\mathfrak{T}_{q}^{p}\left(M_{n}\right)$ [4]:

$$
\begin{gather*}
\left(\Phi_{\varphi} \xi\right)_{k j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}=\varphi_{k}^{m} \partial_{m} \xi_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}-\partial_{k} \xi_{\varphi}^{\stackrel{*}{i_{1} \cdots i_{p}}}+\sum_{a=1}^{q}\left(\partial_{j_{a}} \varphi_{k}^{r}\right) \xi_{j_{1} \cdots r j_{q}}^{i_{1} \cdots i_{p}}+ \\
+\sum_{b=1}^{p}\left(\partial_{k} \varphi_{r}^{i_{b}}-\partial_{r} \varphi_{k}^{i_{b}}\right) \xi_{j_{1} \cdots j_{q}}^{i_{1} \cdots r i_{p}} \tag{2.2}
\end{gather*}
$$

where $\Phi_{\varphi} \xi \in \mathfrak{T}_{q+1}^{p}\left(M_{n}\right)$. After some calculations we have, from (2.2):

$$
\begin{equation*}
V^{k}\left(\Phi_{\varphi} \xi\right)_{k j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}=\mathcal{L}_{\varphi V} \xi_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}-\mathcal{L}_{V} \stackrel{*}{\xi}_{\varphi}^{i_{j_{1} \cdots i_{p}} j_{q}}+\sum_{b=1}^{p}\left(\mathcal{L}_{V} \varphi_{r}^{i_{b}}\right) \xi_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}} \tag{2.3}
\end{equation*}
$$

for any $V \in \mathfrak{T}_{0}^{1}\left(M_{n}\right)$ with local components V^{k}.
Suppose that $A \in \mathfrak{T}_{q}^{p}\left(M_{n}\right)$ with local components $A_{i_{1} \cdots i_{q}}^{j_{1} \cdots j_{p}}$ in $U\left(x^{i}\right) \subset M_{n}$. From (1.1),(1.4),(1.5) and ${ }^{V} A={ }^{V} \tilde{A}^{i} B_{i}+V{ }^{\sim} \tilde{A}^{\bar{i}} C_{\bar{i}}$, we easily obtain $V^{\tilde{A}} \tilde{A}^{i}=0, V{ }^{\bar{A}}{ }^{\bar{i}}=V A^{\bar{i}}=$ $A_{i_{1} \cdots i_{q}}^{j_{1} \cdots j_{p}}$. Thus the vertical lift ${ }^{V} A$ also has components of the form (1.1) with respect to the adapted (B, C)-frame of $\sigma_{\xi}\left(M_{n}\right)$.

Now, we consider a pure cross-section $\sigma_{\xi}^{\varphi}\left(M_{n}\right)$ determined by $\xi \in{\underset{\mathfrak{T}}{q}}_{q}^{p}\left(M_{n}\right)$.
We define a tensor field ${ }^{c} \varphi \in \mathfrak{T}_{1}^{1}\left(T_{q}^{p}\left(M_{n}\right)\right)$ along the pure cross-section $\sigma_{\xi}^{\varphi}\left(M_{n}\right)$ by

$$
\begin{cases}{ }^{c} \varphi\left({ }^{c} V\right)= & { }^{c}(\varphi(V))+\gamma\left(L_{V} \varphi\right), \forall V \in \mathfrak{T}_{0}^{1}\left(M_{n}\right), \tag{2.4}\\ { }^{c} \varphi\left({ }^{V} A\right)= & { }^{V}(\varphi(A)), \forall A \in \mathfrak{T}_{q}^{p}\left(M_{n}\right),\end{cases}
$$

where $\varphi(A) \in \mathfrak{T}_{q}^{p}\left(M_{n}\right)$ and call ${ }^{c} \varphi$ the complete lift of $\varphi \in \mathfrak{T}_{1}^{1}\left(M_{n}\right)$ to $T_{q}^{p}\left(M_{n}\right)$ along $\sigma_{\xi}^{\varphi}\left(M_{n}\right)$.

Let ${ }^{c} \widetilde{\varphi}_{L}^{K}$ be components of ${ }^{c} \varphi$ with respect to the adapted $(B, C)-$ frame of the pure cross-section $\sigma_{\xi}^{\varphi}\left(M_{n}\right)$. From (2.4) we have

MAĞDEN, KADIOĞLU, SALIMOV

where(see (2.1))

$$
\begin{aligned}
\left.\gamma\left(L_{V} \tilde{\varphi}\right)^{K}\right)= & \left(\left\{\begin{array}{c}
0 \\
-\sum_{b=2}^{p} \xi_{k_{1} \cdots k_{q}}^{l_{1} \cdots m \cdots l_{p}}\left(L_{V} \varphi\right)_{m}^{l_{b}}, p>0 \\
\xi_{m k_{2} \cdots k_{q}}^{l_{1} \cdots l_{p}}\left(L_{V} \varphi\right)_{k_{1}}^{m}-\sum_{b=1}^{p} \xi_{k_{1} \cdots k_{q}}^{l_{1} \cdots m \cdots l_{p}}\left(L_{V} \varphi\right)_{m}^{l_{b}}, q>0
\end{array}\right),\right. \\
& \left({ }^{V}(\tilde{\varphi}(A))^{K}\right)=\left(\begin{array}{c}
0 \\
\varphi_{m}^{l_{1}} A_{k_{1} \cdots k_{q}}^{m l_{2} \cdots l_{p}}, p>0 \\
\varphi_{k_{1}}^{m} A_{m k_{2} \cdots k_{q}}^{l_{1} \cdots l_{p}}, q>0
\end{array}\right) .
\end{aligned}
$$

First, consider the case where $K=k$. In this case, (i) of (2.5) reduces to

$$
\begin{equation*}
\left.{ }^{c} \tilde{\varphi}_{l}^{k}{ }^{c} \tilde{V}^{l}+{ }^{c} \tilde{\varphi}_{l}^{k}{ }^{c} \tilde{V}^{\bar{l}}={ }^{c}(\varphi \tilde{(} V)\right)^{k}=(\varphi(V))^{k}=\varphi_{l}^{k} V^{l} \tag{2.6}
\end{equation*}
$$

Since the right-hand side of (2.6) are functions depending only on the base coordinates x^{i}, the left-hand side of (2.6) are too. Then, since ${ }^{c} \tilde{V}^{\bar{l}}$ depend on fibre coordinates, from (2.6) we obtain

$$
\begin{equation*}
c^{\sim} \tilde{\varphi}_{l}^{k}=0 . \tag{2.7}
\end{equation*}
$$

From (2.6) and (2.7), we have ${ }^{c} \tilde{\varphi}_{l}^{k}{ }^{c} V^{l}={ }^{c} \tilde{\varphi}_{l}^{k} V^{l}=\varphi_{l}^{k} V^{l}$, V^{i} being arbitrary, which implies

$$
\begin{equation*}
{ }^{c} \tilde{\varphi}_{l}^{k}=\varphi_{l}^{k} . \tag{2.8}
\end{equation*}
$$

When $K=k,(i i)$ of (2.5) can be rewritten, by virtue of (1.1), (2.7) and (2.8), as $0=0$. When $K=\bar{k}$, (ii) of (2.5) reduces to

$$
\left.{ }^{c} \tilde{\varphi}_{l}^{\bar{k}} V \tilde{A}^{l}+{ }^{c} \tilde{\varphi}_{\bar{l}}^{\bar{k}} V \tilde{A}^{\bar{l}}={ }^{V}(\varphi \tilde{(} A)\right)^{\bar{k}}
$$

or

$$
{ }^{c} \tilde{\varphi} \frac{\bar{k}}{\bar{l}} A_{r_{1} \cdots r_{q}}^{s_{1} \cdots s_{p}}=\varphi_{m}^{l_{1}} A_{k_{1} \cdots k_{q}}^{m l_{2} \cdots l_{p}}=\varphi_{s_{1}}^{l_{1}} \delta_{s_{2}}^{l_{2}} \cdots \delta_{s_{p}}^{l_{p}} \delta_{k_{1}}^{r_{1}} \cdots \delta_{k_{q}}^{r_{q}} A_{r_{1} \cdots r_{q}}^{s_{1} \cdots s_{p}}, p>0
$$

for all $A \in \mathfrak{T}_{q}^{p}\left(M_{n}\right)$, which implies

$$
{ }^{c} \tilde{\varphi}_{\bar{l}}^{\bar{k}}=\varphi_{s_{1}}^{l_{1}} \delta_{s_{2}}^{l_{2}} \cdots \delta_{s_{p}}^{l_{p}} \delta_{k_{1}}^{r_{1}} \cdots \delta_{k_{q}}^{r_{q}}, p>0,
$$

where δ_{k}^{r} is the Kronecker symbol, $x^{\bar{l}}=t_{r_{1} \cdots r_{q}}^{s_{1} \cdots s_{p}}, x^{\bar{k}}=t_{k_{1} \cdots k_{q}}^{l_{1} \cdots l_{p}}$.
By similar devices, we have

$$
{ }^{c} \widetilde{\varphi} \bar{l} \overline{\bar{k}}=\delta_{s_{1}}^{l_{1}} \cdots \delta_{s_{p}}^{l_{p}} \varphi_{k_{1}}^{r_{1}} \delta_{k_{2}}^{r_{2}} \cdots \delta_{k_{q}}^{r_{q}}, q>0
$$

We shall investigate components ${ }^{c} \tilde{\varphi}_{l}^{\bar{k}}$. Suppose for example that $p=0$ and $q=2$. In this case, when $K=\bar{k},(i)$ of (2.5) reduces to

$$
\left.{ }^{c} \tilde{\varphi}_{l}^{\bar{k}}{ }^{c} \tilde{V}^{l}+{ }^{c} \tilde{\varphi}_{\bar{l}}^{\bar{k}}{ }^{c} \tilde{V}^{\bar{l}}={ }^{c}(\varphi \tilde{(} V)\right)^{\bar{k}}+\xi_{l k_{2}}\left(L_{V} \varphi\right)_{k_{1}}^{l}
$$

or

$$
\begin{equation*}
\left.c^{\tilde{\varphi}_{l}^{\bar{k}}}{ }_{l}^{c} \tilde{V}^{l}+\varphi_{k_{1}}^{r_{1}} \delta_{k_{2}}^{r_{2}} \tilde{V}^{\bar{l}}-\xi_{l k_{2}}\left(L_{V} \varphi\right)_{k_{1}}^{l}={ }^{c}(\varphi \tilde{(} V)\right)^{\bar{k}} \tag{2.9}
\end{equation*}
$$

From (2.3) we get

$$
V^{l}\left(\Phi_{\varphi} \xi\right)_{l k_{1} k_{2}}=\left(L_{\varphi V} \xi\right)_{k_{1} k_{2}}-\left(L_{V} \stackrel{*}{\xi}\right)_{k_{1} k_{2}}
$$

or

$$
\begin{equation*}
V^{l}\left(\Phi_{\varphi} \xi\right)_{l k_{1} k_{2}}+\varphi_{k_{1}}^{l}\left(L_{V} \xi\right)_{l k_{2}}+\xi_{l k_{2}}\left(L_{V} \varphi\right)_{k_{1}}^{l}=\left(L_{\varphi V} \xi\right)_{k_{1} k_{2}} \tag{2.10}
\end{equation*}
$$

for any $V \in \mathfrak{T}_{0}^{1}\left(M_{n}\right)$. Using (1.6), from (2.10) we have

$$
\begin{aligned}
& V^{l}\left(\Phi_{\varphi} \xi\right)_{l k_{1} k_{2}}+\varphi_{k_{1}}^{l}\left(L_{V} \xi\right)_{l k_{2}}+\xi_{l k_{2}}\left(L_{V} \varphi\right)_{k_{1}}^{l}=V^{l}\left(\Phi_{\varphi} \xi\right)_{l k_{1} k_{2}}+ \\
& +\varphi_{k_{1}}^{r_{1}} \delta_{k_{2}}^{r_{2}}\left(L_{V} \xi\right)_{r_{1} r_{2}}+\xi_{l k_{2}}\left(L_{V} \varphi\right)_{k_{1}}^{l}=^{c} V^{l}\left(\Phi_{\varphi} \xi\right)_{l k_{1} k_{2}}- \\
& -\varphi_{k_{1}}^{r_{1}} \int_{k_{2}}^{r_{2} c} V^{\bar{l}}+\xi_{l k_{2}}\left(L_{V} \varphi\right)_{k_{1}}^{l}=-^{c}(\varphi(V))^{\bar{l}}
\end{aligned}
$$

or

$$
\begin{equation*}
\left(\Phi_{\varphi} \xi\right)_{l k_{1} k_{2}}{ }^{c} V^{l}-\varphi_{k_{1}}^{r_{1}} \delta_{k_{2}}^{r_{2} c} V^{\bar{l}}+\xi_{l k_{2}}\left(L_{V} \varphi\right)_{k_{1}}^{l}=-{ }^{c}(\varphi(V))^{\bar{l}} \tag{2.11}
\end{equation*}
$$

Comparing (2.9) and (2.11), we get

$$
{ }^{c} \varphi_{l}^{\bar{k}}=-\left(\Phi_{\varphi} \xi\right)_{l k_{1} k_{2}}
$$

MAĞDEN, KADIOĞLU, SALIMOV

In general case, by similar devices, we can prove:

$$
{ }^{c} \varphi_{l}^{\bar{k}}=-\left(\Phi_{\varphi} \xi\right)_{l k_{1} \cdots k_{q}}^{l_{1} \cdots l_{p}} .
$$

Thus the complete lift ${ }^{c} \varphi$ of φ has along the pure cross-section $\sigma_{\xi}\left(M_{n}\right)$ components

$$
\begin{align*}
& { }^{c} \tilde{\varphi}_{l}^{k}=\varphi_{l}^{k}, \quad{ }^{c} \tilde{\varphi}_{\bar{l}}^{k}=0,{ }^{c} \tilde{\varphi}_{l}^{\bar{k}}=-\left(\Phi_{\varphi} \xi\right)_{l k_{1} \cdots k_{q}}^{l_{1} \cdots l_{p}}, \tag{2.12}\\
& { }^{c} \tilde{\varphi}_{\bar{l}}^{\bar{k}}=\varphi_{s_{1}}^{l_{1}} \delta_{s_{2}}^{l_{2}} \cdots \delta_{s_{p}}^{l_{p}} \delta_{k_{1}}^{r_{1}} \cdots \delta_{k_{q}}^{r_{q}} \quad, p>0 \\
& { }^{c} \widetilde{\varphi}_{\bar{l}}^{\bar{k}}=\delta_{s_{1}}^{l_{1}} \cdots \delta_{s_{p}}^{l_{p}} \varphi_{k_{1}}^{r_{1}} \delta_{k_{2}}^{r_{2}} \cdots \delta_{k_{q}}^{r_{q}} \quad, q>0
\end{align*}
$$

with respect to the adapted (B, C)-frame of $\sigma_{\xi}\left(M_{n}\right)$, where $\Phi_{\varphi} \xi$ is the Tachibana operator.

3. Transfer of The Complete Lift of The Affinor Structure

Let M_{n} be a paracompact manifold with a Riemannian metric. We shall mean by the Riemannian metric a symmetric covariant tensor field g of degree 2 which is nondegenerate. If g is a pure tensor field, then a manifold M_{n} with an affinor φ-structure is called an almost B-manifold [5, p. 31] and this will be denoted V_{n}

Suppose that $T_{q}^{p}\left(V_{n}\right)$ and $T_{q+1}^{p-1}\left(V_{n}\right)$ are the tensor bundle of type (p, q) and $(p-1, q+1)$ over V_{n}, respectively. Clearly that $\operatorname{dim}_{q}^{p}\left(V_{n}\right)=\operatorname{dim}_{q+1}^{p-1}\left(V_{n}\right)=n+n^{p+q}$. Let the diffeomorphism $f: T_{q}^{p}\left(V_{n}\right) \rightarrow T_{q+1}^{p-1}\left(V_{n}\right), y^{I}=y^{I}\left(x^{J}\right), I, J=1, \ldots, n+n^{p+q}$, be defined by a local expression such that

$$
\left\{\begin{array}{l}
y^{i}=x^{i}=\delta_{k}^{i} x^{k}, \\
y^{\bar{i}}=t_{i j_{1} \cdots j_{q}}^{i_{2} \cdots i_{p}}=g_{i m} t_{j_{1} \cdots j_{q}}^{m i_{2} \cdots i_{p}}=g_{i l_{1}} t_{k_{1} \cdots k_{q}}^{l_{1} l_{2} \cdots l_{p}} \delta_{l_{2}}^{i_{2}} \cdots \delta_{l_{p}}^{i_{p}} \delta_{j_{1}}^{k_{1}} \cdots \delta_{j_{q}}^{k_{q}}= \\
=g_{i l_{1}} \delta_{l_{2}}^{i_{2}} \cdots \delta_{l_{p}}^{i_{p}} \delta_{j_{1}}^{k_{1}} \cdots \delta_{j_{q}}^{k_{q}} x^{\bar{k}} .
\end{array}\right.
$$

Since

$$
x^{\bar{k}}=t_{k_{1} \cdots k_{q}}^{l_{1} \cdots l_{p}}
$$

$$
\begin{gathered}
\frac{\partial y^{\bar{i}}}{\partial x^{\bar{k}}}=g_{i l_{1}} \delta_{l_{2}}^{i_{2}} \cdots \delta_{l_{p}}^{i_{p}} \delta_{j_{1}}^{k_{1}} \cdots \delta_{j_{q}}^{k_{q}}, \\
0=\frac{\partial y^{\bar{i}}}{\partial x^{k}}=\frac{\partial}{\partial x^{k}}\left(g_{i m} t_{j_{1} \cdots j_{q}}^{m i_{2} \cdots i_{p}}\right)=\left(\partial_{k} g_{i m}\right) t_{j_{1} \cdots j_{q}}^{m i_{q} \cdots i_{p}},
\end{gathered}
$$

we have

$$
A=\left(\begin{array}{l}
\frac{\partial y^{I}}{\partial x^{K}}
\end{array}\right)=\left(\begin{array}{cc}
\frac{\partial y^{i}}{\partial x^{i}} & \frac{\partial y^{i}}{\partial x^{i}} \\
\frac{\partial y^{i}}{\partial x^{k}} & \frac{\partial y^{i}}{\partial x^{k}}
\end{array}\right)=\left(\begin{array}{cc}
\delta_{k}^{i} & 0 \\
0 & g_{i l_{1}} \delta_{l_{2}}^{i_{2}} \cdots \delta_{l_{p}}^{i_{p}} j_{j_{1}}^{k_{1}} \cdots \delta_{j_{q}}^{k_{q}}
\end{array}\right) .
$$

The inverse of the mapping f is written as

$$
x^{l}=y^{l}, x^{\bar{l}}=t_{r_{1} \cdots r_{q}}^{s_{1} \cdots s_{p}}=g^{s_{1} m} t_{m r_{1} \cdots r_{q}}^{s_{2} \cdots s_{p}} .
$$

Suppose that $y^{\bar{j}}=t_{l_{1} \cdots l_{q}}^{k_{2} \ldots k_{p}}$, we have

$$
A^{-1}=\left(\frac{\partial x^{L}}{\partial y^{J}}\right)=\left(\begin{array}{cc}
\delta_{j}^{l} & 0 \\
0 & g^{s_{1} l} \delta_{r_{1}}^{l_{1}} \cdots \delta_{r_{q}}^{l_{q}} \delta_{k_{2}}^{s_{2}} \cdots \delta_{k_{p}}^{s_{p}}
\end{array}\right)
$$

which is the Jacobian matrix of inverse mapping f^{-1}.
Let us consider the pure cross-section $\xi_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}(x)$ of $T_{q}^{p}\left(V_{n}\right)$. We can easily verify that the image $\xi_{i j_{1} \cdots j_{q}}^{i_{2} \cdots i_{p}}(y)$ of this cross-section under the diffeomorphism f is the pure crosssection in $T_{q+1}^{p-1}\left(V_{n}\right)$. In fact, we see that

$$
\begin{aligned}
\xi_{k j_{1} \cdots j_{q}}^{i_{2} \cdots i_{p}} \varphi_{i}^{k} & =\left(g_{k m} \xi_{j_{1} \cdots j_{q}}^{m i_{2} \cdots i_{p}}\right) \varphi_{i}^{k}=g_{i k} \xi_{j_{1} \cdots j_{q}}^{m i_{2} \cdots i_{p}} \varphi_{m}^{k} \\
& =g_{i k} \xi_{m j_{2} \cdots j_{q}}^{k i_{2} \cdots i_{p}} \varphi_{j_{1}}^{m}=\xi_{i m j_{2} \cdots j_{q}}^{i_{2} \cdots i_{p}} \varphi_{j_{1}}^{m} .
\end{aligned}
$$

Theorem. Suppose that ${ }_{1}^{c} \varphi$ and ${ }^{c} \underset{2}{\varphi}$ denote the complete lift of the affinor φ-structure to $T_{q}^{p}\left(V_{n}\right)$ and $T_{q+1}^{p-1}\left(V_{n}\right)$ along the pure cross-sections $\xi_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}(x)$ and $\xi_{i j_{1} \cdots j_{q}}^{i_{2} \cdots i_{p}}(y)$, respectively. If $\Phi_{\varphi} g=0$, then ${ }^{c} \varphi_{2}$ is transferred from ${ }^{c} \varphi$ by means of the diffeomorphism f, where $\Phi_{\varphi} g$ denotes the Tachibana operator.

Proof. Let $\left(\Phi_{\varphi} g\right)_{k i j} \stackrel{\text { def }}{=} \Phi_{\varphi} g_{i j}=0$. If we take account of (2.12) and a fomula due to Tachibana [4]

$$
\underset{\varphi}{\Phi_{j}}\left(g_{i m} \xi_{j_{1} \cdots j_{q}}^{m i_{2} \cdots i_{p}}\right)=\left(\underset{\varphi}{\Phi_{j}} g_{i m}\right) \xi_{j_{1} \cdots j_{q}}^{m i_{2} \cdots i_{p}}+g_{i m} \Phi_{\varphi} \xi_{j_{1} \cdots j_{q}}^{m i i_{2} \cdots i_{p}}
$$

then we have

$$
\left(\begin{array}{cc}
\delta_{j}^{l} & 0 \\
0 & g^{s_{1}} \delta_{r_{1}}^{l_{1}} \cdots \delta_{r_{q}}^{l_{q}} \delta_{k_{2}}^{s_{2}} \cdots \delta_{k_{p}}^{s_{p}}
\end{array}\right)=A^{c} \varphi A_{1}^{-1}, \text { where } x^{\bar{l}}=t_{r_{1} \cdots r_{q}}^{s_{1} \ldots s_{p}}, x^{\bar{k}}=t_{k_{1} \cdots k_{q}}^{l_{1} \cdots l_{p}}, y^{\bar{i}}=
$$ $t_{i j_{1} \cdots j_{q}}^{i_{2} \cdots i_{p}}, y^{\bar{j}}=t_{l l_{1} \cdots l_{q}}^{k_{2} \cdots k_{p}}$. To show (3.1), we have taken account of

$$
\begin{gathered}
g_{i l_{1}} \delta_{l_{2}}^{i_{2}} \cdots \delta_{l_{p}}^{i_{p}} \delta_{j_{1}}^{k_{1}} \cdots \delta_{j_{q}}^{k_{q}} \varphi_{s_{1}}^{l_{1}} \delta_{s_{2}}^{l_{2}} \cdots \delta_{s_{p}}^{l_{p}} \delta_{k_{1}}^{r_{1}} \cdots \delta_{k_{q}}^{r_{q}} g^{s_{1} l} \delta_{r_{1}}^{l_{1}} \cdots \delta_{r_{q}}^{l_{q}} \delta_{k_{2}}^{s_{2}} \cdots \delta_{k_{p}}^{s_{p}}= \\
=\varphi_{i}^{l} \delta_{j_{1}}^{l_{1}} \cdots \delta_{j_{q}}^{l_{q}} \delta_{k_{2}}^{i_{2}} \cdots \delta_{k_{p}}^{i_{p}}
\end{gathered}
$$

and used that $g_{i j}$ is the pure tensor field.
Remark. In a manifold with affinor φ-structure, a pure tensor field g is called an almost analytic tensor field if $\left(\Phi_{\varphi} g\right)_{k i j}=0[6]$.

$$
\begin{aligned}
& { }^{c} \varphi_{2}=\binom{{ }^{c} \varphi_{2}^{I}}{2} \\
& =\left(\begin{array}{cc}
\varphi_{j}^{i} & 0 \\
-\Phi_{j_{2} \cdots i_{p}}^{i} j_{i i_{2}} \cdots j_{j} & \varphi_{i}^{l} \delta_{j_{1}}^{l_{1}} \cdots \delta_{j_{q}}^{l_{q}} \delta_{k_{2}}^{i_{2}} \cdots \delta_{k_{p}}^{i_{p}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\left(\Phi_{\varphi} g_{i m}\right) \xi_{j_{1} \cdots j_{q}}^{m i i_{2} \cdots i_{p}}-g_{i m}^{i} \Phi_{\varphi} \xi_{j} j_{j_{1} \cdots j_{q}}^{m i} \cdots i_{p} & \varphi_{i}^{l} \delta_{j_{1}}^{l_{1}} \cdots \delta_{j_{q}}^{l_{q}} \delta_{k_{2}}^{i_{2}} \cdots \delta_{k_{p}}^{i_{p}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\varphi_{j^{2}}^{i} & 0 \\
-g_{i m}{ }_{\varphi}{ }_{\varphi} \xi_{j_{1} \cdots j_{q}}^{m i_{2}} & \varphi_{i}^{l} \delta_{j_{1}}^{l_{1}} \cdots \delta_{j_{q}}^{l_{q}} \delta_{k_{2}}^{i_{2}} \cdots \delta_{k_{p}}^{i_{p}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\delta_{k}^{i} & 0 \\
0 & g_{i l_{1}} \delta_{l_{2}}^{i_{2}} \cdots \delta_{l_{p}}^{i_{p}} \delta_{j_{1}}^{k_{1}} \cdots \delta_{j_{q}}^{k_{q}}
\end{array}\right)\left(\begin{array}{cc}
\varphi_{\varphi}^{k} & 0 \\
-\left(\Phi_{\varphi} \xi\right)_{l_{1} \cdots l_{1} \cdots k_{q}}^{l_{1}} & \varphi_{s_{1}}^{l_{1}} \delta_{s_{2}}^{l_{2}} \cdots \delta_{s_{p}}^{l_{p}} \delta_{k_{1}}^{r_{1}} \cdots \delta_{k_{q}}^{r_{q}}
\end{array}\right)
\end{aligned}
$$

MAĞDEN, KADIOĞLU, SALIMOV

References

[1] A.Mağden, M.Kamali, A.A.Salimov, The Tachibana operator and transfer of lifts. Turkish J. of Math., 22(1998), No.1, 109-117.
[2] A.Ledger, K.Yano, Almost complex structures on tensor bundles. J. Diff. Geom., 1(1967), No.4, 355-366.
[3] A.A.Salimov, A.Mağden, Complete lifts of tensor fields on a pure cross-section in the tensor bundle $T_{q}^{1}\left(M_{n}\right)$. Note di Matematica, Lecce(Italy), 18(1998), No.1, 27-37.
[4] S. Tachibana, Analytic tensor and its generalization. Tohoku Math. J., 12(1960), 201-221.
[5] V.V. Vishnevskii, A.P. Shirokov and V.V. Shurygin, Spaces over algebras. Kazan Gos. Univ., Kazan, (1985) (Russian).
[6] A.A. Salimov, Almost analytic Riemannian metric and integrable structure. Trudy Geom. Sem. Kazan Univ., 15(1983), 72-78.
A. MAGDEN, E. KADIOGLU,

Received 12.07.1999
A.A. SALIMOV

Atatürk University
Faculty of Arts and Sciences
Department of Mathematics
25240 Erzurum-TURKEY

[^0]: Subject classification number: Primary 53A45, Secondary 53C55.

