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Oscillation Criteria for Second Order Nonlinear
Differential Equations with Damping

Aydın Tiryaki and Ağacık Zafer

Abstract

Oscillation criteria are given for second order nonlinear differential equations
with damping of the form

(a(t)ψ(x)ẋ)̇ + p(t)ẋ + q(t)f(x) = 0, t ≥ t0,

where p and q are allowed to change signs on [t0,∞). We employ the averaging

technique to obtain sufficient conditions for oscillation of solutions of the above
equation. Our results generalize and extend some known oscillation criteria in the
literature.
Key words and phrases: Oscillation, averaging, damping, Riccati substitution,
second order.

1. Introduction

We are concerned with the oscillation of solutions of second order differential equations
with damping terms of the following form

(a(t)ψ(x)ẋ)̇ + p(t)ẋ+ q(t)f(x) = 0, t ≥ t0, (1.1)

where a ∈ C[[t0,∞), R+], p, q ∈ C[[t0,∞), R], ψ ∈ C[R,R+], and f ∈ C1[R,R]. We shall
assume that xf(x) > 0 for x 6= 0, and that for x ∈ R

f ′(x) ≥ k, (1.2)

and

c ≤ ψ(x) ≤ c1, (1.3)

where k, c, and c1 are some positive real numbers.
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As is customary, a solution x(t) of equation (1.1) is said to be oscillatory if it has
arbitrarily large zeros; otherwise it is called nonoscillatory. Equation (1.1) is oscillatory if
all of its solutions are oscillatory. It is tacitly assumed that equation (1.1) has nontrivial
solutions which exist for all t ≥ t0.

In the special case a(t) ≡ 1, ψ(x) ≡ 1, p(t) ≡ 0, and f(x) = x, equation (1.1) reduces
to the linear second order differential equation

x′′ + q(t)x = 0. (L)

Equation (L) has been investigated by several authors. Below is a list of some well known
oscillation criteria for equation (L) that exist in the literature:

(Leighton [5]):
∫ ∞
t0

q(t) dt =∞.

(Wintner [8]): lim
t→∞

1
t

∫ t

t0

∫ r

t0

q(r) dr ds =∞.

(Hartman [3]): −∞ < lim inf
t→∞

1
t

∫ t

t0

∫ r

t0

q(r) dr ds < lim sup
t→∞

1
t

∫ t

t0

∫ r

t0

q(r) dr ds ≤∞.

(Kamenev [4]): lim
t→∞

1
tm

∫ t

t0

(t − s)mq(s) ds =∞ for some integer m > 1.

(Yan [10]): lim sup
t→∞

1
tm

∫ t

t0

(t − s)mq(s) ds = ∞, lim sup
t→∞

∫ t

T

(t − s)mq(s) ds > A(T )

for all T ≥ t0, where A(u) is a continuous function such that
∫ t

t0

A+(u) du = ∞ with

A+(u) = max{A(u), 0}.
(Philos [7]): H(t, s) ∈ C(D,R), D = {(t, s) : t ≥ s ≥ t0}, has a continuous and

nonpositive partial derivative on D with respect to the second variable and satisfies
H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for t > s ≥ t0; there exists a continuous function
h : D → R such that

−∂H(t, s)
∂s

= h(t, s)
√
H(t, s) for all (t, s) ∈ D

and

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)q(s) − 1

4
h2(t, s)

]
ds =∞.
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Recently, Grace [1, 2], using the averaging technique and the arguments developed by
Philos, gave some oscillation criteria concerning the solutions of (1.1).

In this paper we shall also make use of Philos’s technique to establish new oscillation
criteria for equation (1.1). Our theorems improve and generalize several results obtained
previously.

2. Main Results

In what follows, Q(t) denotes

Q(t) = q(t)− 1
4k

(
1
c
− 1
c1

)
p2(t)
a(t)

, t ≥ t0.

Theorem 2.1 Let conditions (1.2) and (1.3) hold, and D = {(t, s) : t ≥ s ≥ t0}. Let
H ∈ C(D,R) satisfy the following two conditions:

(i) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for t > s ≥ t0;

(ii) H has a continuous and nonpositive partial derivative on D with respect to the
second variable.

If there exist an h ∈ C(D,R) and a differentiable function ρ : [t0,∞) → (0,∞) such
that

−∂H(t, s)
∂s

= h(t, s)
√
H(t, s) for all (t, s) ∈ D (2.1)

and

lim sup
t→∞

[X(t, t0)− 1
4kc1

Y (t, t0)] =∞, (2.2)

where

X(t, t0) =
1

H(t, t0)

∫ t

t0

H(t, s)ρ(s)Q(s) ds

Y (t, t0) =
1

H(t, t0)

∫ t

t0

a(s)ρ(s)
{(

p(s)
a(s)

− c1ρ̇(s)
ρ(s)

)√
H(t, s) + c1h(t, s)

}2

ds,

then equation (1.1) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of equation (1.1). Without loss of generality
we may assume that x(t) > 0 for all t ≥ T0 for some T0 ≥ t0. The proof when x(t) < 0
for t ≥ T0 is similar.

We define

W (t) = ρ(t)
a(t)ψ(x(t))ẋ(t)

f(x(t))
, t ≥ T0. (2.3)

Differentiating (2.3) and using (1.1) and (1.2), we see that

Ẇ (t) = −ρ(t)q(t) − p(t)
a(t)

1
ψ(x(t))

W (t) +
ρ̇(t)
ρ(t)

W (t)− 1
a(t)ρ(t)

f ′(x(t))
ψ(x(t))

W 2(t)

≤ −ρ(t)q(t) +
p2(t)ρ(t)

4ka(t)ψ(x(t))
+
ρ̇(t)
ρ(t)

W (t)

− 1
ψ(x(t))

[√
k

a(t)ρ(t)
W (t) +

p(t)
√
ρ(t)

2
√
ka(t)

]2

.

Using (1.3) in the above inequality, it follows that

Ẇ (t) ≤ −ρ(t)Q(t) − 1
c1

[
k

a(t)ρ(t)
W 2(t) + r(t)W (t)

]
, r(t) =

p(t)
a(t)
− c1ρ̇(t)

ρ(t)
,

and hence, in view of (i) and (ii), for t ≥ T ≥ T0, we have∫ t

T

H(t, s)ρ(s)Q(s)ds ≤ H(t, T )W (T )

− 1
c1

∫ t

T

[
kH(t, s)
a(s)ρ(s)

W 2(s) +
{
c1h(t, s)

√
H(t, s) + r(s)H(t, s)

}
W (s)

]
ds

= H(t, T )[W (T )− J(t, T )] +
∫ t

T

a(s)ρ(s)
4kc1

[
r(s)

√
H(t, s) + c1h(t, s)

]2

ds, (2.4)

where

J(t, T ) =
1

c1H(t, T )

∫ t

T

[√
kH(t, s)
a(s)ρ(s)

W (s) +

√
a(s)ρ(s)

4k

{
r(s)

√
H(t, s) + c1h(t, s)

}]2

ds.

Moreover, (2.4) implies that for t ≥ T0,

H(t, T0)[X(t, T0) − 1
4kc1

Y (t, T0)] ≤ H(t, T0)W (T0) ≤ H(t, t0)|W (T0)|. (2.5)
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In view of (2.4) and (2.5), one can easily obtain that

H(t, t0)[X(t, t0)− 1
4kc1

Y (t, t0)] =

∫ T0

t0

[
H(t, s)ρ(s)Q(s) − a(s)ρ(s)

4c1k

{
r(s)

√
H(t, s) + c1h(t, s)

}2]
ds+

∫ t

T0

[
H(t, s)ρ(s)Q(s) − a(s)ρ(s)

4c1k

{
r(s)

√
H(t, s) + c1h(t, s)

}2]
ds

≤ H(t, t0)
∫ T0

t0

|ρ(s)Q(s)|ds+H(t, t0)|W (T0)|,

for t ≥ T0, and so we have

lim
t→∞

sup[X(t, t0)− 1
4kc1

Y (t, t0)] ≤
∫ T0

t0

|ρ(s)Q(s)|ds+ |W (T0)|.

Since this last inequality contradicts (2.2), the proof is complete.

Remark 2.1 In Theorem 2.1, if we take H(t, s) = (t−s)α, α > 1, we recover Theorem 1
in [1, 6]. Also, if ψ(x) = 1 and f(x) = x, we obtain the Yan’s oscillation criterion
mentioned in the previous section.

A close look at the proof of Theorem 2.1 reveals that condition (2.2) may be replaced
by the conditions that

lim sup
t→∞

X(t, t0) =∞ and lim sup
t→∞

Y (t, t0) <∞. (2.6)

This leads to the following result.

Corollary 2.1 Let the conditions of Theorem 2.1 be satisfied except that condition (2.2)
is replaced by (2.6). Then equation (1.1) is oscillatory.

Remark 2.2 It is easy to see that (2.6) implies (2.2) but not conversely. Furthermore,

if we set H(t, s) = (t − s)α, α > 1, ρ(s) = sβ , β ∈ [0, 1), ψ(x) = 1, f(x) = x in Corollary
2.1, we obtain the oscillation theorem given by Yan in [9].
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Example 2.1 Consider

(t−1(2− sinx)ẋ)̇ + sin t ẋ+ t2 cos t x(1 + x4) = 0, t ≥ 1.

If we take ρ(t) = t and H(t, s) = (t − s)2 then we see that, since the conditions of
Theorem 2.1 are satisfied, the equation is oscillatory. We should note that the oscillation
criteria given in [1-10] fail to apply for this equation.

In Theorem 2.1 the condition

lim sup
t→∞

X(t, t0) =∞

is necessary. In the remainder of this paper we do not require this condition and naturally
will have some other conditions instead. The following result provides a different such
oscillation criterion for equation (1.1).

Theorem 2.2 Let conditions (1.2) and (1.3) hold and h and H be as in Theorem 2.1,
and let

inf
s≥t0

{
lim
t→∞

inf
H(t, s)
H(t, t0)

}
> 0. (2.7)

Suppose that there exist a positive function ρ ∈ C1[t0,∞) and A ∈ C[t0,∞) such that

lim inf
t→∞

Y (t, t0) <∞, (2.8)

lim inf
t→∞

[X(t, T )− 1
4kc1

Y (t, T )] ≥ A(T ), for every T ≥ t0 (2.9)

and ∫ ∞
t0

A2
+(s)

a(s)ρ(s)
ds =∞, (2.10)

where A+(s) = max{A(s), 0}. Then equation (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.1, we see that (2.4) holds for all
t ≥ T ≥ t0. So, for t > T ≥ T0, we have

X(t, T ) − 1
4kc1

Y (t, T ) ≤W (T ) − J(t, T ) (2.11)
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and hence

lim
t→∞

inf[X(t, T ) − 1
4kc1

Y (t, T )] ≤W (T ) − lim sup
t→∞

J(t, T ) (2.12)

for all T ≥ T0.
Making use of (2.9) in (2.12), it follows that

W (T ) ≥ A(T ) + lim sup
t→∞

J(t, T ) (2.13)

for all T ≥ T0. Thus, from (2.13), for all T ≥ T0,

A(T ) ≤W (T ) (2.14)

and

lim sup
t→∞

J(t, T ) <∞ (2.15)

From (2.14), ∫ ∞
T0

W 2(s)
a(s)ρ(s)

ds ≥
∫ ∞
T0

A2
+(s)

a(s)ρ(s)
ds,

and hence by (2.10),∫ ∞
T0

W 2(s)
a(s)ρ(s)

ds =∞ (2.16)

To complete the proof we show that (2.16) is not possible. For this purpose, we introduce
the functions u(t) and v(t) defined for t ≥ T0 as follows;

u(t) =
1

c1H(t, T0)

∫ t

T0

kH(t, s)
a(s)ρ(s)

W 2(s)ds,

v(t) =
1

c1H(t, T0)

∫ t

T0

[
c1h(t, s)

√
H(t, s) + r(s)H(t, s)

]
W (s)ds,

where

r(t) =
p(t)
a(t)
− c1ρ̇(t)

ρ(t)
.

It follows from (2.15) that

lim
t→∞

sup[u(t) + v(t)] <∞. (2.17)
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Because of (2.7) one can find a positive constant M1 such that

inf
s≥t0

(
lim
t→∞

inf
H(t, s)
H(t, t0)

)
>M1 (2.18)

Let M2 be an arbitrary positive real number. It follows from (2.16) that if T1 > T0 is
large enough then ∫ t

T0

W 2(s)
a(s)ρ(s)

ds ≥ c1M2

kM1
for all t ≥ T1.

Then

u(t) =
k

c1H(t, T0)

∫ t

T0

H(t, s)d
(∫ s

T0

W 2(ξ)
a(ξ)ρ(ξ)

dξ

)

≥ k

c1H(t, T0)

∫ t

T1

(
−∂H(t, s)

∂s

){∫ s

T0

W 2(ξ)
a(ξ)ρ(ξ)

dξ

}
ds

≥ M2

M1

1
H(t, T0)

∫ t

T1

(
−∂H(t, s)

∂s

)
ds

=
M2

M1

H(t, T1)
H(t, T0)

for all t ≥ T1.

Making use of (2.18), we see that there is a T2 ≥ T1 such that

H(t, T1)
H(t, t0)

≥M1 for all t ≥ T2.

Thus, we get
u(t) ≥M2 for all t ≥ T2.

Since M2 is arbitrary, this means that

lim
t→∞

u(t) =∞ (2.19)

Next, we consider an arbitrary sequence {tn}∞n=1 in (t0,∞) with lim
n→∞

tn = ∞. By

(2.17), there is a number M such that

u(tn) + v(tn) ≤M for n = 1, 2, 3, . . . . (2.20)

In view of (2.19) and (2.20),

lim
n→∞

u(tn) =∞. (2.21)
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TİRYAKİ, ZAFER

and

lim
n→∞

v(tn) = −∞. (2.22)

Now, because of (2.20) and (2.21), there exists a number N such that,

1 +
v(tn)
u(tn)

≤ M

u(tn)
<

1
2

or
v(tn)
u(tn)

< −1
2

for every n ≥ N . This and (2.22) give

lim
n→∞

v2(tn)
u(tn)

=∞ (2.23)

On the other hand, by the Schwarz inequality, since

v2(tn) =
{

1
c1H(tn, T0)

∫ tn

T0

[
c1h(tn, s)

√
H(tn, s) + r(s)H(tn, s)

]
W (s)ds

}2

=
{

1
c1H(tn, T0)

∫ tn

T0

[
c1h(tn, s) + r(s)

√
H(tn, s)

]√
H(tn, s)W (s)ds

}2

≤ 1
c1H(tn, T0)

∫ tn

T0

kH(tn, s)
a(s)ρ(s)

W 2(s) ds

× 1
c1kH(tn, T0)

∫ tn

T0

a(s)ρ(s)
[
c1h(tn, s) + r(s)

√
H(tn, s)

]2

ds

=
u(tn)

c1kH(tn, T0)

∫ tn

T0

a(s)ρ(s)
[
c1h(tn, s) + r(s)

√
H(tn, s)

]2

ds,

we have

v2(tn)
u(tn)

≤ 1
kc1

Y (tn, T0) for any positive integer n. (2.24)

Clearly, inequality (2.18) guarantees that for n large enough,

H(tn, T0)
H(tn, t0)

≥M1. (2.25)
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Then, by combining (2.24) and (2.25), we obtain

v2(tn)
u(tn)

≤ 1
M1kc1

Y (tn, t0) for all large n,

which, due to (2.23), implies that

lim
n→∞

Y (tn, t0) =∞. (2.26)

Clearly, since the sequence {tn} is arbitrary, (2.26) contradicts (2.8). The proof is there-
fore complete.

Example 2.2 Consider

(t−2e2t(1 + e−|x|)ẋ)̇− 4t−2e2tẋ+ 3t−2e2tx(1 + x2) = 0, t ≥ 1.

It can be checked that the oscillation criteria given in [1-10] do not apply for this equation.

By taking ρ(t) = e−2t and H(t, s) = (t− s)2, we see that with A(t) = t−1 the conditions
of Theorem 2.2 are satisfied. Therefore, the equation is oscillatory.

Theorem 2.3 Let conditions (1.2) and (1.3) hold. Let H(t, s) and h(t, s) be as in

Theorem 2.1, and (2.7) holds. Suppose that there exist a positive function ρ ∈ C1[t0∞)
and A ∈ C[t0,∞) such that (2.10) and the following conditions hold:

lim sup
t→∞

Y (t, t0) <∞ (2.27)

and

lim sup
t→∞

[X(t, t0)− 1
4kc1

Y (t, t0)] ≥ A(T ) for every T ≥ t0, (2.28)

then equation (1.1) is oscillatory.

Proof. We proceed as in the proof of Theorem 2.2 and obtain (2.11). Taking the
limit superior in (2.11) as t→∞, we obtain (2.12) except that liminf and limsup are now
interchanged. Then, (2.13) through (2.19) are valid with exceptions that in (2.13), (2.15),
and (2.17) we have liminf instead of limsup. Now, the sequence {tn} cannot be arbitrary;
it is chosen such that limn→∞[u(tn) + v(tn)] = lim inft→∞[u(t) + v(t)]. Continuing as in
the proof of Theorem 2.2, one can easily see that (2.26) holds, and therefore (2.27) cannot
be true. This completes the proof.
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TİRYAKİ, ZAFER

Theorem 2.4 Let (1.2), (1.3), and (2.7) hold, and H(t, s) and h(t, s) be as in Theorem

2.1. If there exist a positive function ρ ∈ C1[t0,∞) and A ∈ C[t0,∞) for which (2.9),
(2.10), and

lim inf
t→∞

X(t, t0) <∞ (2.29)

are satisfied, then equation (1.1) is oscillatory.

Proof. From (2.9), we have

A(t0) ≤ lim inf
t→∞

[X(t,t0)− 1
4kc1

Y (t, t0)]

≤ lim inf
t→∞

X(t, t0) − 1
4kc1

lim sup
t→∞

Y (t, t0)

≤ lim inf
t→∞

X(t, t0) − 1
4kc1

lim inf
t→∞

Y (t, t0)

and therefore by (2.29),
lim inf
t→∞

Y (t, t0) <∞.

The remainder of the proof now proceeds exactly as in that of Theorem 2.2.

Remark 2.3 If ψ(x) = 1, then Theorem 2.3 and Theorem 2.4 reduce to Theorem 6 and
Theorem 7 in [2], respectively, and extend to equation (1.1) the results of Theorem 3
and Theorem 4 in [2] provided that (1.3) holds. Furthermore, when H(t, s) = (t − s)α,
α > 1, ψ(x) = 1, and f(x) = x, Theorem 2 in [10] is improved in the sense that
lim supt→∞X(t, t0) <∞ is replaced by (2.29).
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