Conjugacy Classes of Elliptic Elements in the Picard Group

Nihal Yılmaz, İ. Naci Cangül

Abstract

The Picard group \mathbf{P} is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{C})$ with Gaussian integer coefficients. Here it is shown that the total number of conjugacy classes of elliptic elements of order 2 and 3 in \mathbf{P}, which is given as seven by B. Fine [3], can actually be reduced to four and using this, the conditions for the maximal Fuchsian subgroups of \mathbf{P} to have elliptic elements of orders 2 and 3 are found.

1. Introduction

The extension $\mathbb{Z}(i)=\left\{m+i n: m, n \in \mathbb{Z}, i^{2}=-1\right\}$ of \mathbb{Z} forms a ring called the ring of Gaussian integers. Each element of $\mathbb{Z}(i)$ is called a Gaussian integer.

The Picard group is denoted by \mathbf{P} and contains all linear fractional transformations

$$
t(z)=\frac{a z+b}{c z+d}
$$

where $a, b, c, d \in \mathbb{Z}(i)$ and $a d-b c=1$. Therefore $\mathbf{P}=P S L(2, \mathbb{Z}(i)) . \mathbf{P}$ is an important subgroup of $\operatorname{PSL}(2, \mathbb{C})$. It is an example to that the discreteness on $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ does not imply the discontinuity. Although its action on $\widehat{\mathbb{C}}$ is not discontinuous, its action on the hyperbolic 3 -space

$$
\mathbb{H}^{3}=\{z+t j: z \in \mathbb{C}, t>0\}
$$

is discontinuous, [1]. Actually \mathbf{P} has a well-known presentation

$$
\begin{equation*}
\mathbf{P}=\left\langle x, u, y, r ; x^{3}=u^{2}=y^{3}=r^{2}=(x u)^{2}=(x y)^{2}=(r y)^{2}=(r u)^{2}=1\right\rangle \tag{1.1}
\end{equation*}
$$

YILMAZ, CANGÜL

where

$$
\begin{equation*}
x(z)=\frac{i}{i z+1}, u(z)=-\frac{1}{z}, y(z)=\frac{z+1}{-z}, r(z)=\frac{i}{i z} . \tag{1.2}
\end{equation*}
$$

This presentation is obtained by looking at the orders of rotations which act around the vertices of a fundamental polyhedron for \mathbf{P} in \mathbb{H}^{3} and then by finding the relations between the edges of this polyhedron (called side pairings), [2].
\mathbf{P} is given abstractly as an amalgamated free product of two groups G_{1}, G_{2} with the modular group \mathbf{M} as the amalgamated subgroup. Namely $\mathbf{P} \cong G_{1} *_{\mathbf{M}} G_{2}$ with $G_{1} \cong S_{3} *_{\mathbb{Z}_{3}} A_{4}$ and $G_{2} \cong S_{3} *_{\mathbb{Z}_{2}} D_{2}$ (S_{3} is the symmetric group on three symbols, A_{4} is the alternating group on four symbols and D_{2} is the Klein 4-group), [4].

2. Conjugacy classes in P and maximal Fuchsian subgroups

Let $t \in \mathbf{P}$ be elliptic. It is known that such a t is conjugate to the transformation $z \rightarrow \lambda z$ with $|\lambda|=1$ in $\operatorname{PSL}(2, \mathbb{C}),[7]$. But we need to know the conjugacy classes in \mathbf{P} of elliptic elements when studying Fuchsian subgroups.

In [4], Fine showed that \mathbf{P} is a generalised free product and used this fact to characterize Fuchsian subgroups. To do this he needed to find the conjugacy classes of elliptic elements in P. In [4], Fine found five conjugacy classes of elliptic elements of order 2 and two classes of order 3. In [6], Harding noted without proof that the number of conjugacy classes of order 2 can be reduced to four, and used this result in the classification of maximal Fuchsian subgroups of \mathbf{P}.

In this study, noticing first that the number of conjugacy classes of 3rd order elliptic elements can be reduced to 1, we obtain new results on the subgroups of \mathbf{P} regarding Harding's results, [6]. Because of the decrease on the number of conjugacy classes, the results obtained in [4] and [6] will become easier to prove and many calculations can be omitted.

An element of $A *_{H} B$ of finite order is conjugate to an element of finite order in one of the factors. Because of the abstract group structure of \mathbf{P} as a free product amalgamated with M, each finite ordered elliptic element will be either of order 2 or 3 . Further P is a discontinuous group and therefore it can not have any elliptic elements of infinite order, [7]. These can be proved by elementary operations. In [4], Fine found the conjugacy classes of elliptic elements of finite order in G_{1} and in G_{2} to find the conjugacy classes of elliptic elements in \mathbf{P}. Fine found representatives of the conjugacy classes of elliptic

YILMAZ, CANGÜL

elements of order 2 as

$$
z \rightarrow-z, z \rightarrow \frac{1}{z}, z \rightarrow-z+1, z \rightarrow-z+i, z \rightarrow-z+(1+i)
$$

Harding [6], noted that these can be reduced to

$$
z \rightarrow-z, z \rightarrow-z+1, z \rightarrow-z+i, z \rightarrow-z+(1+i)
$$

Indeed by means of the transformation corresponding to the matrix $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, the representatives $z \rightarrow \frac{1}{z}$ and $z \rightarrow-z+1$ are conjugate. Therefore these elements have exactly four conjugacy classes in \mathbf{P}.

Fine, in [4], found the representatives of the conjugacy classes of elliptic elements of order three as $z \rightarrow-\frac{1}{z+1}$ and $z \rightarrow \frac{1}{z+i}$. But by means of the transformation corresponding to the matrix $\left(\begin{array}{cc}i & -1 \\ -i & 1-i\end{array}\right)$, these two are conjugate to each other. That is, there is only one class of third order elliptic elements in \mathbf{P}. Therefore we can induce the Theorem 2 of [4] to the following.

Theorem 2.1 There are only five conjugacy classes of elliptic elements in \mathbf{P}, four for those of order 2 and one for those of order 3. In particular, any elliptic transformation of order 2 is conjugate to one of

$$
\mathfrak{u}_{2,1}: z \rightarrow-z, \mathfrak{u}_{2,2}: z \rightarrow-z+1, \mathfrak{u}_{2,3}: z \rightarrow-z+i, \mathfrak{u}_{2,4}: z \rightarrow-z+1+i
$$

while any elliptic transformation of order 3 is conjugate to

$$
\mathfrak{u}_{3}: z \rightarrow-\frac{1}{z+1} .
$$

Let $\mathfrak{u}_{2,1}, \mathfrak{u}_{2,2}, \mathfrak{u}_{2,3}, \mathfrak{u}_{2,4}$ and \mathfrak{u}_{3} denote the five conjugacy classes of elliptic elements in \mathbf{P}. Before stating our main results, we first give a summary on Hermitian forms and maximal Fuchsian subgroups of \mathbf{P}, (for details, see [6] and [8]).

Let C be the circle

$$
a\left(x^{2}+y^{2}\right)+2 b_{1} x-2 b_{2} y+c=0
$$

on the complex plane with $a, b_{1}, b_{2}, c \in \mathbb{Z}$ and $b_{1}^{2}+b_{2}^{2}-a c>0$. If we denote the set of those C by Ω, \mathbf{P} acts on Ω.

YILMAZ, CANGÜL

2.1 Definition A subgroup of \mathbf{P} leaving a circle C invariant and mapping its interior onto itself is called Fuchsian.

We know from [5] that to each circle C of Ω there corresponds a Fuchsian subgroup and to each Fuchsian subgroup there corresponds a circle of Ω.
2.2 Definition 1) A quadratic form $a z \bar{z}+b z+\bar{b} \bar{z}+c$ is called a binary Hermitian form. Here $a, c \in \mathbb{Z}$ and $b \in \mathbb{Z}(i)$.

If we put $z=x+i y$ and $b=b_{1}+i b_{2}$, then we obtain $a\left(x^{2}+y^{2}\right)+2 b_{1} x-2 b_{2} y+c$. For brevity, this form can be denoted by $\left(a, b_{1}, b_{2}, c\right)$.
2) The discriminant of a form $\left(a, b_{1}, b_{2}, c\right)$ is $D=b_{1}^{2}+b_{2}^{2}-a c$.

Here if $D>0$, then the form $\left(a, b_{1}, b_{2}, c\right)$ represents (by putting the form equal to zero) a circle in \mathbb{C} with center $\frac{-b_{1}+i b_{2}}{a}$ and radius $\frac{\sqrt{D}}{|a|}$ where $a \neq 0$. When $a=0$, such a form represents a straight line which is a circle in $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$.
2.3 Definition 1) Let C, C^{\prime} be any forms. If there exists a $g \in \mathbf{P}$ such that $g(C)=C^{\prime}$ then we call these two forms equivalent.
2) If g.c.d. $\left(a, b_{1}, b_{2}, c\right)=1$, then the form $\left(a, b_{1}, b_{2}, c\right)$ is called primitive.
3) The main form of discriminant $D>0$ is $(1,0,0,-D)$. Every main form is primitive and is a circle with centre 0 , radius \sqrt{D}.

Equivalent forms have the same discriminant. Let C, C^{\prime} be represented by (a, b_{1}, b_{2}, c) and $\left(a^{\prime}, b_{1}^{\prime}, b_{2}^{\prime}, c^{\prime}\right)$. Let C, C^{\prime} be equivalent, i.e. for some $g \in \mathbf{P}, g\left(a, b_{1}, b_{2}, c\right)=$ $\left(a^{\prime}, b_{1}^{\prime}, b_{2}^{\prime}, c^{\prime}\right)$. Now we consider the presentation of \mathbf{P} in (1.1). \mathbf{P} is generated by the following transformations:

$$
x(z)=\frac{i}{i z+1}, u(z)=-\frac{1}{z}, y(z)=\frac{z+1}{-z}, r(z)=\frac{i}{i z} .
$$

The effect of x, u, y, r on C can be given

$$
\begin{gathered}
x:\left(a, b_{1}, b_{2}, c\right) \rightarrow\left(a+c-2 b_{2}, b_{1}, a-b_{2}, a\right) \\
u:\left(a, b_{1}, b_{2}, c\right) \rightarrow\left(c,-b_{1}, b_{2}, a\right) \\
y:\left(a, b_{1}, b_{2}, c\right) \rightarrow\left(c, c-b_{1}, b_{2}, a+c-2 b_{1}\right) \\
r:\left(a, b_{1}, b_{2}, c\right) \rightarrow\left(c, b_{1},-b_{2}, a\right)
\end{gathered}
$$

Then by observation, we have

YILMAZ, CANGÜL

(i) if at least one of a, c is odd, then at least one of a^{\prime}, c^{\prime} is odd.
(ii) if both a, c are even, then both a^{\prime}, c^{\prime} are even and $b_{i} \equiv b_{i}^{\prime}(\bmod 2), i=1,2$.

Also by observation, if (a, b_{1}, b_{2}, c) and $\left(a^{\prime}, b_{1}^{\prime}, b_{2}^{\prime}, c^{\prime}\right)$ are both primitive, with the same discriminant, and if they satisfy (i) or (ii), then they are equivalent.So for a given discriminant D, there are (at most) four equivalence classes of primitive forms. They are of the following types:
I) (odd or even, odd or even, odd or even,odd or even) with the condition that a and c can not be even at the same time.
$I I)$ (even, odd, odd, even)
$I I I)$ (even, odd, even, even)
$I V)$ (even, even, odd, even)
Note that the main form of any discriminant is of type I, since $a=1$ is odd.
2.4 Definition Let $C=\left(a, b_{1}, b_{2}, c\right)$ be a form. The subgroup of \mathbf{P} consisting of all transformations leaving C invariant is called the form group (or group) of C and denoted by $\Phi(C)$.

Here the circle C is left invariant and its interior is mapped onto itself. Therefore a form group $\Phi(C)$ is a maximal Fuchsian subgroup of \mathbf{P}. The conjugacy classes of maximal Fuchsian subgroups of \mathbf{P} correspond to equivalence classes of primitive forms in a one to one and onto way.

Theorem 2.2 Let D be a given determinant.
If $D \equiv 0(\bmod 4)$, then there is only one equivalence class of primitive forms and is of type I.

If $D \equiv 1(\bmod 4)$, then there are three classes of types $I, I I I$ and $I V$.
If $D \equiv 2(\bmod 4)$, then there are two classes, of types I and $I I$.
If $D \equiv 3(\bmod 4)$, then there is only one class of type I.
Proof. (See [6]) We only sketch the proof to remind the method. For all values of discriminant D, there is a main form. So the type I class always exits.

So assume both a, c are even, and so $D \equiv b_{1}^{2}+b_{2}^{2}(\bmod 4)$.
If $D \equiv 0(\bmod 4)$, we have $b_{1}^{2}+b_{2}^{2} \equiv 0(\bmod 4)$. Then both b_{1}, b_{2} must be even in which case, form is not primitive. So there is only one class of type I.

If $D \equiv 1(\bmod 4)$, we have $b_{1}^{2}+b_{2}^{2} \equiv 1 \bmod 4$. In this case b_{1} is odd, b_{2} is even or vice versa. So there are three classes of type $I, I I I, I V$.

YILMAZ, CANGÜL

The others follow similarly.

Let us denote the equivalence class of primitive forms of type I having discriminant D by $\xi(I, D)$. Similarly $\xi(I I, D), \xi(I I I, D)$ and $\xi(I V, D)$ denote the equivalence classes of primitive forms of type $I I, I I I$ and $I V$ having discriminant D.

Definition 2.5 If ξ is an equivalence class of primitive forms and \mathfrak{u} is a conjugacy class of elliptic elements in \mathbf{P}, then \mathfrak{u} is said to be represented in ξ if there is an element $b \in \mathfrak{u}$ such that $b \in \Phi(C)$ where $C \in \xi$.

First, we can restate Theorem 3.7 in [6] as we reduced the number of conjugacy classes of the third order elliptic elements to one.

Theorem 2.3. Let C be a primitive form.
(a) The form group $\Phi(C)$ contains elliptic elements of order 2 conjugate to $\mathfrak{u}_{2,1}: z \rightarrow$ $-z, \mathfrak{u}_{2,2}: z \rightarrow-z+1, \mathfrak{u}_{2,3}: z \rightarrow-z+i, \mathfrak{u}_{2,4}: z \rightarrow-z+1+i$, respectively, if and only if C is equivalent to one of the following forms respectively
(i) $(a, 0,0, c)$
(ii) $\left(a,-\frac{1}{2} a, 0, c\right) a$ even
(iii) $\left(a, 0, \frac{1}{2} a, c\right) a$ even
(iv) $\left(a,-\frac{1}{2} a, \frac{1}{2} a, c\right) a$ even.
(b) $\Phi(C)$ contains elliptic elements of order 3 if and only if C is equivalent to a form ($a, \frac{1}{2} a, b_{2}, a$) (a even).
(c) $\Phi(C)$ contains parabolic elements if and only if the discriminant of C is in the form $D=d D_{0}^{2}$ where, d is square-free and does not have any prime factor $p \equiv 3(\bmod 4)$.
Proof. (a) We know that any elliptic element of order 2 in \mathbf{P} is conjugate to one of the following transformations: $\mathfrak{u}_{2,1}: z \rightarrow-z, \mathfrak{u}_{2,2}: z \rightarrow-z+1, \mathfrak{u}_{2,3}: z \rightarrow-z+i$, and $\mathfrak{u}_{2,4}: z \rightarrow-z+1+i$. Let C^{\prime} be the form $a z \bar{z}+b z+\bar{b} \bar{z}+c$. The transformation $\mathfrak{u}_{2,1}: z \rightarrow-z$ sends C^{\prime} to
$a(-z)(-\bar{z})+b(-z)+\bar{b}(-\bar{z})+c=a z \bar{z}-b z-\bar{b} \bar{z}+c$.
This is equal to C^{\prime} if $b=-b$. So $b=0$ and so C^{\prime} is of type I. Thus the group of a form equivalent to $C^{\prime}=(a, 0,0, c)$ for some a, c will contain at least one element of order 2 conjugate to $\mathfrak{u}_{2,1}: z \rightarrow-z$. Indeed, if a primitive form C is equivalent to C^{\prime}, by the definition, there is an element $g \in P$ such that $g(C)=C^{\prime}$. Now we consider the element
$g^{-1} \mathfrak{u}_{2,1} g$. As $g^{-1} \mathfrak{u}_{2,1} g(C)=C$ we have $g^{-1} \mathfrak{u}_{2,1} g \in \Phi(C)$. Clearly $g^{-1} \mathfrak{u}_{2,1} g$ is of order 2. So $\Phi(C)$ contains elliptic elements of order 2 conjugate to $\mathfrak{u}_{2,1}: z \rightarrow-z$.

The transformation $\mathfrak{u}_{2,2}: z \rightarrow-z+1$ sends C^{\prime} to $a(-z+1)(-\bar{z}+1)+b(-z+1)+$ $\bar{b}(-\bar{z}+1)+c=a z \bar{z}+(-a-b) z+(-a-\bar{b}) \bar{z}+a+b+\bar{b}+c$. This is C^{\prime} if $b=-a-b$, $a+b+\bar{b}+c=c$. So $2 b_{1}=-a, b_{2}=0$ where $b=b_{1}+i b_{2}$. Thus the group of a form equivalent to $C^{\prime}=\left(a,-\frac{1}{2} a, 0, c\right)$ for some a (even) and c will contain at least one element of order 2 conjugate to $\mathfrak{u}_{2,2}: z \rightarrow-z+1$. The form will be of type I or III according to whether c is odd or even.

Similarly, the group of a form equivalent to $C^{\prime}=\left(a, 0, \frac{1}{2} a, c\right)$ for some a (even) and c will contain at least one element conjugate to $\mathfrak{u}_{2,3}: z \rightarrow-z+i$. The form will be of type I or $I V$ according to whether c is odd or even.

Similarly, the group of a form equivalent to $C^{\prime}=\left(a,-\frac{1}{2} a, \frac{1}{2} a, c\right)$ for some a (even) and c will contain at least one element conjugate to $\mathfrak{u}_{2,4}: z \rightarrow-z+1+i$. The form will be of type I or $I I$.

Conversely, assume that $\Phi(C)$ contains an elliptic element of order 2 conjugate to $\mathfrak{u}_{2,2}: z \rightarrow-z+1$, say a. Since a is conjugate to $\mathfrak{u}_{2,2}$ in \mathbf{P}, by the definition there is an element b of \mathbf{P} such that $b a b^{-1}=\mathfrak{u}_{2,2}$. Now we consider the circle $C^{\prime}=b(C)$. Since $\mathfrak{u}_{2,2}\left(C^{\prime}\right)=b a b^{-1}\left(C^{\prime}\right)=C^{\prime}$, we have $\mathfrak{u}_{2,2} \in \Phi\left(C^{\prime}\right)$. Therefore, we have seen that, if $\mathfrak{u}_{2,2} \in \Phi\left(C^{\prime}\right)$ then C^{\prime} is of the form $\left(a,-\frac{1}{2} a, 0, c\right)$ (a even). By the definition, as $b(C)=C^{\prime}$, C is equivalent to $C^{\prime}=\left(a,-\frac{1}{2} a, 0, c\right)$ (a even).

The others follow similarly.
(b) Let C^{\prime} be the form $a z \bar{z}+b z+\bar{b} \bar{z}+c$. We know that any elliptic element of order 3 in \mathbf{P} is conjugate to $\mathfrak{u}_{3}: z \rightarrow \frac{-1}{z+1}$. The transformation $\mathfrak{u}_{3}: z \rightarrow \frac{-1}{z+1}$ sends C^{\prime} to

$$
\begin{aligned}
& a\left(\frac{-1-z}{z}\right)\left(\frac{-1-\bar{z}}{\bar{z}}\right)+b \frac{-1-z}{z}+\bar{b} \frac{-1-\bar{z}}{\bar{z}}+c=a(1+z)(1+\bar{z})-b(1+z) \bar{z}-\bar{b}(1+\bar{z}) z+c z \bar{z} \\
& =(a-b-\bar{b}+c) z \bar{z}+(a-\bar{b}) z+(a-b) \bar{z}+a .
\end{aligned}
$$

This is equal to C^{\prime} if $a=c$ and $b=a-\bar{b}$. So we have $a=c$ and $2 b_{1}=a$ where $b=b_{1}+i b_{2}$. Therefore if $\mathfrak{u}_{3} \in \Phi\left(C^{\prime}\right)$ then C^{\prime} must be of the form $\left(a, \frac{1}{2} a, b_{2}, a\right)$ for some a (even) and b. The form will be of type $I I, I I I$ or $I V$ according to whether $a, \frac{1}{2} a$ and b_{2} are odd or even. Thus the group of a form equivalent to $C^{\prime}=\left(a, \frac{1}{2} a, b_{2}, a\right)$ for some a (even) and b will contain at least one element of order 3. Indeed, if a primitive form C is equivalent to C^{\prime}, by the definition, there is an element $g \in \mathbf{P}$ such that $g(C)=C^{\prime}$. Now we consider the element $g^{-1} \mathfrak{u}_{3} g$. As $g^{-1} \mathfrak{u}_{3} g(C)=C$ we have $g^{-1} \mathfrak{u}_{3} g \in \Phi(C)$. Clearly

YILMAZ, CANGÜL

$g^{-1} \mathfrak{u}_{3} g$ is of order 3 . So $\Phi(C)$ contains elliptic elements of order 3 .
Conversely, assume that $\Phi(C)$ contains an elliptic element of order 3 , say a. Since any elliptic element of order 3 in \mathbf{P} is conjugate to $\mathfrak{u}_{3}: z \rightarrow \frac{-1}{z+1}, a$ is conjugate to \mathfrak{u}_{3}. By the definition there is an element b of \mathbf{P} such that $b a b^{-1}=\mathfrak{u}_{3}$. Now we consider the circle $C^{\prime}=b(C)$. Since $\mathfrak{u}_{3}\left(C^{\prime}\right)=b a b^{-1}\left(C^{\prime}\right)=C^{\prime}$, we have $\mathfrak{u}_{3} \in \Phi\left(C^{\prime}\right)$. We have seen that, if $\mathfrak{u}_{3} \in \Phi\left(C^{\prime}\right)$ then C^{\prime} is of the form $\left(a, \frac{1}{2} a, b_{2}, a\right)$ for some a (even) and b. As $b(C)=C^{\prime}$, by the definition, C is equivalent to $C^{\prime}=\left(a, \frac{1}{2} a, b_{2}, a\right)$ (a even).
(c) Follows similarly.

Then we have the following theorem.

Theorem $2.4 \quad \mathfrak{U}_{2,1}$ is represented in $\xi(I)$ for all values of $D . \mathfrak{u}_{3}$ can not be represented in $\xi(I)$ for all values of D. If $D \equiv 1(\bmod 4)$, only $\mathfrak{U}_{2,2}$ is represented in $\xi(I I I)$ and only $\mathfrak{U}_{2,3}$ is represented in $\xi(I V)$. Also, if $D \equiv 2(\bmod 4)$, only $\mathfrak{U}_{2,4}$ is represented in $\xi(I I)$.
Proof. Let D be any discriminant. For every D, there is the type I class and we take the main form $C_{1}=(1,0,0,-D)$ as its representative. So by the Theorem 2.3(a)(i), $\Phi\left(C_{1}\right)$ contain $\mathfrak{u}_{2,1}$. Then for $\mathfrak{u}_{2,1} \in \mathfrak{u}_{2,1}, \mathfrak{u}_{2,1} \in \Phi\left(C_{1}\right)$ where $C_{1} \in \xi(I, D)$. Thus $\mathfrak{u}_{2,1}$ is represented in $\xi(I, D)$ for any D.

Now suppose that \mathfrak{u}_{3} is represented in $\xi(I, D)$ for any D. By the definition, there is an element $b \in \mathfrak{u}_{3}$ such that $b \in \Phi(C)$ where $C \in \xi(I, D)$. As $b \in \mathfrak{u}_{3}$, there is a $y \in \mathbf{P}$ such that $y b y^{-1}=\mathfrak{u}_{3}$. Then we have $\mathfrak{u}_{3}(y(C))=y(C)$. By the Theorem 2.3(b), $y(C)$ must be of the form $\left(a, \frac{1}{2} a, b_{2}, a\right)$ for some a (even), b. By the definition C and $y(C)$ are equivalent. But $y(C)=\left(a, \frac{1}{2} a, b_{2}, a\right)$ is not of type I. Because of this contradiction, \mathfrak{u}_{3} can not be represented in $\xi(I, D)$ for any D.

By the Theorem 2.2 , we know that for $D \equiv 0,3(\bmod 4)$ there is only type I. Therefore only $\mathfrak{u}_{2,1}$ is represented in $\xi(I, D)$ for this values of D. If $D \equiv 1(\bmod 4)$, there are three classes of type $I, I I I$ and $I V$. Then

$$
C_{3}: 2 z \bar{z}-z-\bar{z}-\left(\frac{D-1}{2}\right)=0
$$

is in $\xi(I I I, D)$ and

$$
C_{4}: 2 z \bar{z}+i z-i \bar{z}-\left(\frac{D-1}{2}\right)=0
$$

is in $\xi(I V, D)$. So by Theorem $2.3(\mathrm{a})(\mathrm{ii})$ and (iii), $\mathfrak{u}_{2,2} \in \Phi\left(C_{3}\right)$ and $\mathfrak{u}_{2,3} \in \Phi\left(C_{4}\right)$. Therefore $\mathfrak{u}_{2,2}$ is represented in $\xi(I I I, D)$ and $\mathfrak{u}_{2,3}$ is represented in $\xi(I V, D)$ for all $D \equiv 1(\bmod 4)$.

Similarly if $D \equiv 2(\bmod 4)$, there are two classes of type I and $I I$. Then

$$
C_{2}: 2 z \bar{z}+(-1+i) z+(-1-i) \bar{z}-\left(\frac{D-2}{2}\right)=0
$$

is in $\xi(I I, D)$ and $\mathfrak{u}_{2,4} \in \Phi\left(C_{2}\right)$. Therefore $\mathfrak{u}_{2,4}$ is represented in $\xi(I I, D)$ for all $D \equiv 2(\bmod 4)$.

Consequently, \mathfrak{u}_{3} can not be represented in $\xi(I, D)$ for any values of D. Therefore we face the question that for what D 's, \mathfrak{u}_{3} is represented in $\xi(I I, D), \xi(I I I, D)$ and $\xi(I V, D)$.

Theorem 2.5 Let D be a given discriminant. If \mathfrak{u}_{3} is represented in $\xi(I I, D), \xi(I I I, D)$ or $\xi(I V, D)$, then there is an $n \in \mathbb{Z}$ so that $D+3 n^{2}$ is a square.
Proof. If \mathfrak{U}_{3} is represented in $\xi(I I, D)$, there is an element $b \in \mathfrak{u}_{3}$ such that $b \in \Phi(C)$ where $C \in \xi(I I, D)$. If $b \in \mathfrak{u}_{3}$, there is a $g \in \mathbf{P}$ so that $g b g^{-1}=\mathfrak{u}_{3}$. Then we have $\mathfrak{u}_{3}(g(C))=g(C)$. By Theorem 2.3(b), $g(C)$ is of the form $\left(a, \frac{1}{2} a, b_{2}, a\right)$ with even a. Therefore C is equivalent to a form $\left(a, \frac{1}{2} a, b_{2}, a\right)$ with even a. Since equivalent forms have equal discriminant, we get $D=\frac{a^{2}}{4}+b_{2}^{2}-a^{2}$ and so $b_{2}^{2}=D+3 \frac{a^{2}}{4}$. As a is even, we write $a=2 n, n \in \mathbb{Z}$. Then $b_{2}^{2}=D+3 n^{2}$ and hence $b_{2}=\sqrt{D+3 n^{2}}$ is obtained. Since $b_{2} \in \mathbb{Z}$, we conclude that $D+3 n^{2}$ is an exact square. The others follows similarly.

If $D+3 n^{2}=a^{2}$, then the form $(2 n, n, a, 2 n)$ is of the type $I I, I I I$ or $I V$ with discriminant D according to whether n and a are odd or even. If $(n, a)=1$, the form $(2 n, n, a, 2 n)$ will be primitive. In other words, if $D+3 n^{2}=a^{2}$ with $(n, a)=1$, then \mathfrak{u}_{3} is represented in $\xi(I I, D), \xi(I I I, D)$ or $\xi(I V, D)$.

The converse of this theorem is not always true, e.g. for $D=9$, we find $9+3.3^{2}=36$ and the corresponding form $(6,3,6,6)$ is not primitive.

Let $D+3 n^{2}=a^{2}$. Suppose that n and a are both even. Then we can write $a=2 m$, $n=2 u$ where $m, u \in \mathbb{Z}$. We have $D=a^{2}-3 n^{2}=4 m^{2}-12 u^{2} \equiv 0(\bmod 4)$. If n is odd and a is even, we have $D=(2 m)^{2}-3(2 u+1)^{2}=4\left(m^{2}-3 u^{2}-3 u-1\right)+1 \equiv 1(\bmod 4)$. Similarly, if n is even and a is odd, we have $D \equiv 1(\bmod 4)$. Finally if n and a are both odd, we have $D \equiv 2(\bmod 4)$. Thus we have the following lemma:

YILMAZ, CANGÜL

Lemma 2.6 (i) Let $D \equiv 2(\bmod 4)$ and $D+3 n^{2}=a^{2}$. Then a and n are both odd.
(ii) Let $D \equiv 1(\bmod 4)$ and $D+3 n^{2}=a^{2}$. Then n is odd while a is even and vice versa.

Therefore if $D+3 n^{2}=a^{2}$ with $(n, a)=1$ and $D \equiv 2(\bmod 4)$, then the form $(2 n, n, a, 2 n)$ is a representative of forms of type $I I$ having discriminant D. So \mathfrak{u}_{3} is represented in $\xi(I I, D)$ for the values of D. If $D+3 n^{2}=a^{2}$ with $(n, a)=1$ and $D \equiv 1(\bmod 4)$, then the forms $(2 n, n, a, 2 n)$ and $(4 n+2 a, 2 n+a, 3 n+2 a, 4 n+2 a)$ are representatives of forms of type $I I I$ and $I V$ having discriminant D according to whether n and a are odd or even. Notice that the parity of the pair (n, a) is opposite to that of the pair $(2 n+a, 3 n+2 a)$. So \mathfrak{u}_{3} is represented in $\xi(I I I, D)$ and $\xi(I V, D)$ for the values of D.

Now we want to determine what values of $D \equiv 1,2(\bmod 4)$, the positive integer D can be represented in the quadratic form $D=a^{2}-3 n^{2}$ by integers a, n where $(n, a)=1$. First we will solve the problem for $n=1$ and 2 . Note that for $n=0$, only possible case is $a=1$ and we have $D=1$. First assume that $n=1$. If a is odd, we can write $a=2 u+1, u \in \mathbb{Z}$. Then we have $D=a^{2}-3=4 u^{2}+4 u-2 \equiv 2(\bmod 4)$. As $D>0$, all the numbers $D \equiv 2(\bmod 4)$ with $D+3=a^{2}$ are of the form

$$
D=4 u^{2}+4 u-2, u \geq 1
$$

So for these values of D, \mathfrak{u}_{3} can be represented in $\xi(I I, D)$. If a is even, we have $D=4 u^{2}-3 \equiv 1(\bmod 4), u \geq 1$. So all the numbers $D \equiv 1(\bmod 4)$ with $D+3=a^{2}$ are of the form

$$
D=4 u^{2}-3, u \geq 1
$$

and for these values of D, \mathfrak{u}_{3} can be represented in $\xi(I I I, D)$ and $\xi(I V, D)$.
Similarly for $n=2$, only the case odd a is possible. Notice that for all odd a, we have $(2, a)=1$. Then we have

$$
D=4 u^{2}+4 u-11, u \geq 2
$$

So $D \equiv 1(\bmod 4)$ and these values of D only ones with $D+12=a^{2},(2, a)=1$. Again, for these values of D, \mathfrak{u}_{3} can be represented in $\xi(I I I, D)$ and $\xi(I V, D)$.

In general, let us consider the binary quadratic form in two variables $f(x, y)=x^{2}-3 y^{2}$. The standard method of determining which integers can be represented by a quadratic form is to use a local global approach (see, for example, Theorem 1.3 on page 129 in [3]). For the quadratic form under consideration this says:

YILMAZ, CANGÜL

$x^{2}-3 y^{2}=D(D>0)$ has a solution in \mathbb{Z} if and only if $x^{2}-3 y^{2}=D$ has a solution in \mathbb{Z}_{p} for each prime p (here \mathbb{Z}_{p} is the ring of p-adic integers). Furthermore, for odd p, $x^{2}-3 y^{2}=D$ has a solution in \mathbb{Z}_{p} if and only if the congruence $x^{2}-3 y^{2} \equiv D(\bmod p)$ has a solution. For $p=2$, a similar result holds so long as the corresponding congruence $(\bmod 8)$ is satisfied.

Let $D \equiv 1(\bmod 4)$.
Case 1. Let $(D, 3)=1$.
(i) If p is an odd prime, $p \neq 3,(D, p)=1$, then $x^{2}-3 y^{2} \equiv D(\bmod p)$ always has a solution.
(ii) If p is an odd prime, $p \neq 3, p \mid D$, then $x^{2}-3 y^{2} \equiv D(\bmod p)$ has a solution if and only if $\left(\frac{3}{p}\right)=1$, i.e. if and only if $p \equiv \pm 1(\bmod 12)$.
(iii) If $p=3$, then $x^{2}-3 y^{2} \equiv D(\bmod 3)$ has a solution if and only if $\left(\frac{D}{3}\right)=1$, i.e. if and only if $D \equiv 1(\bmod 3)$.
(iv) If $p=2$, then $x^{2}-3 y^{2} \equiv D(\bmod 8)$ has a solution since $D \equiv 1(\bmod 4)$ and so $D \equiv 1,5(\bmod 8)$.

Therefore we get
" If $D \equiv 1(\bmod 4)$ and $(D, 3)=1$, then $x^{2}-3 y^{2}=D$ has a solution if and only if $D \equiv 1(\bmod 12)$ and every prime $p \mid D$ is such that $p \equiv \pm 1(\bmod 12)$."

Case 2. Let $3 \mid D$. This then forces $3 \mid x$ and since $(x, y)=1$, we must have that 9 does not divide D. Thus $D=3 E$ where $(E, 3)=1$ and we need to consider solutions to $3 x^{2}-y^{2}=E$.
(i) If p is an odd prime, $p \neq 3,(p, E)=1$, then there is a solution.
(ii) If p is an odd prime, $p \neq 3, p \mid E$, then there is a solution if and only if $p \equiv \pm 1(\bmod 12)$.
(iii) If $p=3$, then there is a solution if and only if $E \equiv-1(\bmod 3)$.
(iv) If $p=2$, then there is a solution since $E \equiv 3,7(\bmod 8)$.

Therefore we get
" If $D \equiv 1(\bmod 4)$ and $3 \mid D$, then $x^{2}-3 y^{2}=D$ has a solution if and only if $D \equiv-3(\bmod 36)$ and every prime $p \mid D,(p \neq 3)$ is such that $p \equiv \pm 1(\bmod 12)$."

Let $D \equiv 2(\bmod 4)$. Similarly we get

1. If $D \equiv 2(\bmod 4)$ and $(D, 3)=1$, then $x^{2}-3 y^{2}=D$ has a solution if and only if $D \equiv 10(\bmod 12)$ and every prime $p \mid D,(p \neq 2)$ is such that $p \equiv \pm 1(\bmod 12)$.

YILMAZ, CANGÜL

2. If $D \equiv 2(\bmod 4)$ and $3 \mid D$, then $x^{2}-3 y^{2}=D$ has a solution if and only if $D \equiv 6(\bmod 36)$ and every prime $p \mid D,(p \neq 2,3)$ is such that $p \equiv \pm 1(\bmod 12)$.

So we proved the following theorem:
Theorem 2.7. (i) If $D \equiv 1(\bmod 12)$, and every prime $p \mid D$ is such that $p \equiv$ ± 1 (mod 12),
(ii) If $D \equiv-3(\bmod 36)$, and every prime $p \mid D,(p \neq 3)$ is such that $p \equiv \pm 1(\bmod 12)$,
(iii) If $D \equiv 10(\bmod 12)$, and every prime $p \mid D,(p \neq 2)$ is such that $p \equiv \pm 1(\bmod 12)$,
(iv) If $D \equiv 6(\bmod 36)$, and every prime $p \mid D,(p \neq 2,3)$ is such that $p \equiv \pm 1(\bmod 12)$, then \mathfrak{U}_{3} can be represented in $\xi(I I, D), \xi(I I I, D)$ and $\xi(I V, D)$.

Acknowledgment

We would like to thank the referee for many helpful comments and suggestions. Also, we would like to thank Prof. Dr. Aydın Aytuna.

References

[1] A.F. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics 91, Springer-Verlag, New York (1983).
[2] A.M. Brunner, A Two-Generator Presentation for the Picard Group, Proc. of the Amer. Math. Soc., Vol.115, Number 1 (1992), 45-46.
[3] J.W.S. Cassels, Rational Quadratic Forms, Academic Press (1978).
[4] B. Fine, Fuchsian Subgroups of the Picard Group, Canad. J. Math. 28 (1976), 481-485.
[5] R. Fricke and F. Klein, Volesungen über die Theorie der Automorphen Funktionen, Vol.I, Teubner Reprint, Leipzig (1965).
[6] S. Harding, Some Arithmetic and Geometric Problems Concerning Discrete Groups, Ph.D. Thesis, Univ. of Southampton (1985).
[7] J. Lehner, Discontinuous Groups and Automorphic Functions, Math. Surveys No.8, Amer. Math. Soc. (1964).
[8] C. Maclachlan and A.W. Reid, Parametrizing Fuchsian Subgroups of the Bianchi Groups, Canad. J. Math., 43 (1991), 158-181.

Nihal YILMAZ, İ. Naci CANGÜL
Received 28.01.1999
Uludağ University, Faculty of Science,
Department of Mathematics
16059, Bursa-TURKEY

