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Abstract

The Picard group P is a discrete subgroup of PSL(2, C ) with Gaussian integer

coefficients. Here it is shown that the total number of conjugacy classes of elliptic

elements of order 2 and 3 in P, which is given as seven by B. Fine [3], can actually be

reduced to four and using this, the conditions for the maximal Fuchsian subgroups

of P to have elliptic elements of orders 2 and 3 are found.

1. Introduction

The extension Z(i) =
{
m+ in : m, n ∈ Z, i2 = −1

}
of Z forms a ring called the ring of

Gaussian integers. Each element of Z(i) is called a Gaussian integer.
The Picard group is denoted by P and contains all linear fractional transformations

t(z) =
az + b

cz + d

where a, b, c, d ∈ Z(i) and ad − bc = 1. Therefore P = PSL(2,Z(i)). P is an important

subgroup of PSL(2,C). It is an example to that the discreteness on Ĉ = C∪ {∞} does

not imply the discontinuity. Although its action on Ĉ is not discontinuous, its action on
the hyperbolic 3-space

H3 = {z + tj : z ∈ C, t > 0}

is discontinuous, [1]. Actually P has a well-known presentation

P =
〈
x, u, y, r; x3 = u2 = y3 = r2 = (xu)2 = (xy)2 = (ry)2 = (ru)2 = 1

〉
(1.1)
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where

x(z) =
i

iz + 1
, u(z) = −1

z
, y(z) =

z + 1
−z , r(z) =

i

iz
. (1.2)

This presentation is obtained by looking at the orders of rotations which act around
the vertices of a fundamental polyhedron for P in H 3 and then by finding the relations
between the edges of this polyhedron (called side pairings), [2].

P is given abstractly as an amalgamated free product of two groups G1, G2 with
the modular group M as the amalgamated subgroup. Namely P ∼= G1 ∗M G2 with
G1
∼= S3 ∗Z3 A4 and G2

∼= S3 ∗Z2 D2 (S3 is the symmetric group on three symbols, A4 is
the alternating group on four symbols and D2 is the Klein 4-group), [4].

2. Conjugacy classes in P and maximal Fuchsian subgroups

Let t ∈ P be elliptic. It is known that such a t is conjugate to the transformation z → λz

with |λ| = 1 in PSL(2,C), [7]. But we need to know the conjugacy classes in P of elliptic
elements when studying Fuchsian subgroups.

In [4] , Fine showed that P is a generalised free product and used this fact to charac-
terize Fuchsian subgroups. To do this he needed to find the conjugacy classes of elliptic
elements in P. In [4] , Fine found five conjugacy classes of elliptic elements of order 2 and
two classes of order 3. In [6], Harding noted without proof that the number of conjugacy
classes of order 2 can be reduced to four, and used this result in the classification of
maximal Fuchsian subgroups of P.

In this study, noticing first that the number of conjugacy classes of 3rd order elliptic
elements can be reduced to 1, we obtain new results on the subgroups of P regarding
Harding’s results, [6]. Because of the decrease on the number of conjugacy classes, the
results obtained in [4] and [6] will become easier to prove and many calculations can be
omitted.

An element of A∗HB of finite order is conjugate to an element of finite order in one of
the factors. Because of the abstract group structure of P as a free product amalgamated
with M, each finite ordered elliptic element will be either of order 2 or 3. Further P is a
discontinuous group and therefore it can not have any elliptic elements of infinite order,
[7]. These can be proved by elementary operations. In [4], Fine found the conjugacy
classes of elliptic elements of finite order in G1 and in G2 to find the conjugacy classes
of elliptic elements in P. Fine found representatives of the conjugacy classes of elliptic
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elements of order 2 as

z → −z, z → 1
z
, z → −z + 1, z → −z + i, z → −z + (1 + i).

Harding [6], noted that these can be reduced to

z → −z, z → −z + 1, z → −z + i, z → −z + (1 + i).

Indeed by means of the transformation corresponding to the matrix

(
1 0
1 1

)
, the

representatives z → 1
z and z → −z + 1 are conjugate. Therefore these elements have

exactly four conjugacy classes in P.
Fine, in [4], found the representatives of the conjugacy classes of elliptic elements

of order three as z → − 1
z+1

and z → 1
z+i

. But by means of the transformation

corresponding to the matrix

(
i −1
−i 1− i

)
, these two are conjugate to each other. That

is, there is only one class of third order elliptic elements in P. Therefore we can induce
the Theorem 2 of [4] to the following.

Theorem 2.1 There are only five conjugacy classes of elliptic elements in P, four for
those of order 2 and one for those of order 3. In particular, any elliptic transformation
of order 2 is conjugate to one of

u2,1 : z → −z, u2,2 : z → −z + 1, u2,3 : z → −z + i, u2,4 : z → −z + 1 + i

while any elliptic transformation of order 3 is conjugate to

u3 : z → − 1
z + 1

.

Let u2,1, u2,2, u2,3, u2,4 and u3 denote the five conjugacy classes of elliptic elements
in P. Before stating our main results, we first give a summary on Hermitian forms and
maximal Fuchsian subgroups of P, ( for details, see [6] and [8]).

Let C be the circle
a(x2 + y2) + 2b1x− 2b2y + c = 0

on the complex plane with a, b1, b2, c ∈ Z and b21 + b22 − ac > 0 . If we denote the set of
those C by Ω, P acts on Ω.
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2.1 Definition A subgroup of P leaving a circle C invariant and mapping its interior
onto itself is called Fuchsian.

We know from [5] that to each circle C of Ω there corresponds a Fuchsian subgroup
and to each Fuchsian subgroup there corresponds a circle of Ω.

2.2 Definition 1) A quadratic form azz + bz + bz + c is called a binary Hermitian
form. Here a, c ∈ Z and b ∈ Z(i).

If we put z = x + iy and b = b1 + ib2 , then we obtain a(x2 + y2) + 2b1x − 2b2y + c.

For brevity, this form can be denoted by (a, b1, b2, c).
2) The discriminant of a form (a, b1, b2, c) is D = b21 + b22 − ac.

Here if D > 0, then the form (a, b1, b2, c) represents (by putting the form equal to

zero) a circle in C with center −b1+ib2
a and radius

√
D
|a| where a 6= 0. When a = 0, such a

form represents a straight line which is a circle in Ĉ = C ∪ {∞} .

2.3 Definition 1) Let C , C
′

be any forms. If there exists a g ∈ P such that g(C) = C
′

then we call these two forms equivalent.
2) If g.c.d. (a, b1, b2, c) = 1 , then the form (a, b1, b2, c) is called primitive.
3) The main form of discriminant D > 0 is (1, 0, 0,−D). Every main form is primitive

and is a circle with centre 0, radius
√
D.

Equivalent forms have the same discriminant. Let C, C
′

be represented by (a, b1, b2, c)
and (a

′
, b
′
1, b
′
2, c
′
). Let C, C

′
be equivalent, i.e. for some g ∈ P, g(a, b1, b2, c) =

(a
′
, b
′

1, b
′

2, c
′
). Now we consider the presentation of P in (1.1). P is generated by the

following transformations:

x(z) =
i

iz + 1
, u(z) = −1

z
, y(z) =

z + 1
−z , r(z) =

i

iz
.

The effect of x, u, y, r on C can be given

x : (a, b1, b2, c)→ (a + c− 2b2, b1, a− b2, a)
u : (a, b1, b2, c)→ (c,−b1, b2, a)

y : (a, b1, b2, c)→ (c, c− b1, b2, a+ c− 2b1)
r : (a, b1, b2, c)→ (c, b1,−b2, a)

Then by observation, we have
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(i) if at least one of a, c is odd, then at least one of a
′
, c
′

is odd.
(ii) if both a, c are even, then both a

′
, c
′

are even and bi ≡ b
′

i(mod2), i = 1, 2.

Also by observation, if (a, b1, b2, c) and (a
′
, b
′

1, b
′

2, c
′
) are both primitive, with the

same discriminant, and if they satisfy (i) or (ii), then they are equivalent.So for a given
discriminant D, there are (at most) four equivalence classes of primitive forms. They are
of the following types:

I) (odd or even, odd or even, odd or even,odd or even ) with the condition that a and
c can not be even at the same time.

II) (even, odd, odd, even)
III) (even, odd, even, even)
IV ) (even, even, odd, even)
Note that the main form of any discriminant is of type I, since a = 1 is odd.

2.4 Definition Let C = (a, b1, b2, c) be a form. The subgroup of P consisting of all
transformations leaving C invariant is called the form group (or group) of C and denoted
by Φ(C).

Here the circle C is left invariant and its interior is mapped onto itself. Therefore a
form group Φ(C) is a maximal Fuchsian subgroup of P. The conjugacy classes of maximal
Fuchsian subgroups of P correspond to equivalence classes of primitive forms in a one to
one and onto way.

Theorem 2.2 Let D be a given determinant.
If D ≡ 0(mod4), then there is only one equivalence class of primitive forms and is of

type I.
If D ≡ 1(mod4), then there are three classes of types I, III and IV .
If D ≡ 2(mod4), then there are two classes, of types I and II.
If D ≡ 3(mod4), then there is only one class of type I.

Proof. (See [6]) We only sketch the proof to remind the method. For all values of
discriminant D, there is a main form. So the type I class always exits.

So assume both a, c are even, and so D ≡ b21 + b22(mod4).
If D ≡ 0(mod4), we have b21 + b22 ≡ 0(mod4). Then both b1, b2 must be even in which

case, form is not primitive. So there is only one class of type I.
If D ≡ 1(mod4), we have b21 + b22 ≡ 1 mod 4. In this case b1 is odd, b2 is even or vice

versa. So there are three classes of type I, III, IV .
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The others follow similarly. 2

Let us denote the equivalence class of primitive forms of type I having discriminant
D by ξ(I, D). Similarly ξ(II, D), ξ(III, D) and ξ(IV,D) denote the equivalence classes
of primitive forms of type II, III and IV having discriminant D.

Definition 2.5 If ξ is an equivalence class of primitive forms and u is a conjugacy
class of elliptic elements in P, then u is said to be represented in ξ if there is an element
b ∈ u such that b ∈ Φ(C) where C ∈ ξ.

First, we can restate Theorem 3.7 in [6] as we reduced the number of conjugacy classes
of the third order elliptic elements to one.

Theorem 2.3. Let C be a primitive form.
(a) The form group Φ(C) contains elliptic elements of order 2 conjugate to u2,1 : z →

−z, u2,2 : z → −z + 1, u2,3 : z → −z + i, u2,4 : z → −z + 1 + i, respectively, if and only
if C is equivalent to one of the following forms respectively

(i) (a, 0, 0, c)
(ii) (a,−1

2a, 0, c) a even
(iii) (a, 0, 1

2
a, c) a even

(iv) (a,− 1
2
a, 1

2
a, c) a even.

(b) Φ(C) contains elliptic elements of order 3 if and only if C is equivalent to a form
(a, 1

2
a, b2, a) (a even).

(c) Φ(C) contains parabolic elements if and only if the discriminant of C is in the
form D = dD2

0 where, d is square-free and does not have any prime factor p ≡ 3(mod4).

Proof. (a) We know that any elliptic element of order 2 in P is conjugate to one
of the following transformations: u2,1 : z → −z, u2,2 : z → −z + 1, u2,3 : z → −z + i,

and u2,4 : z → −z + 1 + i. Let C
′

be the form azz + bz + bz + c. The transformation

u2,1 : z → −z sends C
′

to
a(−z)(−z) + b(−z) + b(−z) + c = azz − bz − bz + c.
This is equal to C

′
if b = −b. So b = 0 and so C

′
is of type I. Thus the group of a

form equivalent to C
′

= (a, 0, 0, c) for some a, c will contain at least one element of order
2 conjugate to u2,1 : z → −z. Indeed, if a primitive form C is equivalent to C

′
, by the

definition, there is an element g ∈ P such that g(C) = C
′
. Now we consider the element
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g−1u2,1g. As g−1u2,1g(C) = C we have g−1u2,1g ∈ Φ(C). Clearly g−1u2,1g is of order 2.
So Φ(C) contains elliptic elements of order 2 conjugate to u2,1 : z → −z.

The transformation u2,2 : z → −z + 1 sends C
′

to a(−z + 1)(−z + 1) + b(−z + 1) +

b(−z + 1) + c = azz + (−a − b)z + (−a − b)z + a + b + b + c. This is C
′

if b = −a − b,
a + b + b + c = c. So 2b1 = −a, b2 = 0 where b = b1 + ib2. Thus the group of a form
equivalent to C

′
= (a,−1

2
a, 0, c) for some a (even) and c will contain at least one element

of order 2 conjugate to u2,2 : z → −z + 1. The form will be of type I or III according to
whether c is odd or even.

Similarly, the group of a form equivalent to C
′

= (a, 0, 1
2a, c) for some a (even) and c

will contain at least one element conjugate to u2,3 : z → −z + i. The form will be of type
I or IV according to whether c is odd or even.

Similarly, the group of a form equivalent to C
′

= (a,−1
2a,

1
2a, c) for some a (even)

and c will contain at least one element conjugate to u2,4 : z → −z + 1 + i. The form will
be of type I or II.

Conversely, assume that Φ(C) contains an elliptic element of order 2 conjugate to
u2,2 : z → −z + 1, say a. Since a is conjugate to u2,2 in P, by the definition there

is an element b of P such that bab−1 = u2,2. Now we consider the circle C
′

= b(C).

Since u2,2(C
′
) = bab−1(C

′
) = C

′
, we have u2,2 ∈ Φ(C

′
). Therefore, we have seen that, if

u2,2 ∈ Φ(C
′
) then C

′
is of the form (a,−1

2
a, 0, c) (a even). By the definition, as b(C) = C

′
,

C is equivalent to C
′

= (a,−1
2
a, 0, c) (a even).

The others follow similarly.

(b) Let C
′

be the form azz + bz+ bz + c. We know that any elliptic element of order
3 in P is conjugate to u3 : z → −1

z+1
. The transformation u3 : z → −1

z+1
sends C

′
to

a(−1−z
z )(−1−z

z ) + b−1−z
z + b−1−z

z + c = a(1 + z)(1 + z)− b(1 + z)z − b(1 + z)z + czz

= (a− b− b+ c)zz + (a− b)z + (a − b)z + a.

This is equal to C
′

if a = c and b = a − b. So we have a = c and 2b1 = a where
b = b1 + ib2. Therefore if u3 ∈ Φ(C

′
) then C

′
must be of the form (a, 1

2a, b2, a) for some
a (even) and b. The form will be of type II, III or IV according to whether a, 1

2a and

b2 are odd or even. Thus the group of a form equivalent to C
′

= (a, 1
2
a, b2, a) for some a

(even) and b will contain at least one element of order 3. Indeed, if a primitive form C is
equivalent to C

′
, by the definition, there is an element g ∈ P such that g(C) = C

′
. Now

we consider the element g−1u3g. As g−1u3g(C) = C we have g−1u3g ∈ Φ(C). Clearly
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g−1u3g is of order 3. So Φ(C) contains elliptic elements of order 3.

Conversely, assume that Φ(C) contains an elliptic element of order 3, say a. Since any
elliptic element of order 3 in P is conjugate to u3 : z → −1

z+1 , a is conjugate to u3. By the

definition there is an element b of P such that bab−1 = u3. Now we consider the circle
C
′

= b(C). Since u3(C
′
) = bab−1(C

′
) = C

′
, we have u3 ∈ Φ(C

′
). We have seen that, if

u3 ∈ Φ(C
′
) then C

′
is of the form (a, 1

2a, b2, a) for some a (even) and b. As b(C) = C
′
,

by the definition, C is equivalent to C
′

= (a, 1
2a, b2, a) (a even).

(c) Follows similarly. 2

Then we have the following theorem.

Theorem 2.4 U2,1 is represented in ξ(I) for all values of D. u3 can not be represented
in ξ(I) for all values of D. If D ≡ 1(mod4), only U2,2 is represented in ξ(III) and only
U2,3 is represented in ξ(IV ). Also, if D ≡ 2(mod4), only U2,4 is represented in ξ(II).

Proof. Let D be any discriminant. For every D, there is the type I class and we
take the main form C1 = (1, 0, 0,−D) as its representative. So by the Theorem 2.3(a)(i),
Φ(C1) contain u2,1. Then for u2,1 ∈ u2,1, u2,1 ∈ Φ(C1) where C1 ∈ ξ(I, D). Thus u2,1 is
represented in ξ(I, D) for any D.

Now suppose that u3 is represented in ξ(I, D) for any D. By the definition, there is
an element b ∈ u3 such that b ∈ Φ(C) where C ∈ ξ(I, D). As b ∈ u3, there is a y ∈ P
such that yby−1 = u3 . Then we have u3 (y(C)) = y(C). By the Theorem 2.3(b), y(C)
must be of the form (a, 1

2
a, b2, a) for some a (even), b. By the definition C and y(C) are

equivalent. But y(C) = (a, 1
2a, b2, a) is not of type I. Because of this contradiction, u3

can not be represented in ξ(I, D) for any D.

By the Theorem 2.2, we know that for D ≡ 0, 3(mod4) there is only type I. Therefore
only u2,1 is represented in ξ(I, D) for this values of D. If D ≡ 1(mod4), there are three
classes of type I, III and IV . Then

C3 : 2zz − z − z − (
D − 1

2
) = 0

is in ξ(III, D) and

C4 : 2zz + iz − iz − (
D − 1

2
) = 0
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is in ξ(IV,D). So by Theorem 2.3(a)(ii) and (iii), u2,2 ∈ Φ(C3) and u2,3 ∈ Φ(C4).
Therefore u2,2 is represented in ξ(III, D) and u2,3 is represented in ξ(IV,D) for all
D ≡ 1(mod4).

Similarly if D ≡ 2(mod4), there are two classes of type I and II. Then

C2 : 2zz + (−1 + i)z + (−1 − i)z − (
D− 2

2
) = 0

is in ξ(II, D) and u2,4 ∈ Φ(C2). Therefore u2,4 is represented in ξ(II, D) for all
D ≡ 2(mod4). 2

Consequently, u3 can not be represented in ξ(I, D) for any values of D. Therefore we
face the question that for what D’s, u3 is represented in ξ(II, D), ξ(III, D) and ξ(IV,D).

Theorem 2.5 Let D be a given discriminant. If u3 is represented in ξ(II, D), ξ(III, D)
or ξ(IV,D), then there is an n ∈ Z so that D + 3n2 is a square.

Proof. If U3 is represented in ξ(II, D), there is an element b ∈ u3 such that b ∈ Φ(C)
where C ∈ ξ(II, D). If b ∈ u3, there is a g ∈ P so that gbg−1 = u3. Then we have
u3 (g(C)) = g(C). By Theorem 2.3(b), g(C) is of the form (a, 1

2a, b2, a) with even a.
Therefore C is equivalent to a form (a, 1

2a, b2, a) with even a. Since equivalent forms have

equal discriminant, we get D = a2

4
+ b22− a2 and so b22 = D+ 3a

2

4
. As a is even, we write

a = 2n, n ∈ Z. Then b22 = D + 3n2 and hence b2 =
√
D + 3n2 is obtained. Since b2 ∈ Z,

we conclude that D + 3n2 is an exact square. The others follows similarly. 2

If D +3n2 = a2, then the form (2n, n, a, 2n) is of the type II, III or IV with
discriminant D according to whether n and a are odd or even. If (n, a) = 1, the form
(2n, n, a, 2n) will be primitive. In other words, if D + 3n2 = a2 with (n, a) = 1, then u3

is represented in ξ(II, D), ξ(III, D) or ξ(IV,D).
The converse of this theorem is not always true, e.g. for D = 9, we find 9 + 3.32 = 36

and the corresponding form (6, 3, 6, 6) is not primitive.
Let D + 3n2 = a2. Suppose that n and a are both even. Then we can write a = 2m,

n = 2u where m, u ∈ Z. We have D = a2 − 3n2 = 4m2 − 12u2 ≡ 0(mod4). If n is odd
and a is even, we have D = (2m)2 − 3(2u+ 1)2 = 4(m2 − 3u2 − 3u− 1) + 1 ≡ 1(mod4).
Similarly, if n is even and a is odd, we have D ≡ 1(mod4). Finally if n and a are both
odd, we have D ≡ 2(mod4). Thus we have the following lemma:
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Lemma 2.6 (i) Let D ≡ 2(mod4) and D+ 3n2 = a2. Then a and n are both odd.

(ii) Let D ≡ 1(mod4) and D+3n2 = a2. Then n is odd while a is even and vice versa.

Therefore if D + 3n2 = a2 with (n, a) = 1 and D ≡ 2(mod4), then the form
(2n, n, a, 2n) is a representative of forms of type II having discriminant D. So u3 is
represented in ξ(II, D) for the values of D. If D + 3n2 = a2 with (n, a) = 1 and
D ≡ 1(mod4), then the forms (2n, n, a, 2n) and (4n + 2a, 2n + a, 3n + 2a, 4n + 2a) are
representatives of forms of type III and IV having discriminant D according to whether
n and a are odd or even. Notice that the parity of the pair (n, a) is opposite to that of
the pair (2n+ a, 3n+ 2a). So u3 is represented in ξ(III, D) and ξ(IV,D) for the values
of D.

Now we want to determine what values of D ≡ 1, 2(mod4), the positive integer D can
be represented in the quadratic form D = a2 − 3n2 by integers a, n where (n, a) = 1.
First we will solve the problem for n = 1 and 2. Note that for n = 0, only possible
case is a = 1 and we have D = 1. First assume that n = 1. If a is odd, we can write
a = 2u+ 1, u ∈ Z. Then we have D = a2 − 3 = 4u2 + 4u− 2 ≡ 2(mod4). As D > 0, all
the numbers D ≡ 2(mod4) with D + 3 = a2 are of the form

D = 4u2 + 4u− 2, u ≥ 1.

So for these values of D, u3 can be represented in ξ(II, D). If a is even, we have
D = 4u2 − 3 ≡ 1(mod4), u ≥ 1. So all the numbers D ≡ 1(mod4) with D + 3 = a2

are of the form

D = 4u2 − 3, u ≥ 1

and for these values of D, u3 can be represented in ξ(III, D) and ξ(IV,D).

Similarly for n = 2, only the case odd a is possible. Notice that for all odd a, we have
(2, a) = 1. Then we have

D = 4u2 + 4u− 11, u ≥ 2.

So D ≡ 1(mod4) and these values of D only ones with D + 12 = a2, (2, a) = 1. Again,
for these values of D, u3 can be represented in ξ(III, D) and ξ(IV,D).

In general, let us consider the binary quadratic form in two variables f(x, y) = x2−3y2.

The standard method of determining which integers can be represented by a quadratic
form is to use a local global approach (see, for example, Theorem 1.3 on page 129 in [3]).
For the quadratic form under consideration this says:
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x2 − 3y2 = D (D > 0) has a solution in Z if and only if x2 − 3y2 = D has a solution
in Zp for each prime p (here Zp is the ring of p-adic integers). Furthermore, for odd p,

x2 − 3y2 = D has a solution in Zp if and only if the congruence x2 − 3y2 ≡ D (modp)
has a solution. For p = 2, a similar result holds so long as the corresponding congruence
(mod8) is satisfied.

Let D ≡ 1(mod4).

Case 1. Let (D, 3) = 1.

(i) If p is an odd prime, p 6= 3, (D, p) = 1, then x2 − 3y2 ≡ D (modp) always has a
solution.

(ii) If p is an odd prime, p 6= 3, p | D, then x2 − 3y2 ≡ D (modp) has a solution if

and only if
(

3
p

)
= 1, i.e. if and only if p ≡ ±1(mod12).

(iii) If p = 3, then x2 − 3y2 ≡ D (mod3) has a solution if and only if
(
D
3

)
= 1, i.e. if

and only if D ≡ 1(mod3).

(iv) If p = 2, then x2 − 3y2 ≡ D (mod8) has a solution since D ≡ 1(mod4) and so
D ≡ 1, 5(mod8).

Therefore we get

” If D ≡ 1(mod4) and (D, 3) = 1, then x2 − 3y2 = D has a solution if and only if
D ≡ 1(mod12) and every prime p | D is such that p ≡ ±1(mod12).”

Case 2. Let 3 | D. This then forces 3 | x and since (x, y) = 1, we must have that 9
does not divide D. Thus D = 3E where (E, 3) = 1 and we need to consider solutions to
3x2 − y2 = E.

(i) If p is an odd prime, p 6= 3, (p, E) = 1, then there is a solution.

(ii) If p is an odd prime, p 6= 3, p | E, then there is a solution if and only if
p ≡ ±1(mod12).

(iii) If p = 3, then there is a solution if and only if E ≡ −1(mod3).

(iv) If p = 2, then there is a solution since E ≡ 3, 7(mod8).

Therefore we get

” If D ≡ 1(mod4) and 3 | D, then x2 − 3y2 = D has a solution if and only if
D ≡ −3(mod36) and every prime p | D, (p 6= 3) is such that p ≡ ±1(mod12).”

Let D ≡ 2(mod4). Similarly we get

1. If D ≡ 2(mod4) and (D, 3) = 1, then x2 − 3y2 = D has a solution if and only if
D ≡ 10(mod12) and every prime p | D, (p 6= 2) is such that p ≡ ±1(mod12).
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2. If D ≡ 2(mod4) and 3 | D, then x2 − 3y2 = D has a solution if and only if
D ≡ 6(mod36) and every prime p | D, (p 6= 2, 3) is such that p ≡ ±1(mod12).

So we proved the following theorem:

Theorem 2.7. (i) If D ≡ 1(mod12), and every prime p | D is such that p ≡
±1(mod12),

(ii) If D ≡ −3(mod36), and every prime p | D, (p 6= 3) is such that p ≡ ±1(mod12),
(iii) If D ≡ 10(mod12), and every prime p | D, (p 6= 2) is such that p ≡ ±1(mod12),
(iv) If D ≡ 6(mod36), and every prime p | D, (p 6= 2, 3) is such that p ≡ ±1(mod12),
then U3 can be represented in ξ(II, D), ξ(III, D) and ξ(IV,D).
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