Turk J Math 24 (2000) , 221 – 231. © TÜBİTAK

The k-Derivation of a Gamma-Ring

Hatice Kandamar

Abstract

In this paper, the k-derivation is defined on a Γ -ring M (that is, if M is a Γ -ring, $d: M \to M$ and $k: \Gamma \to \Gamma$ are to additive maps such that $d(a\beta b) = d(a)\beta b + ak(\beta)b + a\beta d(b)$ for all $a, b \in M$, $\beta \in \Gamma$, then d is called a k-derivation of M) and the following results are proved. (1) Let R be a ring of characteristic not equal to 2 such that if xry = 0 for all $x, y \in R$ then r = 0. If d is a k-derivation of the $(R =)\Gamma$ -ring R with k = d, then d is the ordinary derivation of R. (2) Let M be a nonzero prime Γ -ring of characteristic not equal to 2, γ be an element of Gamma and a is an element in M such that $[[x, a]_{\gamma}, a]_{\gamma} = 0$ for all $x \in M$. Then $a\gamma a = 0$ or $a \in C_{\gamma}$. (3) Let M be a prime Γ -ring with $\operatorname{Char} M \neq 2$, d be a nonzero k-derivation of M, γ be a nonzero element of Γ and $k(\gamma) \neq 0$. If $d(M) \subseteq C_{\gamma}$, then M is a commutative Γ -ring.

Key Words: k-derivation, derivation, commutativity, gamma-ring

1. Preliminaries

Let M be additive abelian groups. If there exits a mapping of $M \times \Gamma \times M$ to M(the image of (a, γ, b) , $a, b \in M$, $\gamma \in \Gamma$, being denoted by $(a\gamma b)$), satisfying for all $a, b, c \in M$, $\alpha, \beta \in \Gamma$:

B1. $(a+b)\alpha c = a\alpha c + b\alpha c$, $a(\alpha + \beta)b = a\alpha b + a\beta b$, $a\alpha(b+c) = a\alpha b + a\alpha c$

B2. $(a\alpha b)\beta c = a\alpha (b\beta c),$

AMS subject classifications. primary 16Y60, secondary 16W25, 16U70, 16N60, 16U80

then M is called a Γ -ring in the sense of Barnes [1]. This definition is due to Barnes, and is slightly weaker than the original one due to Nobusava [7].

If, in addition, there exits a mapping of $\Gamma \times M \times \Gamma$ to Γ (the image of (γ, a, β) , being denoted by $\gamma a \beta$) such that the following axioms are satisfied for all $a, b, c \in M$, $\alpha, \beta \in \Gamma$:

N1. Same as B1

N2. $(a\alpha b)\beta c = a(\alpha b\beta)c = a\alpha(b\beta c)$

N3. $a\alpha b = 0$ for all $a, b \in M$ implies $\alpha = 0$,

then M is called a Γ -ring in the sense of Nobusawa.

Let M be a Γ -ring in the sense a of Barnes. A subgroup A of the additive group M is said to be a right (resp. left) ideal of Γ -ring M if $a\gamma y$ (resp. $y\gamma a$) for all $a \in A$, $\gamma \in \Gamma, y \in M$. If A is both a left and a right ideal, then A is said to be a twosided ideal or simply an ideal of M. When S and T are subsets of M, and Ω is a subset of Γ , we denote by $S\Omega T$ the set of all finite sums of the form $\sum s_i \gamma_i t_i$ where $s_i \in S, \ \gamma_i \in \Omega$ and $t_i \in T$. If $\Omega = \{\gamma\}$, then $S\Omega T$ is denoted by $S\gamma T$ end so on [4]. If I and J are a left ideal and a right ideal of M, respectively, then $I\Omega J$ is an ideal of M. Similar properties hold depending on ideal properties of I and J. If $a\Gamma M\Gamma b = 0$ with $a, b \in M$ implies either a=0 or b=0, then M is called a prime Γ -ring [5]. Moreover, a Γ -ring M is said to be completely prime $a\Gamma b = 0$ with $a, b \in M$ implies a = 0 or b = 0[6]. We also note that, for a Γ -ring in the sense Nobusawa, primeness and completely primeness are equivalent. $C_{\Gamma} = \{c \in M : c\alpha m = m\alpha c \quad \forall \alpha \in \Gamma \quad and \quad \forall m \in M\}$ and $C_{\alpha} = \{c \in M : c\alpha m = m\alpha c \quad \forall m \in M\}$ with $\alpha \in \Gamma$ are called the center and the α -center of a Γ -ring M, respectively. If $C_{\Gamma} = M$ then M is called a commutative Γ -ring. If M is a Γ -ring in the sense of Nobusawa, the center C_M and the the *a*-center C_a of a *M*-ring Γ are similarly defined.

As it is well known, if R is a semiprime 2-torsion-free ring and $t \in R$ commutes with all tx - xt for $x \in R$ then $t \in Z$ (the center of R) [2]. This corollary is used in the proofs of many theorems on commutativity of rings. In this paper, we shall consider a similar problem on the Γ -ring M. That is, let M be a nonzero prime Γ -ring of characteristic not equal to 2, γ be a nonzero element of Γ , a is an element in M such that $a\gamma a \neq 0$ and acommutes with all $x\gamma a - a\gamma x$ for $x \in M$, then a must be in C_{γ} .

2. *k*-Derivation of Γ -Ring

Let M be a Γ -ring (in the sense of Barnes), d and k two additive maps from M to Mand from Γ to Γ , respectively. If for all $a, b \in M$ and $\beta \in \Gamma$, $d(a\beta b) = d(a)\beta b + ak(\beta)b + a\beta d(b)$ is satisfied, then d is called a k-derivation of M.

Every associative ring R is a Γ -ring where $R = \Gamma$ in the sense of Barnes. Let be a derivation of a ring R, that is, d is an additive map from R to R and d(xy) = d(x)y + xd(y) for all $x, y \in R$. It is clear that d is a k-derivation of the $(R =)\Gamma$ -ring R with d = k.

Remark : If M is a Γ -ring in the sense of Barnes and d is a k-derivation of the Γ -ring M, k need not be determined uniquely. But if M is a Γ -ring in the sense of Nobusawa and d is a k-derivation of the Γ -ring M, then k is uniquely determined. Particularly, if a ring R satisfies N3 (or R is semiprime or R has unity or R has no nonzero zero divisor), then R is a $(R =)\Gamma$ -ring in the sense of Nobusawa. In this case, if d is a k-derivation of the $(R =)\Gamma$ -ring R with characteristic not equal to 2, then d is the ordinary derivation of this ring R if and only if d = k (This proves in Theorem 1).

Lemma 1: Let M be a Γ -ring in the sense of Nobusawa. If d is a k-derivation of the Γ -ring M, then $k(\alpha a\beta) = k(\alpha)a\beta + \alpha d(a)\beta + \alpha ak(\beta)$ for all $a \in M$ and $\alpha, \beta \in \Gamma$.

Proof: It is clear by using N3.

Lemma 2: Let M be a Γ -ring in the sense of Nobusawa. If d is both a k_1 - and k_2 -derivation of the Γ -ring M, then $k_1 = k_2$.

Proof: Using the definition, $k_1 = k_2$ is obtained by N3.

Theorem 1: Let R be a ring of characteristic not equal to 2 satisfying N3, d be a k-derivation of the $(R =)\Gamma$ -ring R. d is the ordinary derivation of the ring R if and only if d = k.

Proof: Let R be a ring of characteristic not equal to 2 satisfying N3 and d be a kderivation of the $(R =)\Gamma$ -ring R. If d is the ordinary derivation of R, then it is clear that d = k. Now we prove the converse. Let d be a k- derivation of the $(R =)\Gamma$ -ring R with k =d. Since d is an additive map from R to R, we need only to show that d(xy) = d(x)y + xd(y)

for all $x, y \in R$. By hypothesis, we have d(xyt) = d(x)yt + xd(y)t + xyd(t) for all $x, y, t \in R$. Replace y by yz and t by tn in the equation where $z, n \in R$, and using d(x(yz)(tn)) = d(xy(ztn)), we get xd(yz)tn + xyzd(tn) = xd(y)ztn + xyd(z)tn + xyzd(t)n + xyztd(n). This gives x(d(yz)tn + yzd(tn) - d(y)ztn - yd(z)tn - yzd(t)n - yztd(n))m = 0 for all $m \in R$. Using N3, we have

$$d(yz)tn + yzd(tn) - d(y)ztn - yd(z)tn - yzd(t)n - yztd(n) = 0 \quad \forall y, z, t, n \in R.$$

Moreover, since d(yz)tn = d(yz(tn)), using the definition of k-derivation we have

$$d(yz)tn - yzd(tn) - d(y)ztn - yd(z)tn + yzd(t)n + yztd(n) = 0 \quad \forall y, z, t, n \in \mathbb{R}.$$

Adding up the last two equations, using $\text{Char}R \neq 2$ we have

$$d(yz)tn - d(y)ztn - yd(z)tn = 0.$$

This implies s(d(yz)t - d(y)zt - yd(z)t)n = 0, for all $s \in R$. Using N3, we have d(yz)t - d(y)zt - yd(z)t = 0. In the same way, we get,

$$d(yz) - d(y)z - yd(z) = 0, \quad \forall y, z \in R.$$

Hence, the theorem is proved.

From now on, (except where stated otherwise) M will be a Γ -ring in the sense of Nobusawa. For $a, b \in M$ and $\alpha, \beta \in \Gamma$, $[a, b]_{\alpha}$ and $[\alpha, \beta]_b$ will be denoted $a\alpha b - b\alpha a$ and $\alpha b\beta - \beta b\alpha$ respectively.

Lemma 3: Let M be a Γ -ring and d be a k-derivation of M. Then the following equalities are satisfied for $a, b, c, x \in M$ and $\alpha, \beta, \gamma \in \Gamma$:

$$\begin{split} \mathbf{i.} \quad & [a,b]_{\beta} = -[b,a]_{\beta}, \quad [\alpha,\beta]_{a} = -[\beta,\alpha]_{a} \\ \mathbf{ii.} \quad & [a+b,c]_{\beta} = [a,c]_{\beta} + [b,c]_{\beta}, \quad [\alpha+\beta,\gamma]_{a} = [\alpha,\gamma]_{a} + [\beta,\gamma]_{a} \\ \mathbf{iii.} \quad & [a\alpha b,x]_{\beta} = [a,x]_{\beta}\alpha b + a[\alpha,\beta]_{x}b + a\alpha[b,x]_{\beta} \\ \mathbf{iv.} \quad & [\alpha b\beta,\gamma]_{a} = [\alpha,\gamma]_{a}b\beta + \alpha[b,a]_{\gamma}\beta + \alpha b[\beta,\gamma]_{a} \end{split}$$

v. $[[\alpha, \beta]_a, \gamma]_a + [[\gamma, \alpha]_a, \beta]_a + [[\beta, \gamma]_a, \alpha]_a = 0$ **vi.** $[[a, b]_\beta, c]_\beta + [[c, a]_\beta, b]_\beta + [[b, c]_\beta, a]_\beta = 0$ **vii.** $d([a, b]_\beta) = [d(a), b]_\beta + [a, b]_{k(\beta)} + [a, d(b)]_\beta$ **viii.** $k([\alpha, \beta]_a) = [k(\alpha), \beta]_a + [\alpha, \beta]_{d(a)} + [\alpha, k(\beta)]_a$.

Proof: Obvious.

Lemma 4: Let M be a prime Γ -ring, U, Ω be nonzero ideals of M and Γ , respectively. Then the following statements are satisfied for $a, b \in M$ and $\alpha, \beta \in \Gamma$:

i. $a\Omega b = 0 \Rightarrow a = 0$ or b = 0ii. $\alpha U\beta = 0 \Rightarrow \alpha = 0$ or $\beta = 0$ iii. $a\Gamma U\Gamma b = 0 \Rightarrow a = 0$ or b = 0iv. $\alpha M\Omega M\beta = 0 \Rightarrow \alpha = 0$ or $\beta = 0$ v. If $u\alpha v = 0$ for all $u, v \in U$ then $\alpha = 0$ vi. $C_{\Gamma} = 0 \Leftrightarrow C_{M} = 0$

vii. Either $C_{\Gamma} \neq 0$ or $C_M \neq 0 \Rightarrow M$ is a commutative Γ -ring.

viii. $U \subseteq C_{\gamma}$, for $0 \neq \gamma \in \Gamma \Rightarrow M$ is a commutative Γ -ring.

ix. $0 \neq \gamma \in \Gamma$ and for all $u, v \in U$ $[u, v]_{\gamma} = 0 \Rightarrow M$ is a commutative Γ -ring [3].

Proof: The clarity of ii, iii, iv, v, viii is evident. Now we prove i, vi and vii.

i: Let $a\Omega b = 0$. So $a\Gamma M\Omega M\Gamma b \subseteq a\Omega b = 0$. By primeness of $M \ a = 0$ or b = 0, since $M\Omega M \neq 0$:

iv: Let $C_M = 0$. Suppose that $C_{\Gamma} \neq 0$. Then, there exists a nonzero element a of C_{Γ} . So, $a\gamma x - x\gamma a = 0$ for all $\gamma \in \Gamma$ and $x \in M$. By this equation, replace γ by $\gamma y \delta$ where $y \in M$ and $\delta \in \Gamma$, using $a \in C_{\Gamma}$ we obtain

 $0 = a\gamma y \delta x - x\gamma y \delta a = a\gamma y \delta x - x\gamma a \delta y = a\gamma y \delta x - a\gamma x \delta y = a\gamma (y \delta x - x \delta y)$

That is, $a\gamma(y\delta x - x\delta y) = 0$ for all $\gamma, \delta \in \Gamma$ and $x, y \in M$. So $a\Gamma(y\delta x - x\delta y) = 0$. By primeness of M, we get $x\delta y - y\delta x = 0$ for all $x, y \in M$, $\delta \in \Gamma$. This implies that $\delta \in C_M$ for all $\delta \in \Gamma$. This contradicts by $C_M = 0$.

vii: Suppose that $C_{\Gamma} \neq 0$. There should be a nonzero element *a* of C_{Γ} . That is, $x\gamma a = a\gamma x$ for all $\gamma \in \Gamma$, $x \in M$. We obtain

$$\begin{split} & a\delta(x\gamma y-y\gamma x)=a\delta x\gamma y-a\delta y\gamma x=y(\delta x\gamma)a-a\delta(y\gamma x)=y\delta(x\gamma a)-a\delta(y\gamma x)=y\delta(a\gamma x)-a\delta(y\gamma x)=(y\delta a)\gamma x-a\delta(y\gamma x)=(a\delta y)\gamma x-(a\delta y)\gamma x=0. \\ & \text{Hence }a\Gamma(x\gamma y-y\gamma x)=0 \text{ for all } x,y\in M, \quad \gamma\in\Gamma. \\ & \text{By primeness of M, we have }x\gamma y-y\gamma x=0 \text{ for all } x,y\in M, \quad \gamma\in\Gamma. \\ & \text{So, }M \text{ is a commutative }\Gamma\text{-ring.} \end{split}$$

Theorem 2: Let M be a nonzero prime Γ -ring of characteristic not equal to 2 and γ be an element of Γ . If there exists $a \in M$ such that $[[x, a]_{\gamma}, a]_{\gamma} = 0$ for all $x \in M$, then $a\gamma a = 0$ or $a \in C_{\gamma}$.

Proof : We suppose $\gamma \neq 0$ (otherwise $a\gamma a = 0$). By the hypothesis, we have $[[x\beta y, a]_{\gamma}, a]_{\gamma} = 0$ for all $x, y \in M$ and $\beta \in \Gamma$. Using Lemma 3 (iii) and hypothesis, we get

$$2[x,a]_{\gamma}[\beta,\gamma]_{a}y + 2[x,a]_{\gamma}\beta[y,a]_{\gamma} + 2x[\beta,\gamma]_{a}[y,a]_{\gamma} + x[[\beta,\gamma]_{a},\gamma]_{a}y = 0.$$
(2.1)

Replace x and y by $[x, a]_{\gamma}$ and $[y, a]_{\gamma}$, respectively, then we have

$$[x,a]_{\gamma}[[\beta,\gamma]_a,\gamma]_a[y,a]_{\gamma} = 0, \qquad \forall x,y \in M \quad \forall \beta \in \Gamma.$$

$$(2.2)$$

On the other hand, Lemma 3 (iv) implies

$$[\beta[z,a]_{\gamma}\delta,\gamma]_{a} = [\beta,\gamma]_{a}[z,a]_{\gamma}\delta + \beta[z,a]_{\gamma}[\delta,\gamma]_{a}, \quad \forall z \in M \quad \forall \beta, \delta \in \Gamma.$$
(2.3)

In (2.2) replacing β by $\beta[z, a]_{\gamma}\delta$ where $z \in M$, $\delta \in \Gamma$, using (2.2) (2.3) and considering *Char* $M \neq 2$, we obtain

$$[x,a]_{\gamma}[\beta,\gamma]_{a}[z,a]_{\gamma}[\delta,\gamma]_{a}[y,a]_{\gamma} = 0 \quad \forall x,y,z \in M \quad \forall \beta,\delta \in \Gamma.$$

$$(2.4)$$

In (2.4), replace β by $\beta[m, a]_{\gamma}\sigma$ where $m \in M, \sigma \in \Gamma$ and use (2.3) and (2.4), we have

$$[x,a]_{\gamma}[\beta,\gamma]_{a}[m,a]_{\gamma}\sigma[z,a]_{\gamma}[\delta,\gamma]_{a}[y,a]_{\gamma}=0.$$

That is,

$$[x,a]_{\gamma}[\beta,\gamma]_{a}[m,a]_{\gamma}\Gamma[z,a]_{\gamma}[\delta,\gamma]_{a}[y,a]_{\gamma}=0.$$

Since M is prime Γ -ring, we get

$$[x,a]_{\gamma}[\beta,\gamma]_{a}[m,a]_{\gamma} = 0 \quad \forall x,m \in M \quad \forall \beta \in \Gamma.$$

$$(2.5)$$

Replacing x by $[x, a]_{\gamma}$ in (2.1), and using (2.5) and the hypothesis, we have

$$[x,a]_{\gamma}[[\beta,\gamma]_a,\gamma]_a y = 0 \quad \forall x,y \in M \quad \forall \beta \in \Gamma.$$

$$(2.6)$$

In the same way, if we replace y by $[y, a]_{\gamma}$ in (2.1) we obtain

$$x[[\beta,\gamma]_a,\gamma]_a[y,a]_{\gamma} = 0 \quad \forall x, y \in M \quad \forall \beta \in \Gamma.$$

$$(2.7)$$

In (2.6), replace y and β by $[y, a]_{\gamma}$ and $\beta z \delta$ where $z \in M$, $\delta \in \Gamma$, respectively, and use (2.5), (2.6), (2.7) and $CharM \neq 2$, we get

$$[x,a]_{\gamma}[\beta,\gamma]_{a}z[\delta,\gamma]_{a}[y,a]_{\gamma} = 0 \quad \forall x,y,z \in M \quad \forall \beta,\delta \in \Gamma.$$

In the last statement, replace z by $z\sigma n$ with $n \in M$, $\sigma \in \Gamma$, we have

$$[x,a]_{\gamma}[\beta,\gamma]_a z = 0 \quad or \quad n[\delta,\gamma]_a[y,a]_{\gamma} = 0 \quad \forall x,y,z,n \in M \quad \forall \beta,\delta \in \Gamma.$$

Suppose that $[x, a]_{\gamma}[\beta, \gamma]_a z = 0$ for all $x, z \in M$, $\beta \in \Gamma$. Replace β by $\beta y[\delta, \gamma]_a$ where $y \in M$, $\delta \in \Gamma$ and using $[x, a]_{\gamma}[\beta, \gamma]_a z = 0$ we get

$$[x,a]_{\gamma}\beta y[[\delta,\gamma]_a,\gamma]_a z = 0 \quad \forall \beta \in \Gamma.$$

That is, $[x, a]_{\gamma} \Gamma y[[\delta, \gamma]_a, \gamma]_a z = 0$. So $[x, a]_{\gamma} = 0$ or $y[[\delta, \gamma]_a, \gamma]_a z = 0$, $\forall x, y, z \in M$, $\forall \delta \in \Gamma$. If $[x, a]_{\gamma} = 0$ for all $x \in M$ then $a \in C_{\gamma}$. Now, suppose that $y[[\delta, \gamma]_a, \gamma]_a z = 0$ $\forall y, z \in M$, $\forall \delta \in \Gamma$. By (N3), we have

$$[[\delta, \gamma]_a, \gamma]_a = 0 \quad \forall \delta \in \Gamma.$$
(2.8)

Since $CharM \neq 2$, by the assumption and (2.8), equation (2.1) implies

$$[x,a]_{\gamma}\beta[y,a]_{\gamma} + x[\beta,\gamma]_{a}[y,a]_{\gamma} = 0 \quad \forall x,y \in M, \quad \forall \beta \in \Gamma.$$

$$(2.9)$$

Replace x by $x\delta z$ with $z \in M$, $\delta \in \Gamma$ and use (2.9), then

$$([x,a]_{\gamma}\delta z + x[\delta,\gamma]_a z)\beta[y,a]_{\gamma} = 0 \quad \forall \beta \in \Gamma.$$

This implies either $a \in C_{\gamma}$ or $([x, a]_{\gamma}\delta z + x[\delta, \gamma]_a z) = 0 \quad \forall x, y, z \in M, \quad \forall \delta \in \Gamma$. Hence, we have $([x, a]_{\gamma}\delta z + x[\delta, \gamma]_a z) = 0 \quad \forall x, y, z \in M, \quad \forall \delta \in \Gamma$. In view of (2.9) the equation in Lemma 3 (iii) reduces to

$$[x\delta z, a]_{\gamma} = x\delta[z, a]_{\gamma} \quad \forall x, z \in M, \quad \forall \delta \in \Gamma.$$
(2.10)

Now, by Lemma 3 (ii) and (2.10) we get

$$0 = [[x, a]_{\gamma}, a]_{\gamma}] = [x\gamma a - a\gamma x, a]_{\gamma} = -a\gamma [x, a]_{\gamma}.$$

From the last equality we obtain

$$a\gamma x\gamma a = a\gamma a\gamma x \quad \forall x \in M.$$
 (2.11)

Moreover, by hypothesis we have $a\gamma[x,a]_{\gamma} = [x,a]_{\gamma}\gamma a$. By (2.11), the left side of this equation is zero. Hence

$$a\gamma x\gamma a = x\gamma a\gamma a \quad \forall x \in M \tag{2.12}$$

is obtained. By (2.11) and (2.12), we get $x\gamma a\gamma a = a\gamma a\gamma x \quad \forall x \in M$. That is, $a\gamma a \in C_{\gamma}$. On the other hand, using (2.10), we get $a\beta a\gamma a - a\gamma a\beta a = [a\beta a, a]_{\gamma} = a\beta [a, a]_{\gamma} = 0$ for all $\beta \in \Gamma$, and so $a\beta a\gamma a = a\gamma a\beta a \quad \forall \beta \in \Gamma$. Finally, using this equality and $a\gamma a \in C_{\gamma}$, we obtain $a\gamma a\beta [x, a]_{\gamma} = 0$ for all $x \in M \quad \beta \in \Gamma$, that is, $a\gamma a\Gamma [x, a]_{\gamma} = 0$ for all $x \in M$. Consequently, either $a\gamma a = 0$ or $a \in C_{\gamma}$.

One can prove the case of $n[\delta, \gamma]_a[y, a]_{\gamma} = 0$ for all $y, n \in M$, $\delta \in \Gamma$ similarly.

Remark: Let a and γ be nonzero elements of M and Γ , respectively. Then $d: M \to M$ defined by $d(x) = [a, x]_{\gamma}$ and $k: \Gamma \to \Gamma$ defined by $k(\beta) = [\gamma, \beta]_a$ are two additive maps. Moreover d is a k-derivation of M. We call d an inner k-derivation of M as an inner derivation of an associative ring.

Lemma 5: Let M be a prime Γ -ring, γ and a be nonzero elements of Γ and C_{γ} , respectively. For each $x, y \in M$ and $\beta \in \Gamma$, the following conditions are satisfied.

i. $[\gamma, \beta]_a = 0$

- ii. $[a\gamma x, y]_{\beta} = a\gamma [x, y]_{\beta}$ and $[x\gamma a, y]_{\beta} = [x, y]_{\beta}\gamma a$
- iii. $[a\beta x, y]_{\gamma} = [a, y]_{\beta}\gamma x + a\beta [x, y]_{\gamma}$
- iv. If $b \in C_{\gamma}$ then $[a\gamma b, x]_{\beta} = [a\beta b, x]_{\gamma} = a\gamma [b, x]_{\beta} = a[\beta, \gamma]_{x}b$
- **v.** If $b \in C_{\gamma}$ and if $a\Gamma b \subseteq C_{\gamma}$ then b = 0 or M is commutative Γ -ring.

Proof: (i) - (iv) obvious. (v) If $a\Gamma b = 0$ then b = 0. Otherwise $a\Gamma b\Gamma M$ is a nonzero ideal of M contained in C_{γ} . By Lemma 4 (viii) the proof is completed.

Lemma 6: Let M be a prime Γ -ring, U be a nonzero left (right) ideal of the Γ -ring M and Ω be a nonzero left (right) of the *M*-ring Γ . The following statements are satisfied for each $a \in M$ and $\gamma \in \Gamma$:

i. $\gamma U \Gamma = 0 \Rightarrow \gamma = 0$ $(\Gamma U \gamma = 0 \Rightarrow \gamma = 0)$

ii. $a\Omega M = 0 \Rightarrow a = 0$ $(M\Omega a = 0 \Rightarrow a = 0).$

Proof: Obvious.

Lemma 7: Let M be a prime Γ -ring, U be a nonzero left (right) ideal of the Γ -ring M and γ be a nonzero element of Γ . If $U \subseteq C_{\gamma}$ then M is commutative.

Proof: By hypothesis, $u\gamma x = x\gamma u \in U$ for $x \in M$, $u \in U$. Hence $M\gamma U \subseteq U$. If $M\gamma U = 0$ then $\Gamma M\gamma U\Gamma = 0$. It is clear that if M is a prime Γ -ring, then Γ is prime M-ring. So, $\Gamma = 0$ or $\gamma U\Gamma = 0$. By Lemma 6 (i), $\gamma = 0$. This is a contradiction. Consequently, $M\gamma U \neq 0$. Moreover, since $u\gamma x \in U \subset C_{\gamma}$, by Lemma 5 (i) and (ii) we have for every $m, x, y \in M, u \in U, \beta \in \Gamma m\gamma u\beta [x, y]_{\gamma} = m\beta u\gamma [x, y]_{\gamma} = m\beta [u\gamma x, y]_{\gamma} = 0$. That is, $M\gamma U\Gamma[x, y]_{\gamma} = 0$. The primeness of M implies that $[x, y]_{\gamma} = 0$ for all $x, y \in M$. By Lemma 4 (ix), M is a commutative Γ -ring.

The proof is similar if U is a right ideal of M.

Lemma 8: Let M be a prime Γ -ring, d be a nonzero k-derivation of M, γ be a nonzero element of Γ and d(M) is contained in C_{γ} . If $a \in C_{\gamma}$, then $a \in C_{k(\gamma)}$.

Proof: It is clear by using Lemma 3 (vii).

Lemma 9: Let M, d and γ be as in Lemma 8. If $d(x)\gamma d(y) = 0$ for all $x, y \in M$, then d(M) is a left or right ideal of M.

Proof: Replace x by $x\beta z$ where $z \in M$, $\beta \in \Gamma$ in the equation $d(x)\gamma d(y) = 0$, we have $d(x)\beta z\gamma d(y) + xk(\beta)z\gamma d(y) = 0$. Replace β by $\beta m\delta$ with $m \in M$, $\delta \in \Gamma$ in the equation, we get $(d(x)\beta m + xk(\beta)m)\delta z\gamma d(y) = 0$. Since M is a prime Γ -ring, this statement implies $(d(x)\beta m + xk(\beta)m) = 0$ or $z\gamma d(y) = 0$. Suppose that for all $x, m \in M$ and $\beta \in \Gamma$ $(d(x)\beta m + xk(\beta)m) = 0$. Then $(d(x\beta m) = x\beta d(y)$ so d(M) is a left ideal of M. Now, let $z\gamma d(y) = 0$ for all $z, y \in M$. Replace y by $y\beta m$ with $m \in M$ and $\beta \in \Gamma$ in the preceding statement to obtain $z\gamma yk(\beta)m + z\gamma y\beta d(m)) = 0$. In the last equation, replace β by $\beta n\delta$, where $n \in M$, $\delta \in \Gamma$, we get $z\gamma y\beta (nk(\delta)m + n\delta d(m)) = 0$. That is $z\gamma y\Gamma(nk(\delta)m + n\delta d(m)) = 0$ for all $n, m, z, y \in M$, $\delta \in \Gamma$. This implies $nk(\delta)m + n\delta d(m) = 0$ for all $n, m \in M$ and $\delta \in \Gamma$. One can then easily show that d(M) is a right ideal of M.

Theorem 3: Let M be a prime Γ -ring of characteristic not 2, d be a nonzero kderivation of M, γ be a nonzero element of Γ and $k(\gamma) \neq 0$. If $d(M) \subseteq C_{\gamma}$ then M is commutative Γ -ring.

Proof: By hypothesis and Lemma 3 (vii), we have $d([m, n]_{\gamma}) = [m, n]_{k(\gamma)} \in C_{\gamma}$ for all $n, m \in M$. In this statement, replace m by $d(x)\beta d(y)$ and n by z where $x, y, z \in M$ and $\beta \in \Gamma$ and use Lemma 5 (iv), we obtain $d(x)[\beta, k(\gamma)]_z d(y) \in C_{\gamma}$. By Lemma 8, the last statement and hypothesis implies $d(x)[\beta, k(\gamma)]_z d(y) \in C_{k(\gamma)}$ and $d(M) \subseteq C_{k(\gamma)}$, respectively. Hence, we get,

$$[d(x)[\beta, k(\gamma)]_z d(y), z]_{k(\gamma)} = 0 \quad x, y, z \in M, \quad \beta \in \Gamma.$$

Using Lemma 3 (iii) and $d(M) \subseteq C_{k(\gamma)}$, we obtain

$$d(x)[[\beta, k(\gamma)]_z, k(\gamma)]_z d(y) = 0 \quad x, y, z \in M, \quad \beta \in \Gamma.$$

In the last equation, replace β by $\beta d(s)\delta$, where $s \in M$, $\delta \in \Gamma$. Use Lemma 3 (iv), and Char $M \neq 2$, we get $d(x)[\beta, k(\gamma)]_z d(s)[\delta, k(\gamma)]_z d(y) = 0$. Replacing β by $\beta d(n)\sigma$, where $n \in M$, $\sigma \in \Gamma$, we have $0 = d(x)[\beta, k(\gamma)]_z d(n)\sigma d(s)[\delta, k(\gamma)]_z d(y)$. That is,

$$d(x)[\beta, k(\gamma)]_z d(n)\Gamma d(s)[\delta, k(\gamma)]_z d(y) = 0 \quad \forall x, y, s, z \in M, \quad \beta, \delta \in \Gamma.$$

The primeness of M gives us

$$d(x)[\beta, k(\gamma)]_z d(n) = 0 \quad \forall x, y, z \in M, \quad \beta \in \Gamma.$$

By Lemma 5 (iv), we obtain

$$0 = d(x)[\beta, k(\gamma)]_z d(n) = [d(x)\beta d(n), z]_{k(\gamma)} = [d(x)k(\gamma)d(n), z]_{\beta}.$$

This implies $d(x)k(\gamma)d(n) \in C_{\beta}$, for all $\beta \in \Gamma$, that is, $d(x)k(\gamma)d(n) \in C_{\Gamma}$. If there are some elements x, n of M such that $d(x)k(\gamma)d(n) \neq 0$, then M is a commutative Γ -ring by Lemma 4 (vii). If $d(x)k(\gamma)d(n) = 0$ for all $x, n \in M$, then d(M) is a right (or left) ideal of M by Lemma 9. Since $0 \neq d(M) \subseteq C_{\gamma}$ by the hypothesis, Lemma 7 implies Mis commutative Γ -ring.

References

- Barnes, W. E. , On the Γ-Ring of the Nobusawa, Pacific Journal of Mathematics, 18/3, 411-422, 1996.
- [2] Herstein, I. N., Topics in Ring Theory, University of Chicago Press, Chicago, 1969.
- [3] Kandamar, H., On the Commutativity of the Gamma-Rings, VI. National Mathematics Symposium, Kibris, 1993
- [4] Kyuno, S., Gamma Rings, Hadronic Press, Inc. 1991.
- [5] Kyuno, S., On Prime Gamma Rings, Pacific Journal of Mathematics, 75, 185-190, 1978.
- [6] Luh, J., On the Theory of Simple Γ-Rings, Michigan Math. J., 16, 65-75, 1969.
- [7] Nobusawa, N., On the Generalization of the Ring Theory, Osaka J. Math. 1, 81-89, 1964.

Hatice KANDAMAR Department of Mathematics, Adnan Menderes University, 09010, Aydın-TURKEY

231

Received 14.05.1998