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The k-Derivation of a Gamma-Ring

Hatice Kandamar

Abstract

In this paper, the k-derivation is defined on a Γ-ring M (that is, if M is a

Γ-ring, d : M → M and k : Γ → Γ are to additive maps such that d(aβb) =

d(a)βb+ ak(β)b+ aβd(b) for all a, b ∈M, β ∈ Γ, then d is called a k-derivation of

M) and the following results are proved. (1) Let R be a ring of characteristic not

equal to 2 such that if xry = 0 for all x, y ∈ R then r = 0. If d is a k-derivation

of the (R =)Γ-ring R with k = d, then d is the ordinary derivation of R. (2) Let

M be a nonzero prime Γ-ring of characteristic not equal to 2, γ be an element of

Gamma and a is an element in M such that [[x,a]γ , a]γ = 0 for all x ∈ M . Then

aγa = 0 or a ∈ Cγ . (3) Let M be a prime Γ-ring with CharM 6= 2, d be a nonzero

k-derivation of M , γ be a nonzero element of Γ and k(γ) 6= 0. If d(M) ⊆ Cγ , then

M is a commutative Γ-ring.
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1. Preliminaries

Let M be additive abelian groups. If there exits a mapping of M × Γ ×M to M

( the image of (a, γ, b), a, b ∈ M, γ ∈ Γ, being denoted by (aγb)), satisfying for all

a, b, c ∈M, α, β ∈ Γ:

B1. (a + b)αc = aαc+ bαc, a(α+ β)b = aαb+ aβb, aα(b+ c) = aαb+ aαc

B2. (aαb)βc = aα(bβc),
AMS subject classifications. primary 16Y60, secondary 16W25, 16U70, 16N60, 16U80
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then M is called a Γ-ring in the sense of Barnes [1]. This definition is due to Barnes, and

is slightly weaker than the original one due to Nobusava [7].

If, in addition, there exits a mapping of Γ×M ×Γ to Γ (the image of (γ, a, β), being

denoted by γaβ) such that the following axioms are satisfied for all a, b, c ∈M, α, β ∈ Γ:

N1. Same as B1

N2. (aαb)βc = a(αbβ)c = aα(bβc)

N3. aαb = 0 for all a, b ∈M implies α = 0,

then M is called a Γ-ring in the sense of Nobusawa.

Let M be a Γ-ring in the sense a of Barnes. A subgroup A of the additive group M

is said to be a right (resp. left) ideal of Γ-ring M if aγy (resp. yγa) for all a ∈ A,

γ ∈ Γ, y ∈ M . If A is both a left and a right ideal, then A is said to be a two-

sided ideal or simply an ideal of M . When S and T are subsets of M , and Ω is a

subset of Γ, we denote by SΩT the set of all finite sums of the form
∑
siγiti where

si ∈ S, γi ∈ Ω and ti ∈ T . If Ω = {γ}, then SΩT is denoted by SγT end so on [4].

If I and J are a left ideal and a right ideal of M , respectively, then IΩJ is an ideal of M .

Similar properties hold depending on ideal properties of I and J . If aΓMΓb = 0 with

a, b ∈ M implies either a=0 or b=0, then M is called a prime Γ-ring [5]. Moreover, a

Γ-ring M is said to be completely prime aΓb = 0 with a, b ∈ M implies a = 0 or b = 0

[6]. We also note that, for a Γ-ring in the sense Nobusawa, primeness and completely

primeness are equivalent. CΓ = {c ∈ M : cαm = mαc ∀α ∈ Γ and ∀m ∈ M} and

Cα = {c ∈ M : cαm = mαc ∀m ∈M} with α ∈ Γ are called the center and the α-center

of a Γ-ring M , respectively. If CΓ = M then M is called a commutative Γ-ring. If M is

a Γ-ring in the sense of Nobusawa, the center CM and the the a-center Ca of a M -ring Γ

are similarly defined.

As it is well known, if R is a semiprime 2-torsion-free ring and t ∈ R commutes with

all tx− xt for x ∈ R then t ∈ Z (the center of R) [2]. This corollary is used in the proofs

of many theorems on commutativity of rings. In this paper, we shall consieder a similar

problem on the Γ-ring M . That is, let M be a nonzero prime Γ-ring of characteristic not

equal to 2, γ be a nonzero element of Γ, a is an element in M such that aγa 6= 0 and a

commutes with all xγa− aγx for x ∈M , then a must be in Cγ .
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2. k-Derivation of Γ-Ring

Let M be a Γ-ring (in the sense of Barnes), d and k two additive maps from M to M

and from Γ to Γ, respectively. If for all a, b ∈M and β ∈ Γ, d(aβb) = d(a)βb+ ak(β)b +

aβd(b) is satisfied, then d is called a k-derivation of M .

Every associative ring R is a Γ-ring where R = Γ in the sense of Barnes. Let be a

derivation of a ring R, that is, d is an additive map from R to R and d(xy) = d(x)y+xd(y)

for all x, y ∈ R. It is clear that d is a k-derivation of the (R =)Γ-ring R with d = k.

Remark : If M is a Γ-ring in the sense of Barnes and d is a k-derivation of the Γ-ring

M , k need not be determined uniquely. But if M is a Γ-ring in the sense of Nobusawa

and d is a k-derivation of the Γ-ring M , then k is uniquely determined. Particularly, if a

ring R satisfies N3 (or R is semiprime or R has unity or R has no nonzero zero divisor),

then R is a (R =)Γ-ring in the sense of Nobusawa. In this case, if d is a k- derivation of

the (R =)Γ-ring R with characteristic not equal to 2, then d is the ordinary derivation of

this ring R if and only if d = k (This proves in Theorem 1).

Lemma 1: Let M be a Γ-ring in the sense of Nobusawa. If d is a k-derivation of the

Γ-ring M , then k(αaβ) = k(α)aβ + αd(a)β + αak(β) for all a ∈M and α, β ∈ Γ.

Proof: It is clear by using N3.

Lemma 2: Let M be a Γ-ring in the sense of Nobusawa. If d is both a k1- and

k2-derivation of the Γ-ring M , then k1 = k2.

Proof: Using the definition, k1 = k2 is obtained by N3.

Theorem 1: Let R be a ring of characteristic not equal to 2 satisfying N3, d be a

k-derivation of the (R =)Γ-ring R. d is the ordinary derivation of the ring R if and only

if d = k.

Proof: Let R be a ring of characteristic not equal to 2 satisfying N3 and d be a k-

derivation of the (R =)Γ-ring R. If d is the ordinary derivation of R, then it is clear that

d = k. Now we prove the converse. Let d be a k- derivation of the (R =)Γ-ring R with k =

d. Since d is an additive map fromR toR, we need only to show that d(xy) = d(x)y+xd(y)
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for all x, y ∈ R. By hypothesis, we have d(xyt) = d(x)yt+xd(y)t+xyd(t) for all x, y, t ∈ R.

Replace y by yz and t by tn in the equation where z, n ∈ R, and using d(x(yz)(tn)) =

d(xy(ztn)), we get xd(yz)tn + xyzd(tn) = xd(y)ztn + xyd(z)tn + xyzd(t)n + xyztd(n).

This gives x(d(yz)tn + yzd(tn) − d(y)ztn − yd(z)tn − yzd(t)n − yztd(n))m = 0 for all

m ∈ R. Using N3, we have

d(yz)tn + yzd(tn)− d(y)ztn − yd(z)tn − yzd(t)n − yztd(n) = 0 ∀y, z, t, n ∈ R.

Moreover, since d((yz)tn) = d(yz(tn)), using the definition of k-derivation we have

d(yz)tn − yzd(tn)− d(y)ztn − yd(z)tn + yzd(t)n + yztd(n) = 0 ∀y, z, t, n ∈ R.

Adding up the last two equations, using CharR 6= 2 we have

d(yz)tn − d(y)ztn − yd(z)tn = 0.

This implies s(d(yz)t − d(y)zt − yd(z)t)n = 0, for all s ∈ R. Using N3, we have

d(yz)t − d(y)zt − yd(z)t = 0. In the same way, we get,

d(yz) − d(y)z − yd(z) = 0, ∀y, z ∈ R.

Hence, the theorem is proved.

From now on, (except where stated otherwise) M will be a Γ-ring in the sense of

Nobusawa. For a, b ∈ M and α, β ∈ Γ, [a, b]α and [α, β]b will be denoted aαb− bαa and

αbβ − βbα respectively.

Lemma 3: Let M be a Γ-ring and d be a k-derivation of M . Then the following

equalities are satisfied for a, b, c, x ∈M and α, β, γ ∈ Γ:

i. [a, b]β = −[b, a]β, [α, β]a = −[β, α]a

ii. [a+ b, c]β = [a, c]β + [b, c]β, [α+ β, γ]a = [α, γ]a + [β, γ]a

iii. [aαb, x]β = [a, x]βαb+ a[α, β]xb+ aα[b, x]β

iv. [αbβ, γ]a = [α, γ]abβ + α[b, a]γβ + αb[β, γ]a
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v. [[α, β]a, γ]a + [[γ, α]a, β]a + [[β, γ]a, α]a = 0

vi. [[a, b]β, c]β + [[c, a]β, b]β + [[b, c]β, a]β = 0

vii. d([a, b]β) = [d(a), b]β + [a, b]k(β) + [a, d(b)]β

viii. k([α, β]a) = [k(α), β]a + [α, β]d(a) + [α, k(β)]a.

Proof: Obvious.

Lemma 4: Let M be a prime Γ-ring, U , Ω be nonzero ideals of M and Γ, respectively.

Then the following statements are satisfied for a, b ∈M and α, β ∈ Γ:

i. aΩb = 0⇒ a = 0 or b = 0

ii. αUβ = 0⇒ α = 0 or β = 0

iii. aΓUΓb = 0⇒ a = 0 or b = 0

iv. αMΩMβ = 0⇒ α = 0 or β = 0

v. If uαv = 0 for all u, v ∈ U then α = 0

vi. CΓ = 0⇔ CM = 0

vii. Either CΓ 6= 0 or CM 6= 0⇒M is a commutative Γ-ring.

viii. U ⊆ Cγ , for 0 6= γ ∈ Γ⇒M is a commutative Γ-ring.

ix. 0 6= γ ∈ Γ and for all u, v ∈ U [u, v]γ = 0⇒M is a commutative Γ-ring [3].

Proof: The clarity of ii, iii, iv, v, viii is evident. Now we prove i, vi and vii.

i: Let aΩb = 0. So aΓMΩMΓb ⊆ aΩb = 0. By primeness of M a = 0 or b = 0, since

MΩM 6= 0:

iv: Let CM = 0. Suppose that CΓ 6= 0. Then, there exists a nonzero element a of CΓ.

So, aγx − xγa = 0 for all γ ∈ Γ and x ∈ M . By this equation, replace γ by γyδ where

y ∈M and δ ∈ Γ, using a ∈ CΓ we obtain

0 = aγyδx − xγyδa= aγyδx − xγaδy =aγyδx − aγxδy = aγ(yδx − xδy)
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That is, aγ(yδx − xδy) = 0 for all γ, δ ∈ Γ and x, y ∈ M . So aΓ(yδx − xδy) = 0.

By primeness of M , we get xδy − yδx = 0 for all x, y ∈ M, δ ∈ Γ. This implies that

δ ∈ CM for all δ ∈ Γ. This contradicts by CM = 0.

vii: Suppose that CΓ 6= 0. There should be a nonzero element a of CΓ. That is,

xγa = aγx for all γ ∈ Γ, x ∈ M . We obtain

aδ(xγy−yγx) = aδxγy−aδyγx = y(δxγ)a−aδ(yγx) = yδ(xγa)−aδ(yγx) = yδ(aγx)−
aδ(yγx) = (yδa)γx−aδ(yγx) = (aδy)γx− (aδy)γx = 0. Hence aΓ(xγy−yγx) = 0 for all

x, y ∈M, γ ∈ Γ. By primeness of M, we have xγy − yγx = 0 for all x, y ∈M, γ ∈ Γ.

So, M is a commutative Γ-ring.

Theorem 2: Let M be a nonzero prime Γ-ring of characteristic not equal to 2 and γ

be an element of Γ. If there exists a ∈ M such that [[x, a]γ, a]γ = 0 for all x ∈ M , then

aγa = 0 or a ∈ Cγ .

Proof : We suppose γ 6= 0 (otherwise aγa = 0). By the hypothesis, we have

[[xβy, a]γ , a]γ = 0 for all x, y ∈ M and β ∈ Γ. Using Lemma 3 (iii) and hypothesis,

we get

2[x, a]γ[β, γ]ay + 2[x, a]γβ[y, a]γ + 2x[β, γ]a[y, a]γ + x[[β, γ]a, γ]ay = 0. (2.1)

Replace x and y by [x, a]γ and [y, a]γ , respectively, then we have

[x, a]γ[[β, γ]a, γ]a[y, a]γ = 0, ∀x, y ∈M ∀β ∈ Γ. (2.2)

On the other hand, Lemma 3 (iv) implies

[β[z, a]γδ, γ]a = [β, γ]a[z, a]γδ + β[z, a]γ[δ, γ]a, ∀z ∈M ∀β, δ ∈ Γ. (2.3)

In (2.2) replacing β by β[z, a]γδ where z ∈ M , δ ∈ Γ, using (2.2) (2.3) and considering

CharM 6= 2, we obtain

[x, a]γ[β, γ]a[z, a]γ[δ, γ]a[y, a]γ = 0 ∀x, y, z ∈M ∀β, δ ∈ Γ. (2.4)

In (2.4), replace β by β[m, a]γσ where m ∈M , σ ∈ Γ and use (2.3) and (2.4), we have

[x, a]γ[β, γ]a[m, a]γσ[z, a]γ[δ, γ]a[y, a]γ = 0.
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That is,

[x, a]γ[β, γ]a[m, a]γΓ[z, a]γ[δ, γ]a[y, a]γ = 0.

Since M is prime Γ-ring, we get

[x, a]γ[β, γ]a[m, a]γ = 0 ∀x,m ∈M ∀β ∈ Γ. (2.5)

Replacing x by [x, a]γ in (2.1), and using (2.5) and the hypothesis, we have

[x, a]γ[[β, γ]a, γ]ay = 0 ∀x, y ∈M ∀β ∈ Γ. (2.6)

In the same way, if we replace y by [y, a]γ in (2.1) we obtain

x[[β, γ]a, γ]a[y, a]γ = 0 ∀x, y ∈M ∀β ∈ Γ. (2.7)

In (2.6), replace y and β by [y, a]γ and βzδ where z ∈M, δ ∈ Γ, respectively, and use

(2.5), (2.6), (2.7) and CharM 6= 2, we get

[x, a]γ[β, γ]az[δ, γ]a[y, a]γ = 0 ∀x, y, z ∈M ∀β, δ ∈ Γ.

In the last statement, replace z by zσn with n ∈ M , σ ∈ Γ, we have

[x, a]γ[β, γ]az = 0 or n[δ, γ]a[y, a]γ = 0 ∀x, y, z, n ∈M ∀β, δ ∈ Γ.

Suppose that [x, a]γ[β, γ]az = 0 for all x, z ∈ M, β ∈ Γ. Replace β by βy[δ, γ]a where

y ∈M, δ ∈ Γ and using [x, a]γ[β, γ]az = 0 we get

[x, a]γβy[[δ, γ]a, γ]az = 0 ∀β ∈ Γ.

That is, [x, a]γΓy[[δ, γ]a, γ]az = 0. So [x, a]γ = 0 or y[[δ, γ]a, γ]az = 0, ∀x, y, z ∈ M ,

∀δ ∈ Γ. If [x, a]γ = 0 for all x ∈ M then a ∈ Cγ . Now, suppose that y[[δ, γ]a, γ]az = 0

∀y, z ∈M, ∀δ ∈ Γ. By (N3), we have

[[δ, γ]a, γ]a = 0 ∀δ ∈ Γ. (2.8)

Since CharM 6= 2, by the assumption and (2.8), equation (2.1) implies

[x, a]γβ[y, a]γ + x[β, γ]a[y, a]γ = 0 ∀x, y ∈M, ∀β ∈ Γ. (2.9)
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Replace x by xδz with z ∈M, δ ∈ Γ and use (2.9), then

([x, a]γδz + x[δ, γ]az)β[y, a]γ = 0 ∀β ∈ Γ.

This implies either a ∈ Cγ or ([x, a]γδz + x[δ, γ]az) = 0 ∀x, y, z ∈ M, ∀δ ∈ Γ. Hence,

we have ([x, a]γδz + x[δ, γ]az) = 0 ∀x, y, z ∈ M, ∀δ ∈ Γ. In view of (2.9) the equation

in Lemma 3 (iii) reduces to

[xδz, a]γ = xδ[z, a]γ ∀x, z ∈M, ∀δ ∈ Γ. (2.10)

Now, by Lemma 3 (ii) and (2.10) we get

0 = [[x, a]γ, a]γ] = [xγa− aγx, a]γ = −aγ[x, a]γ.

From the last equality we obtain

aγxγa = aγaγx ∀x ∈M. (2.11)

Moreover, by hypothesis we have aγ[x, a]γ = [x, a]γγa. By (2.11), the left side of this

equation is zero. Hence

aγxγa = xγaγa ∀x ∈ M (2.12)

is obtained. By (2.11) and (2.12), we get xγaγa = aγaγx ∀x ∈M . That is, aγa ∈ Cγ .

On the other hand, using (2.10), we get aβaγa − aγaβa = [aβa, a]γ = aβ[a, a]γ = 0 for

all β ∈ Γ, and so aβaγa = aγaβa ∀β ∈ Γ. Finally, using this equality and aγa ∈ Cγ ,

we obtain aγaβ[x, a]γ = 0 for all x ∈ M β ∈ Γ, that is, aγaΓ[x, a]γ = 0 for all x ∈ M .

Consequently, either aγa = 0 or a ∈ Cγ .

One can prove the case of n[δ, γ]a[y, a]γ = 0 for all y, n ∈M, δ ∈ Γ similarly.

Remark: Let a and γ be nonzero elements of M and Γ, respectively. Then d : M →
M defined by d(x) = [a, x]γ and k : Γ → Γ defined by k(β) = [γ, β]a are two additive

maps. Moreover d is a k-derivation of M . We call d an inner k-derivation of M as an

inner derivation of an associative ring.

Lemma 5: Let M be a prime Γ-ring, γ and a be nonzero elements of Γ and Cγ ,

respectively. For each x, y ∈M and β ∈ Γ, the following conditions are satisfied.
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i. [γ, β]a = 0

ii. [aγx, y]β = aγ[x, y]β and [xγa, y]β = [x, y]βγa

iii. [aβx, y]γ = [a, y]βγx + aβ[x, y]γ

iv. If b ∈ Cγ then [aγb, x]β = [aβb, x]γ = aγ[b, x]β = a[β, γ]xb

v. If b ∈ Cγ and if aΓb ⊆ Cγ then b = 0 or M is commutative Γ-ring.

Proof: (i) - (iv) obvious. (v) If aΓb = 0 then b = 0. Otherwise aΓbΓM is a nonzero

ideal of M contained in Cγ . By Lemma 4 (viii) the proof is completed.

Lemma 6: Let M be a prime Γ-ring, U be a nonzero left (right) ideal of the Γ-ring M

and Ω be a nonzero left (right) of the M -ring Γ. The following statements are satisfied

for each a ∈M and γ ∈ Γ:

i. γUΓ = 0⇒ γ = 0 (ΓUγ = 0⇒ γ = 0)

ii. aΩM = 0⇒ a = 0 (MΩa = 0⇒ a = 0).

Proof: Obvious.

Lemma 7: Let M be a prime Γ-ring, U be a nonzero left (right) ideal of the Γ-ring

M and γ be a nonzero element of Γ. If U ⊆ Cγ then M is commutative.

Proof: By hypothesis, uγx = xγu ∈ U for x ∈ M, u ∈ U . Hence MγU ⊆ U . If

MγU = 0 then ΓMγUΓ = 0. It is clear that if M is a prime Γ-ring, then Γ is prime

M -ring. So, Γ = 0 or γUΓ = 0. By Lemma 6 (i), γ = 0. This is a contradiction.

Consequently, MγU 6= 0. Moreover, since uγx ∈ U ⊂ Cγ , by Lemma 5 (i) and (ii) we

have for every m, x, y ∈M , u ∈ U , β ∈ Γ mγuβ[x, y]γ = mβuγ[x, y]γ = mβ[uγx, y]γ = 0.

That is, MγUΓ[x, y]γ = 0. The primeness of M implies that [x, y]γ = 0 for all x, y ∈M .

By Lemma 4 (ix), M is a commutative Γ-ring.

The proof is similar if U is a right ideal of M .

229



KANDAMAR

Lemma 8: Let M be a prime Γ-ring, d be a nonzero k-derivation of M , γ be a nonzero

element of Γ and d(M) is contained in Cγ . If a ∈ Cγ , then a ∈ Ck(γ).

Proof: It is clear by using Lemma 3 (vii).

Lemma 9: Let M , d and γ be as in Lemma 8. If d(x)γd(y) = 0 for all x, y ∈ M ,

then d(M) is a left or right ideal of M .

Proof: Replace x by xβz where z ∈ M , β ∈ Γ in the equation d(x)γd(y) = 0,

we have d(x)βzγd(y) + xk(β)zγd(y) = 0. Replace β by βmδ with m ∈ M , δ ∈ Γ in

the equation, we get (d(x)βm + xk(β)m)δzγd(y) = 0. Since M is a prime Γ-ring, this

statement implies (d(x)βm+ xk(β)m) = 0 or zγd(y) = 0. Suppose that for all x,m ∈M
and β ∈ Γ (d(x)βm + xk(β)m) = 0. Then (d(xβm) = xβd(y) so d(M) is a left ideal

of M. Now, let zγd(y) = 0 for all z, y ∈ M . Replace y by yβm with m ∈ M and

β ∈ Γ in the preceding statement to obtain zγyk(β)m + zγyβd(m)) = 0. In the last

equation, replace β by βnδ, where n ∈ M , δ ∈ Γ, we get zγyβ(nk(δ)m + nδd(m)) = 0.

That is zγyΓ(nk(δ)m + nδd(m)) = 0 for all n,m, z, y ∈ M , δ ∈ Γ. This implies

nk(δ)m + nδd(m) = 0 for all n,m ∈ M and δ ∈ Γ. One can then easily show that

d(M) is a right ideal of M .

Theorem 3: Let M be a prime Γ-ring of characteristic not 2, d be a nonzero k-

derivation of M , γ be a nonzero element of Γ and k(γ) 6= 0. If d(M) ⊆ Cγ then M is

commutative Γ-ring.

Proof: By hypothesis and Lemma 3 (vii), we have d([m, n]γ) = [m, n]k(γ) ∈ Cγ for

all n,m ∈ M . In this statement, replace m by d(x)βd(y) and n by z where x, y, z ∈ M
and β ∈ Γ and use Lemma 5 (iv), we obtain d(x)[β, k(γ)]zd(y) ∈ Cγ . By Lemma 8,

the last statement and hypothesis implies d(x)[β, k(γ)]zd(y) ∈ Ck(γ) and d(M) ⊆ Ck(γ),

respectively. Hence, we get,

[d(x)[β, k(γ)]zd(y), z]k(γ) = 0 x, y, z ∈M, β ∈ Γ.

Using Lemma 3 (iii) and d(M) ⊆ Ck(γ), we obtain

d(x)[[β, k(γ)]z, k(γ)]zd(y) = 0 x, y, z ∈ M, β ∈ Γ.
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In the last equation, replace β by βd(s)δ, where s ∈M, δ ∈ Γ. Use Lemma 3 (iv), and

CharM 6= 2, we get d(x)[β, k(γ)]zd(s)[δ, k(γ)]zd(y) = 0. Replacing β by βd(n)σ, where

n ∈M, σ ∈ Γ,we have 0 = d(x)[β, k(γ)]zd(n)σd(s)[δ, k(γ)]zd(y). That is,

d(x)[β, k(γ)]zd(n)Γd(s)[δ, k(γ)]zd(y) = 0 ∀x, y, s, z ∈M, β, δ ∈ Γ.

The primeness of M gives us

d(x)[β, k(γ)]zd(n) = 0 ∀x, y, z ∈M, β ∈ Γ.

By Lemma 5 (iv), we obtain

0 = d(x)[β, k(γ)]zd(n) = [d(x)βd(n), z]k(γ) = [d(x)k(γ)d(n), z]β.

This implies d(x)k(γ)d(n) ∈ Cβ, for all β ∈ Γ, that is, d(x)k(γ)d(n) ∈ CΓ. If there are

some elements x, n of M such that d(x)k(γ)d(n) 6= 0, then M is a commutative Γ-ring

by Lemma 4 (vii). If d(x)k(γ)d(n) = 0 for all x, n ∈ M , then d(M) is a right (or left)

ideal of M by Lemma 9. Since 0 6= d(M) ⊆ Cγ by the hypothesis, Lemma 7 implies M

is commutative Γ-ring.
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