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On Generalized Higher Derivations∗
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Abstract

We define the notion of generalized higher derivations and give some elementary
relations between generalized higher derivations and higher derivations in the usual
sense. We extend the result of an exact sequence of the set of all derivations

Der(A,M) and the set of all generalized derivations gDer(A,M) given in [N1,

Theorem 2.4]. Moreover, we discuss generalized higher Jordan derivations and Lie

derivations.

0. Introduction

The notion of generalized derivations on a ring A which was introduced by M. Brešar
[B] is related to a derivation of A. In [N1], the author defined anothor type of generalized
derivations without using derivations, and give some categorical properties of that gen-
eralized derivations. When A has an identity element, these two notions coincide. The
results in [N1] were extended to generalized Jordan and Lie derivations in [N2].

On the other hand, in his paper [R], P. Ribenboim gave some properties of higher
derivations of modules. His higher derivation f from an A-module M to M is defined
by using a higher derivation d = (dt) : A → A and the case of length 1 is nothing but a
generalized derivation in the sense of Brešar whenever d0 is the identity map on A.

In this note, we define a generalized higher derivation without using a higher derivation
at the viewpoint of [N1] and give some categorical properties which are related to [N1].
We also treat generalized higher Jordan and Lie derivations.

In §1, we give definitions and elementary properties of generalized derivations, gen-
eralized Jordan and Lie derivations which were given in [N1, N2] for convenience to
the reader. In §2, we define generalized higher derivations and give a relation between
higher derivations and generalized higher derivations. Moreover, we discuss the relations
∗Dedicated to the memory of my friend, Professor Mehmet Sapancı
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of higher Jordan and Lie derivations and their generalizations. In §3, we consider the
generalized higher derivations of length 2. Then we have an exact sequence which is a
natural extension of the length 1 in [N1, Theorem 2.4]. In §4, we discuss higher Jordan
derivations. Since the properties of Jordan derivations are similar to derivations, we have
an exact sequence which was given in [R, §2]. Higher Lie derivations are treated in the
final section 5. In the stand point of ring theory, it seems that Jordan derivations and
Lie derivation are quite different properties.

In the following, A and B are k-algebras over a commutative ring k. A left A/k-
module M means that M is a left A-module such that a(αω) = α(aω) and αω = ωα for
any a ∈ A, α ∈ k, ω ∈ M . An (A/k, B/k)-bimodule M means a left A/k and a right
B/k-module such that a(ωb) = (aω)b (a ∈ A, b ∈ B, ω ∈ M). In this case, if A = B,
then we say M an A/k-bimodule. All maps are k-linear maps unless otherwise stated.

1. Preliminaries

In this section, we give definitions of some type of derivations. Let M be an A/k-
bimodule, d : A→M a k-linear map and x, y ∈ A. d is called a derivation if

d(xy) = d(x)y + xd(y). (1.1)

J : A→M is called a Jordan derivation if

J(x2) = J(x)x+ xJ(x), (1.2)

and L : A→M is called a Lie derivation if

L([x, y]) = [L(x), y] + [x, L(y)], (1.3)

where [x, y] = xy − yx. The properties of these derivations were discussed in a lot of
papers till now. In [B], Brešar defined the notion of generalized derivation as follows.
f : A→ M is called a generalized derivation if there exists a derivation d : A→ M such
that

f(xy) = f(x)y + xd(y). (1.4)

We call f a d-derivation. Using this idea, we can define a generalized Jordan and Lie
derivations in the sense of Brešar as follows: g : A→ M is called a J-Jordan derivation
if

g(x2) = g(x)x + xJ(x), (1.5)

and h : A→M is called a L-Lie derivation if

h([x, y]) = [h(x), y] + [x, L(y)], (1.6)
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where J (resp. L) is a Jordan (resp. Lie) derivation. We define them without using the
corresponding derivations as follows: Let f , g, h : A → M be k-linear maps and ω an
element of M . A pair (f ; ω) is called a generalized derivation if

f(xy) = f(x)y + xf(y) + xωy. (1.7)

And if
g(x2) = g(x)x + xg(x) + xωx, (1.8)

then (g ; ω) is called a generalized Jordan derivation, and if

h([x, y]) = [h(x), y] + [x, f(y)] + [x, ω, y], (1.9)

then (h ; ω) is called a generalized Lie derivation, where [x, ω, y] = xωy − yωx. These
definitions are given in [N1] and [N2].

The relation between these derivations and generalized them are as follows:

Lemma 1.1([N1, Lemmas 2.1 and 2.2], [N2, Lemmas 2.1 and 2.5]). Let M be an
A/k-bimodule and f : A → M a k-linear map. For ω ∈ M , ω` is a left multiplication of
ω. Then the following holds.

(1a) If (f ; ω) is a generalized derivation, then f + ω` is a derivation and f is a
(f + ω`)-derivation.

(1b) If f is a derivation, then (f + ω` ; −ω) is a generalized derivation.
(2a) If (f ; ω) is a generalized Jordan derivation, then f + ω` is a Jordan derivation

and f is a (f + ω`)-Jordan derivation.
(2b) If f is a Jordan derivation, then (f+ω` ; −ω) is a generalized Jordan derivation.
(3a) If (f ; ω) is a generalized Lie derivation, then f + ω` is a Lie derivation. In

this case, if ω is contained in C(M) = {τ ∈ M | τx = xτ for any x ∈ A}, then f is a
(f + ω`)-Lie derivation.

(3b) If f is a Lie derivation, then (f + ω` ; −ω) is a generalized Lie derivation.

Remark 1.2. The corresponding Lemma also holds for a right multiplication ωr.
For a d-derivation f , if A has an identity element 1, then (f ; −f(1)) is our generalized
derivation. But for a J-Jordan derivation (resp. L-Lie derivation) g, it is not known that
how can we construct our generalized Jordan derivation (resp. Lie derivation) from g.

An important relation of derivations and generalized derivations is given by the
following split exact sequence of k-modules ([N1,Theorem 2.4]).

0 −→M
ψM−→ gDer(A,M) ϕM−→ Der(A,M) −→ 0 (1.10)
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where gDer(A,M) (resp. Der(A,M)) is the set of all generalized derivations (resp. deriva-
tions) from A to M , ψM (ω) = (ω` ; −ω) and ϕM (f ; ω) = f + ω`. The similar exact
sequences of generalized Jordan and Lie derivations were given in [N2, Theorems 2.3 and
2.6].

2. Generalized higher derivations and their deformations

In this section, we give definitions of higher derivations and Ribenboim’s d-derivations.
After that we define generalized higher derivations without using higher derivations and
give the relation of higher derivations and generalized higher derivations.

Let I = {0, 1, · · · , n} or I = NNN = {0, 1, 2, · · ·} (with n = ∞ in this case). Let B be
an A/k-bimodule and let dt : A→ B be k-linear maps (t ∈ I). d = (dt) is called a higher
derivation of length n from A to B if for any t ∈ I and x, y ∈ A, there holds

dt(xy) =
t∑
i=0

di(x)dt−i(y). (2.1)

Then d0 is a ring homomorphism and d1 is a (d0, d0)-derivation in the usual sense. We
denote Dern(A,B) the set of all higher derivations of length n from A to B.

In [R], Ribenboim defined a higher derivation from a right A/k-module M to a right
B/k-module N as follows. Let ft : M → N be k-linear maps and d = (dt) ∈ Dern(A,B).
f = (ft) is called a higher d-derivation of length n from M to N if for any t ∈ I and
x ∈ A, ω ∈ M , there holds

ft(ωx) =
t∑
i=0

fi(ω)dt−i(x). (2.2)

If d = (ιA, d1) is a higher derivation of length 1 from A to A, then for a higher d-derivation
f = (ιA, f1) of length 1, f1 is the Beršar’s generalized derivation, where ιA : A → A is
the identity map. The set of all higher d-derivations of length n from M to N is denoted
by d-Dern(M,N).

Now we define a generalized higher derivation at the stand point of (1.7).

Definition 2.1. Let B be an A/k-bimodule. For k-linear maps ft : A→ B and bt ∈ B
(t ∈ I), f = (f0, f1, · · · , fn ; b0, b1, · · · , bn) is called a generalized higher derivation of
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length n from A to B if for any t ∈ I and x, y ∈ A, the following relation is satisfied:

ft(xy) =
t∑
i=0

fi(x)b0ft−i(y) +
t−1∑
i=0

fi(x)b1ft−1−i(y) +
t−2∑
i=0

fi(x)b2ft−2−i(y) + · · ·

+ · · ·+
1∑
i=0

fi(x)bt−1f1−i(y) + f0(x)btf0(y). (2.3)

If b0 = 1 ∈ B, then f0 is a ring homomorphism and if A = B and f0 = ιA, then
(f1 ; b1) is a generalized derivation in the sense of (1.7). Moreover, if f0 = ιA, then

by the relation (2.3), we have b0 = 1, b1 = −f1(1), b2 = f1(1)2 − f2(1) and so on.
Therefore we can not use arbitrary elements in B for generalized higher derivations
f = (f0, f1, · · · , fn ; b0, b1, · · · , bn). We denote that generalized higher derivation by
f = (ft ; bt). Two generalized higher derivations f = (ft ; bt) and g = (gt ; ct) are
equal if ft = gt and bt = ct for any t ∈ I, and the set of all generalized higher derivations
of length n from A to B is denoted by gDern(A,B). Then the corresponding results to
Lemma 1.1 (1a) and (1b) are as follows.

Lemma 2.2. (1) If f = (ft ; bt) ∈ gDern(A,B), then there exists a higher derivation
d = (dt) ∈ Dern(A,B) such that f = (ft) ∈ d-Dern(A,B).

(2) If d = (dt) ∈ Dern(A,B), then there exists f = (ft) ∈ d-Dern(A,B).

Proof. (1) Take d0 = (b0)`f0, and for any t (1 ≤ t ≤ n), we set

dt = (b0)`ft + (b1)`ft−1 + (b2)`ft−2 + · · ·+ (bt−1)`f1 + (bt)`f0. (2.4)

Then d = (dt) ∈ Dern(A,B), and f = (ft) and d = (dt) satisfy the relation (2.2).

(2) For a higher derivation d = (dt) ∈ Dern(A,B) and b0, b1, · · · , bn ∈ B, we define
f0 = (b0)`d0 and for any t ∈ I,

ft = (b0)`dt + (b1)`dt−1 + · · ·+ (bt)`d0. (2.5)

Then f = (ft) is contained in d-Dern(A,B).

Since a derivation is a Jordan derivation, a higher Jordan derivation J = (Jt), a higher
J-Jordan derivation and a generalized higher Jordan derivation are similarly defined.
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Definition 2.3. (1) Let Jt : A → B be k-linear maps (t ∈ I). J = (Jt) is called a
higher Jordan derivation of length n from A to B if for any t ∈ I and x ∈ A, there holds

Jt(x2) =
t∑
i=0

Ji(x)Jt−i(x). (2.6)

(2) Let M be a right A/k-module, N a right B/k-module, J = (Jt) ∈ JDern(A,B)
and ft : M → N k-linear maps (t ∈ I). f = (ft) is called a higher J-Jordan derivaiton of
length n from M to N if for any t ∈ I and x ∈ A, ω ∈M , there holds

ft(ωx) =
t∑
i=0

fi(ω)Jt−i(x). (2.7)

(3) For k-linear maps ft : A→ B and elements b0, b1, b2, · · · , bt ∈ B, f = (ft ; bt) is
called a generalized higher Jordan derivation of length n if for any t ∈ I and x ∈ A, there
holds

ft(x2) =
t∑
i=0

fi(x)b0ft−i(x) +
t−1∑
i=0

fi(x)b1ft−1−i(x) +
t−2∑
i=0

fi(x)b2ft−2−i(x) + · · ·

+
1∑
i=0

fi(x)bt−1f1−i(x) + f0(x)btf0(x). (2.8)

If b0 = 1 ∈ B, then J0 is a Jordan homomorphism, i.e., J0(x2) = J0(x)J0(x),
and if A = B and J0 = ιA, then we have the similar results for generalized higher
Jordan derivations to generalized higher derivations. We denote JDern(A,B) (resp.
gJDern(A,B)) the set of all higher Jordan (resp. generalized higher Jordan) derivations
of length n from A to B, respectively. The set of all higher J-Jordan derivations J-
JDern(M,N) is similarly defined. By using (2.4) and (2.5), we can get the following
result which corresponds to Lemma 2.2.

Lemma 2.4. (1) If f = (ft ; bt) ∈ gJDern(A,B), then there exists J = (Jt) ∈
JDern(A,B) such that f = (ft) ∈ J-JDern(A,B).

(2) If J = (Jt) ∈ JDern(A,B), then there exists f = (ft) ∈ J-JDern(A,B).

Finally, we treat the case of Lie derivations.
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Definition 2.5. (1) Let B be an A/k-bimodule and Lt : A → B. L = (Lt) is called
a higher Lie derivation if for any t ∈ I and x, y ∈ A, there holds

Lt([x, y]) =
t∑
i=0

[Li(x), Lt−i(y)]. (2.9)

We denote LDern(A,B) the set of all higher Lie derivations of length n from A to B.
(2) Let M be an A/k-bimodule, N a B/k-bimodule, L = (Lt) ∈ LDern(A,B) and

ft : M → N k-linear maps (t ∈ I). f = (ft) is called a higher L-Lie derivation of length
n from M to N if for any t ∈ I and x ∈ A, ω ∈M , there holds,

ft([ω, x]) =
t∑
i=0

[fi(ω), Lt−i(x)]. (2.10)

(3) For k-linear maps ft : A→ B and elements b0, b1, b2, · · · , bt ∈ B, f = (ft ; bt) is
called a generalized higher Lie derivation if for any t ∈ I and x, y ∈ A, there holds

ft([x, y]) =
t∑
i=0

[fi(x), b0, ft−i(y)] +
t−1∑
i=0

[fi(x), b1, ft−1−i(y)]

+
t−2∑
i=0

[fi(x), b2, ft−2−i(y)] + · · ·+
1∑
i=0

[fi(x), bt−1, f1−i(y)]

+ [f0(x), bt, f0(y)]. (2.11)

If b0 = 1 ∈ B, then L0 is a Lie homomorphism, that is, L0([x, y]) = [L0(x), L0(y)], and
if A = B and L0 is the identity map, then we also have the similar results for generalized
higher Lie derivations to generalized higher derivations. But for the information of the
elements b1, b2, · · · , bt, we only know that f1(1) + b1 is contained in the center of B. We
denote L-LDern(M,N) (resp. gLDern(A,B)) the set of all higher L-Lie (resp. generalized
higher Lie) derivations of length n from M to N (resp. A to B).

Lemma 2.6. (1) If f = (ft ; bt) ∈ gLDern(A,B), then there exists a higher Lie
derivation L = (Lt) ∈ LDern(A,B). Moreover, if bt is contained in the center of B for
any t ∈ I, then f = (ft) ∈ L-LDern(A,B).

(2) Let L = (Lt) be in LDern(A,B). If the center of B is non-zero, then there exists
f = (fi) ∈ L-LDern(A,B).
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Proof. In (1), we may define L = (Lt) by (2.4) and for (2), we can take elements b1
in the center of B.

If we consider these higher derivations of length 1, then the definitons in §1 from (1.1)
to (1.9) are generalized as follows:

d1(xy) = d1(x)d0(y) + d0(x)d1(y) (1.1.1)

J1(x2) = J1(x)J0(x) + J0(x)J1(x) (1.2.1)

L1([x, y]) = [L1(x), L0(y)] + [L0(x), L1(y)] (1.3.1)

f1(ωx) = f1(ω)d0(x) + f0(ω)d1(x) (1.4.1)

g1(x2) = g1(x)J0(x) + g0(x)J1(x) (1.5.1)

h1([x, y]) = [h1(x), L0(y)] + [h0(x), L1(y)]. (1.6.1)

f1(xy) = f1(x)b0f0(y) + f0(x)b0f1(y) + f0(x)b1f0(y) (1.7.1)

g1(x2) = g1(x)b0J0(x) + g0(x)b0J1(x) + g0(x)b1g0(x) (1.8.1)

h1([x, y]) = [h1(x), b0, L0(y)] + [h0(x), b0, L1(y)] + [h0(x), b1, h0(y)]. (1.9.1)

We will be treat these deformed derivations anywhere.

3. Generalized higher derivations of length 2

Now, we discuss generalized higher derivations of length 2. In general, it is com-
plicated, and so we treat the special case which is a natural extension of generalized
derivations in §1. Let A has an identity element 1 and set Der2(A) = Der2(A,A) (resp.

gDer2(A) = gDer2(A,A)). Define

G(Der2(A)) = {d = (ιA, d1, d2) ∈ Der2(A)}

G(gDer2(A)) = {f = (ιA, f1, f2 ; 1, a1, a2) ∈ gDer2(A)}.

Define a multiplication ? in G(gDer2(A)) as follows. For f = (fi ; ai), g = (gi ; bi) ∈
G(gDer2(A)),

f ? g = (ιA, f1 + g1, f2 + f1g1 + g2 ; 1, a1 + b1, a1b1 + b1a1 + a2 + b2 + f1(b1)). (3.1)

Then we can see that f ? g is contained in G(gDer2(A)) and (f ? g) ? h = f ? (g ? h).
Moreover,

(ιA, f1, f2 ; 1, a1, a2)−1 = (ιA,−f1, f
2
1 − f2 ; 1,−a1, 2a2

1 − a2 + f1(a1))
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is contained in G(gDer2(A)). Thus G(gDer2(A)) is a (non-commutative) group with
identity (ιA, 0, 0 ; 1, 0, 0). Since a higher derivation d = (ιA, d1, d2) is identified to

the generalized higher derivations (ιA, d1, d2 ; 1, 0, 0) in G(gDer2(A)), G(Der2(A)) is

considered as a subgroup of G(gDer2(A)). Next, we define a group structure ◦ on A⊕A
as follows: For any A⊕ A 3 (a1, a2), (b1, b2),

(a1, a2) ◦ (b1, b2) = (a1 + b1, a2 + b2 + b1a1).

Then A⊕ A is a group with identity (0, 0) and (a1, a2)−1 = (−a1, a
2
1 − a2).

Under these notations , we have the following which corresponds to the exact sequence
(1.10) of generalized derivations.

Theorem 3.1. The follwong sequence is split exact as groups :

0 −−−−→ A ⊕A ψA−−−−→ G(gDer2(A)) ϕA−−−−→ G(Der2(A)) −−−−→ 1,

where

ψA(a1, a2) = (ιA, (−a1)`, (a2
1 − a2)` ; 1, a1, a2),

ϕA(ιA, f1, f2 ; 1, a1, a2) = (ιA, f1 + (a1)`, f2 + (a1)`f1 + (a2)`).

This means that G(Der2(A)) acts on A⊕A by (ιA, d1, d2) ⇀ (a1, a2) = (a1, a2 + d1(a1))

and G(Der2(A)) is a semidirect product of A ⊕A and G(Der2(A)).

Proof. It is easy to see that ψA is well defined group monomorphism. And by Lemma
2.2, ϕA is also well defined and ϕAψA = 0. Let d = (ιA, d1, d2) be in G(Der2(A))
and a1, a2 ∈ A. We set f1 = d1 + (a1)` and f2 = d2 + (a1)`d1 + (a2)`. Then we

can see that f = (ιA, f1, f2 ; 1,−a1,−a2 + a2
1) is a generalized higher derivation of

length 2 and ϕA(f) = d. Thus ϕA is an epimorphism. Moreover, for g = (gi ; si),

h = (hi ; ti) ∈ G(gDer2(A)), we see that the first and the second components of
ϕA(g) ? ϕA(h) and ϕA(g ? h) is equal. And the third componets of them are

g2 + (s1)`g1 + (s2)` + (g1 + (s1)`)(h1 + (t1)`) + h2 + (t1)`h1 + (t2)`

and
g2 + g1h1 + h2 + (s1 + t1)`(g1 + h1) + (s1t1 + t1s1 + s2 + t2 + g1(t1))`,

respectively. Therefore ϕA(g) ? ϕA(h) = ϕA(g ? h) if and only if g1(t1)` = (t1)`g1 +
(t1s1)` + (g1(t1))`. But since (g1 ; s1) is a generalized derivation, we have g1(t1x) =
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g1(t1)x+t1g1(x)+t1s1x, which shows that ϕA is a group homomorphism. KerϕA ⊂ ImξA
and the splitness of the sequence are clear.

For generalized higher Jordan derivations of length 2, we also define G(JDer2(A)) and

G(gJDer2(A)) similarly. Then we have

Theorem 3.2. G(gJDer2(A)) is a group by the multiplication ? and G(JDer2(A)) is

a subgroup of G(gJDer2(A)). Moreover the following sequence is split exact as groups :

0 −−−−→ A⊕ A ψA−−−−→ G(gJDer2(A)) ϕA−−−−→ G(JDer2(A)) −−−−→ 1,

where ψA and ϕA are defined in Theorem 3.1.

Proof. Since generalized derivations are generalized Jordan derivations, and by Lemma
2.4, it is enough to show that G(gJDer2(A)) is closed by multiplication ?. Let f = (fi ; ai),

g = (gi ; bi) be in G(gJDer2(A)). Since the multiplication is given by

f ? g = (ιA, f1 + g1, f2 + f1g1 + g2 ; 1, a1 + b1, a1b1 + b1a1 + a2 + b2 + f1(b1)),

we have to show that (f2 +f1g1 +g2)(x2) is well computed. For any x, y ∈ A, computing

g1((x+ y)2), we have

g1(xy + yx) = g1(x)y + xg1(y) + g1(y)x + yg1(x).

Since g1(x2) = g1(x)x + xg1(x), we can compute (f2 + f1g1 + g2)(x2) like a derivation.

Thus (G(JDer2(A)), ?) is a group.

It is not known that G(gLDer2(A)) = {(fi ; ai) ∈ gLDer2(A) | f0 = ιA, a0 = 1} is a
group or not by the multiplication ? and so we can not get the similar result of an exact
sequence of groups for generalized Lie derivations of length 2.

Remark 3.3. In general, we can define a multiplication on gDer1(A) and gDer2(A).

For example, we consider the case of gDer1(A). Let f = (f0, f1 ; a0, a1) and g =

(g0, g1 ; b0, b1) be in gDer1(A). Define a multiplication � by

f � g = (f0g0, f1g0 + f0g1 ; a0f0(b0)a0, a1f0(b0)a0 + a0f0(b1)a0 + a0f1(b0)a0 + a0f0(b0)a1).

Then we can see that f � g is contained in gDer1(A) and gDer1(A) is a semigroup. If
A has an identity and f0 = g0 = ιA, then by definition of generalized higher derivation,
a0 = b0 = 1 and f1 is a generalized derivation. So the above multiplication � is given by

(ιA, f1 ; 1, a1) � (ιA, g0 ; 1, b1) = (ιA, f1 + g1 ; 1, a1 + b1 + f1(1) + a1).
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Since f1 is a generalized derivation, we have f1(1)+a1 = 0. Therefore the multiplication �
equals ? and G(gDer1(A)) is a subgroup of the semigroup gDer1(A) by the mutiplication
�.

4. Higher Jordan derivations

In this section, we generalize some results of higher derivations by Ribenboim [R] to
higher Jordan derivations.

Theorem 4.1. Let J = (Jt) and K = (Kt) be in JDern(A). Define a multiplication
? by

J ? K = (Lt), where Lt =
∑
i+j=t

JiKj .

Then JDern(A) is a semigroup with identity 1 = (ιA, 0, · · · , 0).

Proof. To show that J ? K = (Lt) is a higher Jordan derivation of length n, we first
prove that

Jt(xy + yx) =
t∑
i=0

(Ji(x)Jt−i(y) + Ji(y)Jt−i(x)) (4.1)

by induction. If t = 0, then J0 is a Jordan homomorphism and so J0(xy + yx) =
J0(x)J0(y) + J0(y)J0(x) is already known. Assume that (4.1) holds for less than t. Then

by definition, we have Jt(x2) =
∑t
i=0 Ji(x)Jt−i(x) and by

Jt((x+ y)2) = Jt(x2) + Jt(y2) + Jt(xy + yx)

=
t∑
i=0

Ji(x + y)Jt−i(x+ y)

=
t∑
i=0

(Ji(x)Jt−i(x) + Ji(x)Jt−i(y) + Ji(y)Jt−i(x) + Ji(y)Jt−i(y)),

(4.1) also holds. Now, we calculate Lt(x2). Noticing the definition of Jt(x2) is symmetric
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with respect to Ji, we have

Lt(x2) =
t∑
i=0

JiKt−i(x2) =
t∑
i=0

Ji(
t−i∑
r=0

Kr(x)Kt−i−r(x))

=
t∑
i=0

Ji(K0(x)Kt−i(x) +Kt−i(x)K0(x) +K1(x)Kt−i−1(x)

+ Kt−i−1(x)K1(x) + · · · ).

Then by (4.1), we get

Ji(Kr(x)Ks(x)+Ks(x)Kr(x)) =
i∑

m=0

(JmKr(x)Ji−mKs(x)+JmKs(x)Ji−mKr(x)) (4.2)

and

Ji(Kt(x)Kt(x)) =
i∑

m=0

(JmKt(x)Ji−mKt(x) + JmKt(x)Ji−mKt(x)). (4.3)

Substituting (4.2) and (4.3) to the above Lt(x2) and rearranging, we have

Lt(x2) = L0(x)Lt(x) + L1(x)Lt−1(x) + · · ·+ Lt(x)L0(x).

Thus J ? K = (Lt) is a higher Jordan derivation of length n. Associativity of the
multiplication is proved by the similar way, and 1 = (ιA, 0, · · · , 0) is an identity element.

Lemma 4.2. Let J = (Jt) ∈ JDern(A). Then there exists K = (Kt) ∈JDern(A) such
that J ? K = K ? J = 1 if and only if J0 is bijective.

Proof. It is enough to prove that the only if part. Let J0 be bijective. We set

K0 = J−1
0 and define inductively

K1 = −J−1
0 J1K0 = −J−1

0 J1J
−1
0 ,

K2 = −J−1
0 (J2K0 + J1K1) = −J−1

0 (J2J
−1
0 − J1J

−1
0 J1J

−1
0 ),

· · ·
K` = −J−1

0 (J`K0 + J`−1K1 + · · ·+ J1K`−1)
· · · .
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Then it is easy to see that K0 is a Jordan homomorphism and

K1(x2) = −J−1
0 J1J

−1
0 (x2) = −J−1

0 (J1(J−1
0 (x))x+ xJ1(J−1

0 (x)))

= K1(x)K0(x) + K0(x)K1(x).

So by the similar computation to the proof of Lemma 4.1, we see thatK = (Kt) ∈JDern(A)
and J ? K = K ? J = 1.

The above higher Jordan derivation J = (Jt) of length n is called invertible and we
set

G(JDern(A)) = {J = (Jt) ∈ JDern(A) | J is invertible}

G0(JDern(A) = {J = (Jt) ∈ JDern(A) | J0 = ιA}.

Then G(JDern(A)) is a group and G0(JDern(A)) is a subgroup of G(JDern(A)).

A bijective Jordan homomorphism J : A → A is called a Jordan automorphism. We
denote JAut(A) the set of all Jordan automorphism of A. Under these notations, the
following theorem is easily proved.

Theorem 4.3. The sequence of groups

1 −→ G0(JDern(A)) i−→ G(JDern(A)) ϕ−→ JAut(A) −→ 1 (4.4)

is split exact, where i is the canonical injection and ϕ(J = (Jt)) = J0.

We can generalize the above results to the set of all higher J-Jordan derivations as
follows.

Lemma 4.4. Let M be a right A/k-module, f = (ft) ∈ J-JDern(M) and g = (gt) ∈
K-JDern(M). Then f ? g = (ht) is a higher J ? K-Jordan derivation of length n, where
ht = (f ? g)t =

∑
i+k=` figk.

307



NAKAJIMA

Proof. By the following computation

(f ? g)t(ωx) =
t∑
i=0

t−i∑
r=0

fi(gr(ω)Kt−i−r(x))

=
t∑
i=0

i∑
j=0

t−i∑
r=0

fjgr(ω)Ji−jKt−i−r(x)

=
t∑

r=0

f0gr(ω)J0Kt−r(x) +
t−1∑
r=0

1∑
j=0

fjgr(ω)J1−jKt−1−r(x) + · · ·

+
t−∑̀
r=0

∑̀
j=0

fjgr(ω)J`−jKt−`−r(x) + · · ·+
t∑

j=0

fjg0(ω)Jt−jK0(x)

=
t∑
i=0

f0g0JiKt−i +
t−1∑
i=0

1∑
j=0

fj(g1−j(ω)JiKt−1−i(x)) + · · ·

+
t−∑̀
i=0

∑̀
j=0

fjg`−j(ω)JiKt−`−i(x) + · · ·+
t∑

j=0

fjgt−j(ω)J0K0(x)

=
t∑
i=0

t−i∑
s=0

i∑
j=0

fjgi−j(ω)JsKt−i−s(x) =
t∑
i=0

(f ? g)i(J ? K)t−i(ωx),

f ? g is a higher J ? K-Jordan derivation.

Now let

JDern(M) = ∪J-JDern(M)

the set of unions of all J-JDern(M), where J ∈ JDern(A). Then by Theorem 4.1 and
Lemma 4.4, the multiplication ? in JDern(M) is well-defined, and thus JDern(M) is a
semigroup with identity 1 = (ιM , 0, · · · , 0), where ιM is the identity map on M . Then
there holds the following result which corresponds to Lemma 4.2.

Lemma 4.5. Let A/k be an algebra and M a faithful right A/k-module. Let J =
(Jt) ∈ JDern(A) and f = (ft) ∈ J-JDern(M). Then there exists a higher Jordan
derivation K = (Kt) ∈ JDern(A) and a higher K-Jordan derivation g = (gt) ∈ K-
JDern(M) such that f ? g = g ? f = 1 if and only if J0 and f0 are bijective.
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The above higher Jordan derivation f = (ft) of length n is called invertible and we
set

G(JDern(M)) = {f = (ft) ∈ JDern(M) | f is invertible}

G0(JDern(M) = {f = (ft) ∈ JDern(M) | f0 = ιM}.

Then G(JDern(M)) is a group and G0(JDern(M)) is a subgroup of G(JDern(M)).
Let γ : M → M be a bijective k-linear map such that γ(ωx) = γ(ω)J(x) for some

Jordan homomorphism J : A → A (ω ∈ M , x ∈ A). Then γ is called a Jordan semi-
automorphism. And J-semi-Auto(M) denote the set of all Jordan semi-automorhisms
from M to M . Under these notations, we have

Theorem 4.6. Let M be a faithful right A/k-module. Then the sequence of groups

1 −→ G0(JDern(M)) i−→ G(JDern(M))
ϕ−→ J-semi-Auto(M) −→ 1 (4.5)

is split exact, where i is the canonical injection and ϕ(f = (ft)) = f0.

Proof. If γ is a Jordan semi-automorphism, then γ̃ = (γ, 0, · · · , 0) is a J-Jordan
derivation of length n and so we have the map ψ : J-semi-Auto(M) 3 γ 7→ γ̃ ∈
G(JDern(M)) such that ψϕ is identity on J-semi-Auto(M).

5. Higher Lie derivations

For higher Lie derivations, we do not meet with the problem for calculation like the
proof of Lemma 4.1. So we only denote the corresponding results in §4 for higher Lie
derivations.

Lemma 5.1. Let L = (Lt) and K = (Kt) be in LDern(A). Define a multiplication by

L ? K = (Tt), where Tt =
∑
i+j=t

LiKj .

Then LDern(A) is a semigroup with 1.

Lemma 5.2. Let L = (Lt) ∈ LDern(A). Then there exists K = (Kt) ∈LDern(A)
such that L ? K = K ? L = 1 if and only if L0 is bijective.

The above higher Lie derivation L = (Lt) of length n is called invertible and we denote
G(LDern(A)) = {L = (Lt) ∈ LDern(A)} the set of all invertible higher Lie derivations
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and G0(LDern(A) = {L = (Lt) ∈ LDern(A) | L0 = ιA}. Then G(LDern(A)) is a group
and G0(LDern(A)) is a subgroup of G(LDern(A)).

A bijective Lie homomorphism L : A → A is called a Lie automorphism. We denote
LAut(A) the set of all Lie automorphism of A. Then we have

Theorem 5.3. The sequence of groups

1 −→ G0(LDern(A)) i−→ G(LDern(A))
ϕ−→ LAut(A) −→ 1 (5.1)

is split exact, where i is the canonical injection and ϕ(L = (Lt)) = L0.

Lemma 5.4. Let M be an A/k-bimodule, f = (ft) ∈ L-LDern(M) and g = (gt) ∈ K-
LDern(M). Then f ? g = (ht) is a higher L ? K-Lie derivation of length n, where
ht =

∑
i+k=` figk.

Lemma 5.5. Let A/k be an algebra and M a faithful A/k-bimodule. Let L =
(Lt) ∈ LDern(A) and f = (ft) ∈ L-LDern(M). Then there exists a higher Lie derivation
K = (Kt) ∈LDern(A) and a higher K-Lie derivation g ∈ K-LDern(M) such that f ? g =
g ? f = 1 if and only if L0 and f0 are bijective.

The above higher Lie derivation f = (ft) of length n is called invertible and we denote
G(LDern(M)) the set of all invertible higher L-Lie derivations for some L ∈ LDern(M)
and G0(LDern(M)) = {f = (fi) ∈ LDern(M) | f0 = ιM}. Then G(LDern(M)) is a group
and G0(LDern(M)) is a subgroup of G(LDern(M)).

Let γ : M → M be a bijective k-linear map such that γ(ωx) = γ(ω)L(x) for some
Lie homomorphism L : A → A. Then γ is called a Lie semi-automorphism. And L-
semi-Auto(M) denote the set of all Lie semi-automorhisms from M to M . Under these
notations, we finally get the following

Theorem 5.6. Let M be a faithful A/k-bimodule. Then the sequence of groups

1 −→ G(LDern(M)) i−→ G(LDern(M)) ϕ−→ L-semi-Auto(M) −→ 1 (5.2)

is split exact, where i is the canonical injection and ϕ(f) = f0.

Although we define some types of generalized higher derivations, we can not treat the
structure of gDern(A), gJDern(A) and gLDern(A) in our method. But we will give the
similar exact sequence for the case of length 2.
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[1] M. Brešar : On the distance of the compositions of two derivations to the generalized

derivations, Glasgow Math. J. 33 (1991), 89-93.

[2] I. N. Herstein : Topics in Ring Theory, Chicago Lectures in Math. Uinversity of Chicago.

1969.

[3] N. Jacobson and C. E. Rickart : Jordan homomorphisms of rings, Trans. A.M.S.69 (1950),

479-502.

[4] A. Nakajima : Categorical properties of generalized derivations, Scientiae Mathematicae

2(1999), 345-352.

[5] A. Nakajima : Generalized Jordan derivations, Proceedings of the third Korea-Chaina-

Japan International Symposium on Ring Theory, to appear.

[6] P. Ribenboim : Higher order derivations of modules, Portgaliae Math. 39(1980), 381-397.

Atsushi NAKAJIMA
Department of Environmental and
Mathematical Sciences
Faculty of Environmental Science and Technology
Okayama University,
Tsushima, Okayama 700-8530-JAPAN

Received 29.05.2000

311


