Multipliers between Orlicz Sequence Spaces *

P. B. Djakov © M. S. Ramanujan

Abstract

Let M, N be Orlicz functions, and let $D\left(\ell_{M}, \ell_{N}\right)$ be the space of all diagonal operators (that is multipliers) acting between the Orlicz sequence spaces ℓ_{M} and ℓ_{N}. We prove that the space of multipliers $D\left(\ell_{M}, \ell_{N}\right)$ coincides with (and is isomorphic to) the Orlicz sequence space $\ell_{M_{N}^{*}}$, where M_{N}^{*} is the Orlicz function defined by $M_{N}^{*}(\lambda)=\sup \{N(\lambda x)-M(x), x \in(0,1)\}$.

Key words and phrases. Orlicz sequence space, multipliers.
Let $M(t), t \geq 0$, be an Orlicz function, that is a non-decreasing convex function such that $M(0)=0$ and $M(t) \rightarrow \infty$ as $t \rightarrow \infty$. Orlicz sequence space ℓ_{M} defined by the function $M(t)$ is the linear space of all sequences of scalars $x=\left(x_{i}\right)_{1}^{\infty}$ such that $\sum_{i} M\left(x_{i}\right)<\infty$. Equipped with the norm

$$
\|x\|_{M}=\inf \left\{\rho: \sum_{i} M\left(\left|x_{i}\right| / \rho\right) \leq 1\right\}
$$

it is a Banach space.
An Orlicz function $M(t)$ is said to satisfy the Δ_{2}-condition near 0 if $M(2 t) \leq$ $C M(t), t \in(0,1)$ for some constant $C>0$. The following facts are known:

Proposition 1 Let M be an Orlicz function. Then the subspace

$$
h_{M}=\left\{x=\left(x_{i}\right): \sum M\left(\left|x_{i}\right| / \rho\right)<\infty \quad \forall \rho>0\right\}
$$

1991 Mathematics Subject Classification. Primary 46B45.
*The first author thanks the University of Michigan and B. Alan Taylor for their hospitality during academic 98/99. His research was supported in part by NRF of Bulgaria, grant no. MM-808/98.
is a closed subspace of ℓ_{M}, and the vectors $\left(e_{n}\right)_{1}^{\infty}$ (where $e_{n}=\left(e_{n i}\right), e_{n i}=0$ if $i \neq n$, and $e_{n n}=1$) form a basis in it.

Moreover, $h_{m}=\ell_{M}$ if and only if M satisfies the Δ_{2}-condition.
We refer to [1] for a proof of this proposition and the basic theory of Orlicz sequence spaces.

Let $M(t)$ and $N(t)$ be two Orlicz functions. A sequence of scalars $\lambda=\left(\lambda_{i}\right)$ is called a multiplier between the Orlicz spaces ℓ_{M} and ℓ_{N} if for each $x=\left(x_{i}\right) \in \ell_{M}$ we have $\lambda x:=\left(\lambda_{i} x_{i}\right) \in \ell_{N}$. It is easy to see by the Closed Graph Theorem that each multiplier λ defines a continuous diagonal operator

$$
T_{\lambda}: \ell_{M} \rightarrow \ell_{N}
$$

Therefore we identify multipliers with diagonal operators and denote by $D\left(\ell_{M}, \ell_{N}\right)$ the space of all multipliers between ℓ_{M} and ℓ_{N}. Regarded with the usual operator norm it is a Banach space.

Consider the function

$$
\begin{equation*}
M_{N}^{*}(s)=\max \left(0, \sup _{t \in[0,1]}\{N(s t)-M(t)\}\right), \quad s \geq 0 \tag{1}
\end{equation*}
$$

Evidently it is an Orlicz function, and by its definition we have

$$
\begin{equation*}
N(t s) \leq M(t)+M_{N}^{*}(s) \tag{2}
\end{equation*}
$$

which generalizes the classical Young inequality.
Two Orlicz functions $M(t)$ and $\bar{M}(t)$ are equivalent, if

$$
\exists c>0, t_{0}>0: \quad c^{-1} M\left(c^{-1} t\right) \leq \bar{M}(t) \leq c M(c t), \quad \forall t \in\left[0, t_{0}\right]
$$

Equivalent Orlicz functions generate one and the same Orlicz sequence space and define equivalent norms on it. It is easy to see that if one replaces the functions M and N with equivalent Orlicz functions \bar{M} and \bar{N}, then the functions M_{N}^{*} and $\bar{M}_{\bar{N}}^{*}$ will be equivalent.

Proposition 2 If $\lambda \in \ell_{M_{N}^{*}}$ then it is a multiplier from ℓ_{M} into ℓ_{N}. Moreover, the following generalization of the Hölder inequality holds:

$$
\begin{equation*}
\|\lambda x\|_{N} \leq 2\|\lambda\|_{M_{N}^{*}}\|x\|_{M} \quad \forall \lambda \in \ell_{M_{N}^{*}}, \forall x \in \ell_{M} \tag{3}
\end{equation*}
$$

Proof. First, observe that if S is an Orlicz function then

$$
\begin{equation*}
\left\|\left(y_{i}\right)\right\|_{S}>1 \Rightarrow\left\|\left(y_{i}\right)\right\|_{S} \leq \sum_{i} S\left(\left|y_{i}\right|\right) \tag{4}
\end{equation*}
$$

Indeed, since S is a convex function and $S(0)=0$ we have for every $\beta>1$ that $S\left(\beta^{-1} t\right)=S\left(\beta^{-1} t+\left(1-\beta^{-1}\right) \cdot 0\right) \leq \beta^{-1} S(t)$. Therefore, from the definition of the norm $\left\|\left(y_{i}\right)\right\|_{S}$, it follows that for every β such that $1<\beta<\left\|\left(y_{i}\right)\right\|_{S}$ we have

$$
1<\sum_{i} S\left(\left|y_{i}\right| / \beta\right) \leq \beta^{-1} \sum_{i} S\left(\left|y_{i}\right|\right)
$$

So, letting $\beta \rightarrow\left\|\left(y_{i}\right)\right\|_{S}$ we obtain $\left\|\left(y_{i}\right)\right\|_{S} \leq \sum_{i} S\left(\left|y_{i}\right|\right)$.
Fix $\lambda=\left(\lambda_{i}\right) \in \ell_{M_{N}^{*}}$ and $x=\left(x_{i}\right) \in \ell_{M}$, and let

$$
\rho>\|\lambda\|_{M_{N}^{*}}, \quad r>\|x\|_{M}
$$

Consider the sequences $\tilde{\lambda}=\lambda / \rho$ and $\tilde{x}=x / r$.
Then

$$
\sum_{i} N\left(\left|\tilde{\lambda}_{i} \tilde{x}_{i}\right|\right) \leq \sum_{i} M\left(\left|\tilde{x}_{i}\right|\right)+\sum_{i} M_{N}^{*}\left(\left|\tilde{\lambda}_{i}\right|\right) \leq 2
$$

and from (4) it follows that $\|\tilde{\lambda} \tilde{x}\|_{N} \leq 2$, thus $\|\lambda x\|_{N} \leq 2 \rho r$. Letting $\rho \uparrow\|\lambda\|_{M_{N}^{*}}$ and $r \uparrow\|x\|_{M}$ we obtain the claim.

Theorem 3 For every pair of Orlicz functions M, N the sequence spaces $D\left(\ell_{M}, \ell_{N}\right)$ and $\ell_{M_{N}^{*}}$ coincide as sets, and moreover, they are isomorphic as Banach spaces.

Proof. First, observe that if S is an Orlicz function then

$$
\begin{equation*}
\left\|\left(y_{i}\right)\right\|_{S}<1 \Rightarrow \sum_{i} S\left(\left|y_{i}\right|\right) \leq\left\|\left(y_{i}\right)\right\|_{S} \tag{5}
\end{equation*}
$$

Indeed, since S is a convex function and $S(0)=0$ we have for $\alpha \in(0,1)$ that $S(\alpha t) \leq$ $\alpha S(t)$. Therefore for every α such that $\left\|\left(y_{i}\right)\right\|_{S}<\alpha<1$

$$
\left\|\left(y_{i}\right)\right\|_{S}<\alpha \Rightarrow \sum_{i} S\left(\left|y_{i}\right| / \alpha\right) \leq 1 \Rightarrow \sum_{i} S\left(\left|y_{i}\right|\right) \leq \alpha \sum S\left(\left|y_{i}\right| / \alpha\right) \leq \alpha
$$

so letting $\alpha \rightarrow\left\|\left(y_{i}\right)\right\|_{S}$ we obtain $\sum N\left(\left|y_{i}\right|\right) \leq\left\|\left(y_{i}\right)\right\|_{S}$.

DJAKOV \& RAMANUJAN

Consider, in the space of multipliers $D\left(\ell_{M}, \ell_{N}\right)$, the operator norm

$$
\|\lambda\|_{0}=\sup \left\{\|\lambda x\|_{N}:\|x\|_{M}=1\right\} .
$$

From Proposition 2 it follows immediately that

$$
D\left(\ell_{M}, \ell_{N}\right) \supset \ell_{M_{N}^{*}}
$$

and

$$
\|\mu\|_{0} \leq 2\|\mu\|_{M_{N}^{*}} \quad \forall \mu \in \ell_{M_{N}^{*}} .
$$

Further we show that

$$
D\left(\ell_{M}, \ell_{N}\right) \subset \ell_{M_{N}^{*}}
$$

and

$$
\|\mu\|_{M_{N}^{*}} \leq 2\|\mu\|_{0} \quad \forall \mu \in D\left(\ell_{M}, \ell_{N}\right)
$$

We may assume without loss of generality that $M(1)=1$ and $N(1)=1$. Then we have

$$
\forall i \quad\left\|e_{i}\right\|_{M}=1, \quad\left\|e_{i}\right\|_{N}=1
$$

Fix a multiplier $\lambda=\left(\lambda_{i}\right) \in D\left(\ell_{M}, \ell_{N}\right)$ such that $\|\lambda\|_{0}=1 / 2$. Then $\left|\lambda_{i}\right|=\left\|\lambda e_{i}\right\|_{N} \leq$ $1 / 2\left\|e_{i}\right\|_{M}=1 / 2$.

Since M and N are Orlicz functions they are continuous. Thus for every $i=1,2, \ldots$ there exists an $x_{i} \in[0,1]$ such that

$$
M_{N}^{*}\left(\left|\lambda_{i}\right|\right)=N\left(\left|\lambda_{i}\right| x_{i}\right)-M\left(x_{i}\right)
$$

that is

$$
\begin{equation*}
N\left(\left|\lambda_{i}\right| x_{i}\right)=M\left(x_{i}\right)+M_{N}^{*}\left(\left|\lambda_{i}\right|\right) . \tag{6}
\end{equation*}
$$

Consider the sequence $\left(x_{i}\right)_{1}^{\infty}$. Since by our assumption $\|\lambda\|_{0}=1 / 2$, we have by (5)

$$
\forall i \quad N\left(\left|\lambda_{i}\right| x_{i}\right) \leq\left\|\lambda_{i} x_{i} e_{i}\right\|_{N} \leq 1 / 2\left\|x_{i} e_{i}\right\|_{M} \leq 1 / 2
$$

therefore

$$
\begin{equation*}
M\left(x_{i}\right)=N\left(\left|\lambda_{i}\right| x_{i}\right)-M_{N}^{*}\left(x_{i}\right)<1 / 2, \quad i=1,2, \ldots . \tag{7}
\end{equation*}
$$

We shall prove by induction that $\sum_{1}^{n} M\left(x_{i}\right) \leq 1 / 2$. It was shown that the statement is true for $n=1$.

Consider the sequences $\xi^{(n)}=\sum_{1}^{n} x_{i} e_{i}, n=1,2, \ldots$ Assume that the claim is true for some n. Then

$$
\sum_{1}^{n+1} M\left(x_{i}\right)=\sum_{1}^{n} M\left(x_{i}\right)+M\left(x_{n+1}\right) \leq 1 / 2+1 / 2 \leq 1
$$

so $\left\|\xi^{n+1}\right\|_{M} \leq 1$. Therefore we obtain by (6) and (5)

$$
\sum_{1}^{n+1} M\left(x_{i}\right) \leq \sum_{1}^{n+1} N\left(\left|\lambda_{i}\right| x_{i}\right) \leq\left\|\lambda \xi^{n+1}\right\|_{N} \leq 1 / 2
$$

which proves the claim.
Since $\sum_{1}^{n} M\left(x_{i}\right)<1 / 2$ for every n we have $\sum_{1}^{\infty} M\left(x_{i}\right) \leq 1 / 2$, thus $x \in \ell_{M}$ and $\|x\|_{M}<1$. Now from (6) and (5) it follows

$$
\sum_{1}^{\infty} M_{N}^{*}\left(\lambda_{i}\right) \leq \sum_{1}^{\infty} N\left(\left|\lambda_{i}\right| x_{i}\right) \leq\|\lambda x\|_{N} \leq 1 / 2\|x\|_{M} \leq 1 / 2
$$

hence $\lambda \in \ell_{M_{N}^{*}}$ and $\|\lambda\|_{M_{N}^{*}} \leq 1$.
Suppose $\mu \in D\left(\ell_{M}, \ell_{N}\right)$ is an arbitrary multiplier. Consider the sequence $\lambda=\mu / \rho$, where $\rho=2\|\mu\|_{0}$. Then we have $\lambda \in \ell_{M_{N}^{*}}$ and $\|\lambda\|_{M_{N}^{*}}=\|\mu / \rho\|_{M_{N}^{*}} \leq 1$, hence $\mu \in \ell_{M_{N}^{*}}$ and

$$
\|\mu\|_{M_{N}^{*}} \leq 2\|\mu\|_{0}
$$

The theorem is proved.

Remark 1. An Orlicz function S is called degenerate, if $S(t)=0$ for some $t>0$; then the corresponding Orlicz sequence space ℓ_{S} coincides with ℓ_{∞}. In view of the theorem $D\left(\ell_{M}, \ell_{N}\right)=\ell_{\infty}$ if and only if the Orlicz function M_{N}^{*} is degenerate.

Example. It is well known that for $p, q \geq 1$

$$
D\left(\ell_{p}, \ell_{q}\right)= \begin{cases}\ell_{r}, \quad 1 / r=1 / q-1 / p, & \text { if } p>q \\ \ell_{\infty}, & \text { if } p \leq q\end{cases}
$$

Let us see how this result follows from Theorem 2. Consider $M(t)=t^{p} / p$ and $N(t)=t^{q} / q$. If $p>q$ then it is easy to see that for each fixed $s \in(0,1)$ the expression $N(s t)-M(t)=(s t)^{q} / q-t^{p} / p$ attains its maximum for $t \in[0,1]$ at $t=s^{q /(p-q)}$. Thus for $s \in[0,1]$

$$
M_{N}^{*}(s)=(1 / q-1 / p) s^{p q /(p-q)}=s^{r} / r
$$

with $1 / r=1 / q-1 / p$, hence $D\left(\ell_{q}, \ell_{p}\right)=\ell_{r}$. In the case $p \leq q$, if $s^{q} \leq q / p$, then

$$
N(s t)-M(t)=(s t)^{q} / q-t^{p} / p \leq 0, \quad t \in[0,1]
$$

Therefore $M_{N}^{*}(s)=0$ for $s \leq(q / p)^{1 / q}$, that is M_{N}^{*} is a degenerate Orlicz function, hence $D\left(\ell_{p}, \ell_{q}\right)=\ell_{\infty}$.

Remark 2. Let $D_{c}\left(\ell_{M}, \ell_{N}\right)$ be the space of all compact multipliers between the spaces ℓ_{M} and ℓ_{N}. It is easy to see by Proposition 1 that each multiplier from the subspace $h_{M_{N}^{*}}$ is compact (as limit of finitely-supported multipliers), thus

$$
h_{M_{N}^{*}} \subset D_{c}\left(\ell_{M}, \ell_{N}\right)
$$

In particular, if the function M_{N}^{*} satisfies the Δ_{2}-condition near zero, then each multiplier between the spaces ℓ_{M} and ℓ_{N} is compact, that is

$$
D\left(\ell_{M}, \ell_{N}\right)=D_{c}\left(\ell_{M}, \ell_{N}\right)
$$

Up to our knowledge the following question is open:

Question. Is it true that every compact multiplier between the spaces ℓ_{M} and ℓ_{N} is a limit of finitely-supported multipliers ?

Obviously, a positive answer to that question would imply that

$$
D_{c}\left(\ell_{M}, \ell_{N}\right)=h_{M_{N}^{*}}^{*}
$$

so we would have

$$
D\left(\ell_{M}, \ell_{N}\right)=D_{c}\left(\ell_{M}, \ell_{N}\right)
$$

if and only if the function M_{N}^{*} satisfies the Δ_{2}-condition.

DJAKOV \& RAMANUJAN

References

[1] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces I, Berlin, 1977.
P. B. DJAKOV

Department of Mathematics,
Sofia University,
1164 Sofia-BULGARIA
e-mail: djakov@fmi.uni-sofia.bg
\&
M. S. RAMANUJAN

Department of Mathematics,
University of Michigan, Ann Arbor,
Michigan 48109-1109-USA
e-mail: msram@math.lsa.umich.edu

