Conjugacy Structure Type and Degree Structure Type in Finite p-groups

Yadolah Marefat

Abstract

Let G be a finite p-group, and denote by $k(G)$ number of conjugacy classes in G. The aim of this paper is to introduce the conjugacy structure type and degree structure type for p-groups, and determine these parameters for p-groups of order p^{5}, and calculate $k(G)$ for them.

Key Words: breadth, conjugacy structure type, degree structure type.

1. Introduction

Let G be a finite p-group, and denote by $k(G)$ number of conjugacy classes of G. We remind the reader that an element g of p-group G is said to have breadth $b_{G}(g)(\mathrm{b}(\mathrm{g})$ if no ambiguity is possible) if $p^{b_{G}(g)}$ is the size of conjugacy class of g in G. The breadth $b(G)$ of G will be maximum of breadths of its elements. We have,
$b(G)=1$ if and only if $\left|G^{\prime}\right|=p$ (see [4]),
$b(G)=2$ if and only if $\left|G^{\prime}\right|=p^{2}$ or $|G: Z(G)|=p^{3}$ and $\left|G^{\prime}\right|=p^{3}$ (see [7]).

Definition 1. Let s_{i} be the number of conjugacy classes of size p^{i} in G. Let m be a non-negative integer such that $s_{m} \neq 0$, and $s_{i}=0$ for $i>m$. Then $|G|=\sum_{i=0}^{m} s_{i} p^{i}$, and $k(G)=\sum_{i=0}^{m} s_{i}$. We define the tuple $\left(s_{0}, s_{1}, \ldots, s_{m}\right)$, Conjugacy Structure Type of G, and denote by $T_{c}(G)$. It is clear that G is abelian if and only if $m=0$.

MAREFAT

Defintion 2. Let α_{i} be the number of irreducible characters of G of order p^{i}. Let h be a non-negative integer such that $\alpha_{h} \neq 0$, and $\alpha_{i}=0$ for $i>h$. Then $|G|=\sum_{i=0}^{h} \alpha_{i} p^{2 i}$, and $k(G)=\sum_{i=0}^{h} \alpha_{i}$. We define the tuple $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{h}\right)$, Degree Structure Type of G, and denote by $T_{d}(G)$.

We know that $b(G)$ is the maximum index of i such that s_{i} is nonzero, that means $b(G)=m$. We denote by $\beta(G)$ the maximum index of i such that α_{i} is nonzero that is $\beta(G)=h$.

Burnside's Formula. Let G be a finite $p-$ group and M be a maximal subgroup in G. If s and t are the number respectively of invariant and fused conjugacy classes of M then $k(G)=p s+\frac{t}{p}=s\left(p-\frac{1}{p}\right)+\frac{k(M)}{p}$.
Proof. See [1,p.472].
The main theorem is:
Theorem A. Let G be a nonabelian finite p-group of order p^{5}. Then one of the following occurs:
(i) $k(G)=p^{4}+p^{3}-p^{2}, \quad T_{d}(G)=\left(p^{4}, p^{3}-p^{2}\right)$,
(ii) $k(G)=p^{4}+p-1, \quad T_{d}(G)=\left(p^{4}, 0, p-1\right)$,
(iii) $k(G)=p^{3}+p^{2}-1, \quad T_{d}(G)=\left(p^{2}, p^{3}-1\right)$ or $\left(p^{3}, p^{2}-p, p-1\right)$,
(iv) $k(G)=2 p^{3}-p, \quad T_{d}(G)=\left(p^{3}, p^{3}-p\right)$,
(v) $k(G)=2 p^{2}+p-2, \quad T_{d}(G)=\left(p^{2}, p^{2}-1, p-1\right)$.

2. Elementary Lemmas

Throughout this section, G denote a p-group of order p^{n}. To proof the main theorem we need some lemmas:

Lemma 1. (i) Let G be a nonabelian finite $p-$ group. If $b(G) \geq k$, then $|G: Z(G)| \geq p^{k+1}$.
(ii) Let G be a nonabelian finite p-group. If $\beta(G) \geq 2$, then $|G: Z(G)| \geq p^{4}$.

Proof. (i) Suppose that $g \in G$ such that $\left|G: C_{G}(g)\right| \geq p^{k}$. Since $Z(G) \subset C_{G}(g)$ we

MAREFAT

have

$$
|G: Z(G)|>\left|G: C_{G}(g)\right| \geq p^{k}
$$

Therefore $|G: Z(G)| \geq p^{k+1}$.
(ii) It is clear from the fact that for any irreducible character χ of G, $\chi(1)^{2} \leq|G: Z(G)|$.

Lemma 2. Let G be a finite p-group with $b(G)=1$ and $\beta(G)=\beta$. Then
(i) $G / Z(G)$ is an elementary abelian subgroup of order $p^{2 \beta}$,
(ii) Every character of G has degree 1 or p^{β},
(iii) $k(G)=p^{n-1}+p^{n-2 \beta}-p^{n-2 \beta-1}$,
$T_{d}(G)=\left(p^{n-1}, p^{n-2 \beta}-p^{n-2 \beta-1}\right), T_{c}(G)=\left(p^{n-2 \beta}, p^{n-1}-p^{n-2 \beta-1}\right)$.

Proof. We have $\left|G^{\prime}\right|=p$. Hence $G^{\prime} \subseteq Z(G)$ and $G / Z(G)$ is abelian. We know that exponent of $G / Z(G)$ is $p($ see [5]). Therefore $G / Z(G)$ is elementary abelian. If χ is a nonlinear irreducible character of G, then

$$
\chi(1)^{2}=|G: Z(G)|
$$

by exercise 2.13 of [3]. Hence $\chi(1)=p^{\beta}$ for any nonlinear irreducible character χ of G. So by character degrees formula,

$$
k(G)=p^{n-1}+p^{n-2 \beta}-p^{n-2 \beta-1}, T_{d}(G)=\left(p^{n-1}, p^{n-2 \beta}-p^{n-2 \beta-1}\right) .
$$

since $p^{n}=p^{z}+s_{1} p$, where $|Z(G)|=p^{z}$. We have

$$
T_{c}(G)=\left(p^{n-2 \beta}, p^{n-1}-p^{n-2 \beta-1}\right) .
$$

Corollary 1. Let G be a nonabelian p-group of order p^{3}. Then $k(G)=p^{2}+p-1$ and $T_{d}(G)=T_{c}(G)=\left(p, p^{2}-1\right)$.

Proof. It is clear by $\beta(G)=1$.

Lemma 3. Let G be a finite $p-$ group and $b(G) \geq 2$, If $\left|G: G^{\prime}\right|=p^{k}$, then $2 \leq k \leq$ $n-2$.

Proof. By lemma. 1(ii) of [2], $\left|G^{\prime}\right| \geq p^{2}$ and by character degrees formula proof is trivial.

Corollary 2. Let G be a nonabelian p-group of order p^{4}. Then one of the following occurs:
(i) $k(G)=p^{3}+p^{2}-p, \quad T_{c}(G)=\left(p^{2}, p^{3}-p\right)$, and $T_{d}(G)=\left(p^{3}, p^{2}-p\right)$,
(ii) $k(G)=2 p^{2}-1, \quad T_{c}(G)=\left(p, p^{2}-1, p^{2}-p\right)$, and $T_{d}(G)=\left(p^{2}, p^{2}-1\right)$.

Proof. It is clear by lemmas 2 and 3 .

Example 1. Let $G=E\left(p^{3}\right)=<x, y \mid x^{p}=y^{p}=[x, y]^{p}=1,[x, y] \in Z(G)>$. We know that all of conjugacy classes of order 1 are in $Z(G)$, and has form $\left\{[x, y]^{i}\right\}$ for some $i=1,2, \ldots, p$.

Other classes of G are:

- Classes of the form $\left\{x^{i}[x, y]^{j} \mid 0 \leq j \leq p-1\right\}$ where $i=1,2, \ldots, p-1$.
- Classes of the form $\left\{y^{i}[x, y]^{j} \mid 0 \leq j \leq p-1\right\}$ where $i=1,2, \ldots, p-1$.
- Classes of the form $\left\{x^{i} y^{j}[x, y]^{k} \mid 0 \leq k \leq p-1\right\}$ where $i, j=1,2, \ldots, p-1$.

Hence $T_{c}\left(E\left(p^{3}\right)\right)=\left(p, p^{2}-1\right)$.

MAREFAT

Lemma 4. Let G be a finite p-group and M be an abelian maximal subgroup of G. Then $k(G)=p^{n-2}+p^{z+1}+p^{z-1}$, where $|Z(G)|=p^{z}$.

Proof. We know that $Z(G) \subseteq M$, otherwise $M^{\prime}=G^{\prime}$, which is a contradiction. Then the Burnside's formula completes the proof.

3. Proof of Theorem A

In this section we proof theorem A and present some other information about conjugacy structure type:
Proof. We consider three possible casses

Case 1. Let $b(G)=1$. Then $\left|G^{\prime}\right|=p$. By lemma 2 , for $|G: Z(G)|=p^{2}$ or p^{4} we have,
$k(G)=p^{4}+p^{3}-p^{2}, \quad T_{d}(G)=\left(p^{4}, p^{3}-p^{2}\right)$, and $T_{c}(G)=\left(p^{3}, p^{4}-p^{2}\right)$, or $k(G)=p^{4}+p-1, \quad T_{d}(G)=\left(p^{4}, 0, p-1\right)$, and $T_{c}(G)=\left(p, p^{4}-1\right)$.

Case 2. Let $b(G)=2$. Then $\left|G^{\prime}\right|=p^{2}$ or $\left|G^{\prime}\right|=p^{3}$ and $|G: Z(G)|=p^{3}$.
First suppose $|G: Z(G)|=p^{3}$, then by lemma1(i). For $\left|G^{\prime}\right|=p^{2}$ or p^{3}, we have $k(G)=2 p^{3}-p, \quad T_{d}(G)=\left(p^{3}, p^{3}-p\right)$, and $T_{c}(G)=\left(p^{2}, P^{3}-p, p^{3}-p^{2}\right)$, or $k(G)=p^{3}+p^{2}-1, T_{d}(G)=\left(p^{2}, p^{3}-1\right)$, and $T_{c}(G)=\left(p^{2}, 0, p^{3}-1\right)$.
Now suppose $|G: Z(G)|=p^{4}$. Then $\left|G^{\prime}\right|=p^{2}$ and $k=3$. Since $\alpha_{i} p^{2 i}$ is divided by $(p-1) p^{k}$ (see corollary 11 of $[6]$), then by character degrees formula,

$$
p^{5}=p^{3}+p(p-1) t_{1} p^{2}+(p-1) t_{2} p^{4}
$$

for some non-negative integer t_{1} and t_{2}. Hence $t_{1}=t_{2}=1$ and $k(G)=p^{3}+p^{2}-1, T_{d}(G)=\left(p^{3}, p^{2}-p, p-1\right), T_{c}(G)=\left(p, p^{2}-1, p^{3}-p\right)$.

Case 3. Let $b(G)=3$. Then $|G: Z(G)|=p^{4}$ and $\left|G^{\prime}\right|=p^{3}$, by lemma 1. If G has an abelian maximal subgroup then $k(G)=p^{3}+p^{2}-1$ (by lemma 4), and $T_{d}(G)=\left(p^{2}, p^{3}-1\right)$. If $\beta(G)=2$, then By character degrees formula, $p^{5}=p^{2}+\alpha_{1} p^{2}+\alpha_{2} p^{4}$, which implies that $1+\alpha_{1}=h p^{2}$ for some non-negative integer
h. Hence $\alpha_{2}=p-h$. Since α_{2} is nonzero and divided by $p-1$ (by corollary 11 of [6]), $h=1$. Therefore $k(G)=2 p^{2}+p-2$ and $T_{d}(G)=\left(p^{2}, p^{2}-1, p-1\right)$.

Acknowledgement

This work is a part of author's M.Sc. dissertation unther supervision of professor M.A. Shahabi at the University of Tabriz.

References

[1] W. Burnside, "Theory of groups of finite order, "Cambridge, 1911; Dover, New York, 1955
[2] N. Gavioli, A. Mann, V. Monti, A. Pervitali, and C. M. Scoppola, Groups of prime order with many conjugacy classes, J. Algebra 202(1998), 129-141.
[3] I. M. Isaacs, "Character theory of finite groups", Academic Press, 1976.
[4] H. G. Knoche, Uber den Frobenius'schen Klassenbegriff in nilpotent Grouppen, Math. Z. 55(1951), 71-83.
[5] C. R. Leedham-Green, P. M. Neumann, and J. Wiegold, The Breadth and the class of a finite p-group, J. London Math. Soc. (2), 1(1969), 409-420.
[6] A. Mann, Minimal characters of p-groups, J. Group Theory $\mathbf{2}(1999)$, 225-250
[7] G. Parmeggiani, B. Stellmacher, p-groups of small breadth, J. Algebra 213(1999), 52-68

Departement of Computer Sciences,
Shabestar Azad University,
Shabestar-IRAN
e-mail: yadmaref@mail.com

