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Conjugacy Structure Type and Degree Structure
Type in Finite p—groups

Yadolah Marefat

Abstract

Let G be a finite p—group, and denote by k(G) number of conjugacy classes in
G. The aim of this paper is to introduce the conjugacy structure type and degree
structure type for p—groups, and determine these parameters for p—groups of order

p°, and calculate k(G) for them.
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1. Introduction

Let G be a finite p—group, and denote by k(G) number of conjugacy classes of G. We
remind the reader that an element g of p—group G is said to have breadth bG(g)(b(g) if
no ambiguity is possible) if p®c(9) is the size of conjugacy class of ¢ in G. The breadth
b(G) of G will be maximum of breadths of its elements. We have,

b(G) = 1if and only if |G'| = p (see [4]),
b(G) = 2 if and only if |G’| = p? or |G : Z(G)| = p* and |G| = p3 (see [7]).

Definition 1.  Let s; be the number of conjugacy classes of size p* in G. Let m be a
non-negative integer such that s, # 0, and s; =0 fori > m. Then |G| =" sip’, and
k(G) = X" 5. We define the tuple (so, s1,...,5m), Conjugacy Structure Type of G,
and denote by T.(G). It is clear that G is abelian if and only if m = 0.
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Defintion 2.  Let o; be the number of irreducible characters of G of order p. Let h be
a non-negative integer such that ap # 0, and o; =0 for i > h. Then |G| = Z:.L:O a;p%,
and k(G) = Z:.L:O a;. We define the tuple (g, a1, ..., ap), Degree Structure Type of G,
and denote by T4(G).

We know that b(G) is the maximum index of i such that s; is nonzero, that means

b(G) = m. We denote by 5(G) the mazimum index of i such that «; is nonzero that is
B(G) = h.
Burnside’s Formula. Let G be a finite p—group and M be a maximal subgroup in G.
If s and ¢ are the number respectively of invariant and fused conjugacy classes of M then
k(M
k(G) = ps+ % =s(p— 1—1;) +—(p ),
Proof. See [1,p.472].

The main theorem is:

Theorem A. Let G be a nonabelian finite p—group of order p°. Then one of the

following occurs:
(i) k(@) =p* +p* —p*, Tu(G) = (" p* —p?),
(i) k(G)=p*+p—1, Ty(G) = (p*,0,p—1),
(i) k(G)=p*>+p*—1, Ta(G) = (p*,p* —1) or (*,p* —p,p— 1),
(iv) k(G) =2p® —p, Tu(G) = (p*,p° —p),

(V) K(G)=2p*+p -2, Tu(G)= (p*,p*—1,p—1).

2. Elementary Lemmas

Throughout this section, G denote a p—group of order p™. To proof the main theorem

we need some lemmas:

Lemma 1. (i) Let G be a nonabelian finite p—group. If b(G) > k, then
|G : Z(G)| > pFtL.

(ii) Let G be a nonabelian finite p—group. If 3(G) > 2, then |G : Z(G)| > p*.
Proof. (i) Suppose that g € G such that |G : Cg(g)| > p*. Since Z(G) C Cg(g) we
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have
G: Z(G)| > |G: Calg)| = p"

Therefore |G : Z(G)| > pF+1.
(ii) It is clear from the fact that for any irreducible character x of G,
x(1)? <G Z(G)]. O

Lemma 2. Let G be a finite p—group with b(G) =1 and 8(G) = 8. Then
(i) G/Z(G) is an elementary abelian subgroup of order p*3,
(ii) Every character of G has degree 1 or p®,

(iii) k(G) = pn—1 4 pn=28 — pn—26-1,
Td(G) — (p"—l,pn—Qﬁ _ pn—QB—l); TC(G) _ (p"_QB,p"_l _pn—26—1)'

Proof. We have |G’| = p. Hence G’ C Z(G) and G/Z(G) is abelian. We know that
exponent of G/Z(G) is p(see [5]). Therefore G/Z(G) is elementary abelian. If y is a

nonlinear irreducible character of G, then
x(1)? =1G: Z(G)|

by exercise 2.13 of [3]. Hence x(1) = p? for any nonlinear irreducible character x of G.

So by character degrees formula,
k’(G) —_ pn—l +pn—26 _ pn—26—1, Td(G) —_ (pn—l,pn—QB _pn—QB—l).
since p" = p® + s1p, where |Z(G)| = p*. We have

TC(G) — (pn—QB,pn—l _ p"—Qﬁ—l).
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Corollary 1.  Let G be a nonabelian p—group of order p3. Then k(G) = p?> +p —1
and Ty(G) = T.(G) = (p,p* — 1).

Proof. It is clear by S(G) = 1. O

Lemma 3. Let G be a finite p—group and b(G) > 2, If |G : G'| = p*, then 2 < k <
n—2.
Proof. By lemma. 1(ii) of [2], |G’| > p? and by character degrees formula proof is

trivial. 0O

Corollary 2. Let G be a nonabelian p—group of order p*. Then one of the following

occurs:
(i) k(G) =p* +p* —p, T.AG) = p*p°—p), and T4(G) = (p*,p* — p),
(ii) k(G) =2p* =1, T.(G)=(p,p*—1,p*>—p), and T4(G) = (p?,p* — 1).

Proof. It is clear by lemmas 2 and 3. O

Example 1. Let G = E(p®) =< z,yl|zP = y* = [2,y]? = 1,[z,y] € Z(G) >. We
know that all of conjugacy classes of order 1 are in Z(G), and has form {[z, y]*} for some
1=1,2,...,p.

Other classes of G are:

e Classes of the form {z'[z,y)/|0 <j <p—1} wherei=1,2,...,p— 1.

e Classes of the form {yi[z,y]’|0 <j <p—1} where i =1,2,...,p— 1.

e Classes of the form {z'y/[z,y]*|0 <k <p—1} where 5,5 =1,2,...,p— 1.

Hence T.(E(p®)) = (p,p* — 1).
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Lemma 4. Let G be a finite p—group and M be an abelian mazimal subgroup of G.
Then k(G) = p" =2 + p**1 + p*~1 where |Z(G)| =p
Proof. We know that Z(G) C M, otherwise M’ = G’, which is a contradiction. Then

the Burnside’s formula completes the proof. O

3. Proof of Theorem A

In this section we proof theorem A and present some other information about conju-
gacy structure type:

Proof. We consider three possible casses

Case 1. Let b(G) = 1. Then |G| = p. By lemma 2, for |G : Z(G)| = p? or p* we
have,
k(G) =p*+p* —p*, Tu(G) = (p*,p* —p®), and T.(G) = (p*,p* — p?), or
k(G) =p*+p—1, Ta(G)= (p*,0,p—1), and T.(G) = (p,p* — 1).

Case 2. Let b(G) = 2. Then |G'| = p? or |G'| = p3 and |G : Z(G)| = p>.
First suppose |G : Z(G)| = p3, then by lemmal(i). For |G’| = p* or p3, we have
k(G) =2p® —p, Tu(G) = (p3,p® —p), and T.(G) = (p?, P3 — p,p® — p?), or
k(G) =p* 4+ p* = 1,Ta(G) = (p*,p* — 1), and T.(G) = (p*,0,p* — 1).
Now suppose |G : Z(G)| = p*. Then|G'| = p? and k = 3. Since a;p* is divided by
(p — 1)p* (see corollary 11 of [6]), then by character degrees formula,

P’ =p* +p(p— Vt1p* + (p — 1)top?

for some non-negative integer ¢; and to. Hence t; = t3 = 1 and
k(G) =p*+p* = 1,Ta(G) = (0*,p* —p,p— 1), T.(G) = (p,p* — 1,p* — p).

Case 3. Let b(G) = 3. Then |G : Z(G)| = p* and |G'| = p?, by lemma 1. If G has an
abelian maximal subgroup then k(G) = p®+p* —1(by lemma 4), and T4(G) = (p*,p>—1).
If 5(G) = 2, then By character degrees formula,

p® = p? 4+ a1p® + asp*, which implies that 1 4+ o; = hp? for some non-negative integer
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h. Hence ap = p — h. Since as is nonzero and divided by p — 1(by corollary 11 of [6]),
h = 1. Therefore k(G) = 2p* + p — 2 and
Tu(G) = (p*,p* = L,p—1).
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