Turk J Math 24 (2000) , 321 – 326. © TÜBİTAK

Conjugacy Structure Type and Degree Structure Type in Finite *p*-groups

Yadolah Marefat

Abstract

Let G be a finite p-group, and denote by k(G) number of conjugacy classes in G. The aim of this paper is to introduce the conjugacy structure type and degree structure type for p-groups, and determine these parameters for p-groups of order p^5 , and calculate k(G) for them.

Key Words: breadth, conjugacy structure type, degree structure type.

1. Introduction

Let G be a finite p-group, and denote by k(G) number of conjugacy classes of G. We remind the reader that an element g of p-group G is said to have breadth $b_G(g)(b(g))$ if no ambiguity is possible) if $p^{b_G(g)}$ is the size of conjugacy class of g in G. The breadth b(G) of G will be maximum of breadths of its elements. We have, b(G) = 1 if and only if |G'| = p (see [4]), b(G) = 2 if and only if $|G'| = p^2$ or $|G: Z(G)| = p^3$ and $|G'| = p^3$ (see [7]).

Definition 1. Let s_i be the number of conjugacy classes of size p^i in G. Let m be a non-negative integer such that $s_m \neq 0$, and $s_i = 0$ for i > m. Then $|G| = \sum_{i=0}^m s_i p^i$, and $k(G) = \sum_{i=0}^m s_i$. We define the tuple (s_0, s_1, \ldots, s_m) , Conjugacy Structure Type of G, and denote by $T_c(G)$. It is clear that G is abelian if and only if m = 0.

Definition 2. Let α_i be the number of irreducible characters of G of order p^i . Let h be a non-negative integer such that $\alpha_h \neq 0$, and $\alpha_i = 0$ for i > h. Then $|G| = \sum_{i=0}^h \alpha_i p^{2i}$, and $k(G) = \sum_{i=0}^h \alpha_i$. We define the tuple $(\alpha_0, \alpha_1, \ldots, \alpha_h)$, Degree Structure Type of G, and denote by $T_d(G)$.

We know that b(G) is the maximum index of *i* such that s_i is nonzero, that means b(G) = m. We denote by $\beta(G)$ the maximum index of *i* such that α_i is nonzero that is $\beta(G) = h$.

Burnside's Formula. Let G be a finite p-group and M be a maximal subgroup in G. If s and t are the number respectively of invariant and fused conjugacy classes of M then $k(G) = ps + \frac{t}{p} = s(p - \frac{1}{p}) + \frac{k(M)}{p}.$

Proof. See [1,p.472].

The main theorem is:

Theorem A. Let G be a nonabelian finite p-group of order p^5 . Then one of the following occurs:

(i) $k(G) = p^4 + p^3 - p^2$, $T_d(G) = (p^4, p^3 - p^2)$,

(ii)
$$k(G) = p^4 + p - 1$$
, $T_d(G) = (p^4, 0, p - 1)$,

(iii) $k(G) = p^3 + p^2 - 1$, $T_d(G) = (p^2, p^3 - 1)$ or $(p^3, p^2 - p, p - 1)$,

(iv)
$$k(G) = 2p^3 - p$$
, $T_d(G) = (p^3, p^3 - p)$,

(v) $k(G) = 2p^2 + p - 2$, $T_d(G) = (p^2, p^2 - 1, p - 1)$.

2. Elementary Lemmas

Throughout this section, G denote a p-group of order p^n . To proof the main theorem we need some lemmas:

Lemma 1. (i) Let G be a nonabelian finite p-group. If $b(G) \ge k$, then $|G: Z(G)| \ge p^{k+1}$.

(ii) Let G be a nonabelian finite p-group. If $\beta(G) \ge 2$, then $|G: Z(G)| \ge p^4$.

Proof. (i) Suppose that $g \in G$ such that $|G : C_G(g)| \ge p^k$. Since $Z(G) \subset C_G(g)$ we

have

$$|G:Z(G)| > |G:C_G(g)| \ge p^k$$

Therefore $|G: Z(G)| \ge p^{k+1}$.

(ii) It is clear from the fact that for any irreducible character χ of G, $\chi(1)^2 \leq |G: Z(G)|.$

Lemma 2. Let G be a finite p-group with b(G) = 1 and $\beta(G) = \beta$. Then

- (i) G/Z(G) is an elementary abelian subgroup of order $p^{2\beta}$,
- (ii) Every character of G has degree 1 or p^{β} ,
- (*iii*) $k(G) = p^{n-1} + p^{n-2\beta} p^{n-2\beta-1},$ $T_d(G) = (p^{n-1}, p^{n-2\beta} - p^{n-2\beta-1}), T_c(G) = (p^{n-2\beta}, p^{n-1} - p^{n-2\beta-1}).$

Proof. We have |G'| = p. Hence $G' \subseteq Z(G)$ and G/Z(G) is abelian. We know that exponent of G/Z(G) is p(see [5]). Therefore G/Z(G) is elementary abelian. If χ is a nonlinear irreducible character of G, then

$$\chi(1)^2 = |G: Z(G)|$$

by exercise 2.13 of [3]. Hence $\chi(1) = p^{\beta}$ for any nonlinear irreducible character χ of G. So by character degrees formula,

$$k(G) = p^{n-1} + p^{n-2\beta} - p^{n-2\beta-1}, T_d(G) = (p^{n-1}, p^{n-2\beta} - p^{n-2\beta-1}).$$

since $p^n = p^z + s_1 p$, where $|Z(G)| = p^z$. We have

$$T_c(G) = (p^{n-2\beta}, p^{n-1} - p^{n-2\beta-1}).$$

Corollary 1. Let G be a nonabelian p-group of order p^3 . Then $k(G) = p^2 + p - 1$ and $T_d(G) = T_c(G) = (p, p^2 - 1)$.

Proof. It is clear by $\beta(G) = 1$.

Lemma 3. Let G be a finite p-group and $b(G) \ge 2$, If $|G : G'| = p^k$, then $2 \le k \le n-2$.

Proof. By lemma. 1(ii) of [2], $|G'| \ge p^2$ and by character degrees formula proof is trivial.

Corollary 2. Let G be a nonabelian p-group of order p^4 . Then one of the following occurs:

(i) $k(G) = p^3 + p^2 - p$, $T_c(G) = (p^2, p^3 - p)$, and $T_d(G) = (p^3, p^2 - p)$, (ii) $k(G) = 2p^2 - 1$, $T_c(G) = (p, p^2 - 1, p^2 - p)$, and $T_d(G) = (p^2, p^2 - 1)$.

Proof. It is clear by lemmas 2 and 3.

Example 1. Let $G = E(p^3) = \langle x, y | x^p = y^p = [x, y]^p = 1, [x, y] \in Z(G) \rangle$. We know that all of conjugacy classes of order 1 are in Z(G), and has form $\{[x, y]^i\}$ for some i = 1, 2, ..., p.

Other classes of G are:

- Classes of the form $\{x^i[x, y]^j | 0 \le j \le p 1\}$ where i = 1, 2, ..., p 1.
- Classes of the form $\{y^i[x, y]^j | 0 \le j \le p 1\}$ where i = 1, 2, ..., p 1.
- Classes of the form $\{x^i y^j [x, y]^k | 0 \le k \le p 1\}$ where i, j = 1, 2, ..., p 1.

Hence $T_c(E(p^3)) = (p, p^2 - 1)$.

324

Lemma 4. Let G be a finite p-group and M be an abelian maximal subgroup of G. Then $k(G) = p^{n-2} + p^{z+1} + p^{z-1}$, where $|Z(G)| = p^z$.

Proof. We know that $Z(G) \subseteq M$, otherwise M' = G', which is a contradiction. Then the Burnside's formula completes the proof.

3. Proof of Theorem A

In this section we proof theorem A and present some other information about conjugacy structure type:

Proof. We consider three possible casses

Case 1. Let b(G) = 1. Then |G'| = p. By lemma 2, for $|G : Z(G)| = p^2$ or p^4 we have,

$$\begin{split} k(G) &= p^4 + p^3 - p^2, \ T_d(G) = (p^4, p^3 - p^2), \text{ and } T_c(G) = (p^3, p^4 - p^2), \text{ or } \\ k(G) &= p^4 + p - 1, \ T_d(G) = (p^4, 0, p - 1), \text{ and } T_c(G) = (p, p^4 - 1). \end{split}$$

Case 2. Let b(G) = 2. Then $|G'| = p^2$ or $|G'| = p^3$ and $|G : Z(G)| = p^3$. First suppose $|G : Z(G)| = p^3$, then by lemma1(i). For $|G'| = p^2$ or p^3 , we have $k(G) = 2p^3 - p$, $T_d(G) = (p^3, p^3 - p)$, and $T_c(G) = (p^2, P^3 - p, p^3 - p^2)$, or $k(G) = p^3 + p^2 - 1$, $T_d(G) = (p^2, p^3 - 1)$, and $T_c(G) = (p^2, 0, p^3 - 1)$. Now suppose $|G : Z(G)| = p^4$. Then $|G'| = p^2$ and k = 3. Since $\alpha_i p^{2i}$ is divided by $(p-1)p^k$ (see corollary 11 of [6]), then by character degrees formula,

$$p^{5} = p^{3} + p(p-1)t_{1}p^{2} + (p-1)t_{2}p^{4}$$

for some non-negative integer t_1 and t_2 . Hence $t_1 = t_2 = 1$ and $k(G) = p^3 + p^2 - 1, T_d(G) = (p^3, p^2 - p, p - 1), T_c(G) = (p, p^2 - 1, p^3 - p).$

Case 3. Let b(G) = 3. Then $|G : Z(G)| = p^4$ and $|G'| = p^3$, by lemma 1. If G has an abelian maximal subgroup then $k(G) = p^3 + p^2 - 1$ (by lemma 4), and $T_d(G) = (p^2, p^3 - 1)$. If $\beta(G) = 2$, then By character degrees formula,

 $p^5 = p^2 + \alpha_1 p^2 + \alpha_2 p^4$, which implies that $1 + \alpha_1 = hp^2$ for some non-negative integer

h. Hence $\alpha_2 = p - h$. Since α_2 is nonzero and divided by p - 1 (by corollary 11 of [6]), h = 1. Therefore $k(G) = 2p^2 + p - 2$ and $T_d(G) = (p^2, p^2 - 1, p - 1)$.

Acknowledgement

This work is a part of author's M.Sc. dissertation unther supervision of professor M.A. Shahabi at the University of Tabriz.

References

- [1] W. Burnside, "Theory of groups of finite order, "Cambridge, 1911; Dover, New York, 1955
- [2] N. Gavioli, A. Mann, V. Monti, A. Pervitali, and C. M. Scoppola, Groups of prime order with many conjugacy classes, J. Algebra 202(1998), 129-141.
- [3] I. M. Isaacs, "Character theory of finite groups", Academic Press, 1976.
- [4] H. G. Knoche, Uber den Frobenius'schen Klassenbegriff in nilpotent Grouppen, Math. Z. 55(1951), 71-83.
- [5] C. R. Leedham-Green, P. M. Neumann, and J. Wiegold, The Breadth and the class of a finite p-group, J. London Math. Soc. (2), 1(1969), 409-420.
- [6] A. Mann, Minimal characters of p-groups, J. Group Theory 2(1999), 225-250
- [7] G. Parmeggiani, B. Stellmacher, p-groups of small breadth, J. Algebra 213(1999), 52-68

Received 07.08.2000

Yadolah MAREFAT Departement of Computer Sciences, Shabestar Azad University, Shabestar-IRAN e-mail: yadmaref@mail.com