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Conjugacy Structure Type and Degree Structure

Type in Finite p−groups

Yadolah Marefat

Abstract

Let G be a finite p−group, and denote by k(G) number of conjugacy classes in

G. The aim of this paper is to introduce the conjugacy structure type and degree

structure type for p−groups, and determine these parameters for p−groups of order

p5, and calculate k(G) for them.
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1. Introduction

Let G be a finite p−group, and denote by k(G) number of conjugacy classes of G. We

remind the reader that an element g of p−group G is said to have breadth bG(g)(b(g) if

no ambiguity is possible) if pbG(g) is the size of conjugacy class of g in G. The breadth

b(G) of G will be maximum of breadths of its elements. We have,

b(G) = 1 if and only if |G′| = p (see [4]),

b(G) = 2 if and only if |G′| = p2 or |G : Z(G)| = p3 and |G′| = p3 (see [7]).

Definition 1. Let si be the number of conjugacy classes of size pi in G. Let m be a

non-negative integer such that sm 6= 0, and si = 0 for i > m. Then |G| =
∑m
i=0 sip

i, and

k(G) =
∑m

i=0 si. We define the tuple (s0 , s1, . . . , sm), Conjugacy Structure Type of G,

and denote by Tc(G). It is clear that G is abelian if and only if m = 0.

321



MAREFAT

Defintion 2. Let αi be the number of irreducible characters of G of order pi. Let h be

a non-negative integer such that αh 6= 0, and αi = 0 for i > h. Then |G| =
∑h

i=0 αip
2i,

and k(G) =
∑h

i=0 αi. We define the tuple (α0, α1, . . . , αh), Degree Structure Type of G,

and denote by Td(G).

We know that b(G) is the maximum index of i such that si is nonzero, that means

b(G) = m. We denote by β(G) the maximum index of i such that αi is nonzero that is

β(G) = h.

Burnside’s Formula. Let G be a finite p−group and M be a maximal subgroup in G.

If s and t are the number respectively of invariant and fused conjugacy classes of M then

k(G) = ps+ t
p

= s(p − 1
p
) + k(M)

p
.

Proof. See [1,p.472].

The main theorem is:

Theorem A. Let G be a nonabelian finite p−group of order p5. Then one of the

following occurs:

(i) k(G) = p4 + p3 − p2, Td(G) = (p4, p3 − p2),

(ii) k(G) = p4 + p− 1, Td(G) = (p4, 0, p− 1),

(iii) k(G) = p3 + p2 − 1, Td(G) = (p2, p3 − 1) or (p3, p2 − p, p− 1),

(iv) k(G) = 2p3 − p, Td(G) = (p3, p3 − p),

(v) k(G) = 2p2 + p − 2, Td(G) = (p2, p2 − 1, p− 1).

2. Elementary Lemmas

Throughout this section, G denote a p−group of order pn. To proof the main theorem

we need some lemmas:

Lemma 1. (i) Let G be a nonabelian finite p−group. If b(G) ≥ k, then

|G : Z(G)| ≥ pk+1.

(ii) Let G be a nonabelian finite p−group. If β(G) ≥ 2, then |G : Z(G)| ≥ p4.

Proof. (i) Suppose that g ∈ G such that |G : CG(g)| ≥ pk. Since Z(G) ⊂ CG(g) we
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have

|G : Z(G)| > |G : CG(g)| ≥ pk

Therefore |G : Z(G)| ≥ pk+1.

(ii) It is clear from the fact that for any irreducible character χ of G,

χ(1)2 ≤ |G : Z(G)|. 2

Lemma 2. Let G be a finite p−group with b(G) = 1 and β(G) = β. Then

(i) G/Z(G) is an elementary abelian subgroup of order p2β,

(ii) Every character of G has degree 1 or pβ,

(iii) k(G) = pn−1 + pn−2β − pn−2β−1,

Td(G) = (pn−1, pn−2β − pn−2β−1), Tc(G) = (pn−2β, pn−1 − pn−2β−1).

Proof. We have |G′| = p. Hence G′ ⊆ Z(G) and G/Z(G) is abelian. We know that

exponent of G/Z(G) is p(see [5]). Therefore G/Z(G) is elementary abelian. If χ is a

nonlinear irreducible character of G, then

χ(1)2 = |G : Z(G)|

by exercise 2.13 of [3]. Hence χ(1) = pβ for any nonlinear irreducible character χ of G.

So by character degrees formula,

k(G) = pn−1 + pn−2β − pn−2β−1, Td(G) = (pn−1, pn−2β − pn−2β−1).

since pn = pz + s1p, where |Z(G)| = pz. We have

Tc(G) = (pn−2β, pn−1− pn−2β−1).

2
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Corollary 1. Let G be a nonabelian p−group of order p3. Then k(G) = p2 + p − 1

and Td(G) = Tc(G) = (p, p2 − 1).

Proof. It is clear by β(G) = 1. 2

Lemma 3. Let G be a finite p−group and b(G) ≥ 2, If |G : G′| = pk, then 2 ≤ k ≤
n − 2.

Proof. By lemma. 1(ii) of [2], |G′| ≥ p2 and by character degrees formula proof is

trivial. 2

Corollary 2. Let G be a nonabelian p−group of order p4. Then one of the following

occurs:

(i) k(G) = p3 + p2 − p, Tc(G) = (p2, p3 − p) , and Td(G) = (p3, p2 − p),

(ii) k(G) = 2p2 − 1 , Tc(G) = (p, p2 − 1, p2− p) , and Td(G) = (p2, p2 − 1).

Proof. It is clear by lemmas 2 and 3. 2

Example 1. Let G = E(p3) =< x, y|xp = yp = [x, y]p = 1, [x, y] ∈ Z(G) >. We

know that all of conjugacy classes of order 1 are in Z(G), and has form {[x, y]i} for some

i = 1, 2, . . . , p.

Other classes of G are:

• Classes of the form {xi[x, y]j|0 ≤ j ≤ p− 1} where i = 1, 2, . . . , p− 1.

• Classes of the form {yi[x, y]j|0 ≤ j ≤ p− 1} where i = 1, 2, . . . , p− 1.

• Classes of the form {xiyj [x, y]k|0 ≤ k ≤ p− 1} where i, j = 1, 2, . . . , p− 1.

Hence Tc(E(p3)) = (p, p2 − 1).
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Lemma 4. Let G be a finite p−group and M be an abelian maximal subgroup of G.

Then k(G) = pn−2 + pz+1 + pz−1, where |Z(G)| = pz.

Proof. We know that Z(G) ⊆M , otherwise M ′ = G′, which is a contradiction. Then

the Burnside’s formula completes the proof. 2

3. Proof of Theorem A

In this section we proof theorem A and present some other information about conju-

gacy structure type:

Proof. We consider three possible casses

Case 1. Let b(G) = 1. Then |G′| = p. By lemma 2, for |G : Z(G)| = p2 or p4 we

have,

k(G) = p4 + p3 − p2, Td(G) = (p4, p3 − p2), and Tc(G) = (p3, p4 − p2), or

k(G) = p4 + p− 1, Td(G) = (p4, 0, p− 1), and Tc(G) = (p, p4 − 1).

Case 2. Let b(G) = 2. Then |G′| = p2 or |G′| = p3 and |G : Z(G)| = p3.

First suppose |G : Z(G)| = p3, then by lemma1(i). For |G′| = p2 or p3, we have

k(G) = 2p3 − p, Td(G) = (p3, p3 − p), and Tc(G) = (p2, P 3 − p, p3 − p2), or

k(G) = p3 + p2 − 1, Td(G) = (p2, p3 − 1), and Tc(G) = (p2, 0, p3− 1).

Now suppose |G : Z(G)| = p4. Then|G′| = p2 and k = 3. Since αip
2i is divided by

(p − 1)pk (see corollary 11 of [6]), then by character degrees formula,

p5 = p3 + p(p− 1)t1p2 + (p− 1)t2p4

for some non-negative integer t1 and t2. Hence t1 = t2 = 1 and

k(G) = p3 + p2 − 1, Td(G) = (p3, p2 − p, p− 1), Tc(G) = (p, p2 − 1, p3 − p).

Case 3. Let b(G) = 3. Then |G : Z(G)| = p4 and |G′| = p3, by lemma 1. If G has an

abelian maximal subgroup then k(G) = p3 +p2−1(by lemma 4), and Td(G) = (p2, p3−1).

If β(G) = 2, then By character degrees formula,

p5 = p2 + α1p
2 + α2p

4, which implies that 1 + α1 = hp2 for some non-negative integer
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h. Hence α2 = p − h. Since α2 is nonzero and divided by p − 1(by corollary 11 of [6]),

h = 1. Therefore k(G) = 2p2 + p− 2 and

Td(G) = (p2, p2 − 1, p− 1).
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