Turk J Math 24 (2000) , 233 – 238. © TÜBİTAK

Strongly Prime Ideals in CS-Rings

Gonca Güngöroğlu

Abstract

We study and characterize strongly prime right ideals in CS-rings.

1. Introduction

Throughout this paper all rings will be associative with identity and modules will be unital right modules. A ring R is called right CS-ring(or extending ring) if every right ideal I in R is essentially contained in a direct summand of R, (see for example [9]). Every right self-injective ring is right CS-ring. A right ideal I of a ring R is called strongly prime if for $a, b \in R$, $aIb \leq I$ and $ab \in I$ imply $a \in I$ or $b \in I$. Every maximal right ideal is strongly prime right ideal. Let M be a module and N a submodule of M. N is called *prime submodule* of M if $N \neq M$ and whenever $r \in R, m \in M$ and $mr \in N$ then $m \in N$ or $Mr \leq N$. Prime submodules have been extensively studied (see for example [1]-[3]). For a commutative ring R it is well known that a submodule N of M is prime if and only if $P = \{r \in R : Mr \leq N\}$ is a prime ideal of R and the (R/P) – module M/N is torsion free [3,Lemma 1]. Let M be a module. We write $N \leq M$ for a submodule N of M. $N \ll M$ will stand for N is small submodule of M, equivalently N + K = M for submodule K of M implies K = M. A regular ring will mean a von Neumann regular ring [5]. In [10], it is proved that a maximal right ideal, which is projective in a self-injective regular ring, is a direct summand. This result is generalized to strongly prime right ideals in self-injective regular rings in [7]. Let M be a module. If every submodule of M is contained in a maximal submodule in M then M is

called coatomic module. By [6, Exercise 9(c),page 239] a module M is semisimple if and only if M is a coatomic and every maximal submodule is direct summand. Since every ring R is a coatomic R-module then a ring R is semisimple if and only if every maximal right ideal in R is direct summand. There is a self-injective regular ring having maximal right ideal which is not projective(see namely [11]). Every maximal submodule N of any module M is essential or direct summand. In this vein we prove the following.

2. Results

Lemma 1. Let R be a right CS-ring. Then any strongly prime right ideal P of R is either essential or a direct summand.

Proof. Let P be a strongly prime right ideal in R. Then there exists an idempotent $e \in R$ such that $eP = P \leq eR$. Now $(1 - e)Pe \leq P$ and (1 - e)e = 0 imply $1 - e \in P$ or $e \in P$. Assume $1 - e \in P$ then $(1 - e)R \leq P$ and hence P = R. If $e \in P$ then P = eR. \Box

The ring R as in [11] which is (commutative) self-injective regular that is not semisimple contains a maximal, therefore strongly prime, right ideal which is not projective. In such a ring not all strongly prime right ideals are a direct summand.

The next Lemma generalises [10, Proposition 1] and [7, Proposition 2].

Lemma 2. Let R be a regular right CS-ring. Then any projective strongly prime right ideal in R is a direct summand.

Proof. Let P be a projective strongly prime right ideal of R. Then by Lemma 1, P is either essential or direct summand. Assume P is essential. By [8] and hypothesis $P = \bigoplus_{i \in \Lambda} (e_i R); e_i^2 = e_i \in R$ for all $i \in \Lambda$ for some index set Λ . By [4, Lemma 3.8], there exist orthogonal idempotents $f_i(i \in \Lambda)$ such that $e_i R = f_i R(i \in \Lambda)$. Hence $P = \bigoplus_{i \in \Lambda} (f_i R)$ and $f_i^2 = f_i, f_i f_j = f_j f_i = 0$ for $i \neq j; i, j \in \Lambda$. Let $\Lambda = \Lambda_1 \cup \Lambda_2$ be a decomposition of Λ into infinite disjoint subsets Λ_1 and Λ_2 and write $P = P_1 \oplus P_2$ where $P_1 = \bigoplus_{i \in \Lambda_1} (f_i R)$ and $P_2 = \bigoplus_{i \in \Lambda_2} (f_i R)$. Since R is a right CS-ring and regular there exist orthogonal idempotents e, f such that $K_1 = eR, K_2 = fR$ and $P_1 \leq eK_1, P_2 \leq eK_2, R = K_1 \oplus K_2$. Hence ef = fe = 0 and $eP = eP_1 + eP_2 = eP_1 = P_1 \leq P$. Since P is strongly prime $e \in P$ or $f \in P$. Assume $e \in P$. Then $eR = K_1 \leq P$ and $e = \sum_{i \in A} f_i r_i$, for some finite subset

A of Λ . Hence $f_i e = 0$ for all $i \in \Lambda_1 \setminus A$, and since $eR = K_1 = \bigoplus_{i \in \Lambda_1} (f_i R), ef_i = f_i$ for all $i \in \Lambda_1$. Thus $f_i = f_i^2 = (ef_i)^2 = 0$ for all $i \in \Lambda_1 \setminus A$. Hence Λ_1 is finite. This is a contradiction.

A ring R is called right continuous if R is a right CS-ring and for any right ideal isomorphic to a direct summand of R is also direct summand (or equivalently generated by an idempotent.)

Lemma 3. Let R be a right continuous ring. Then for any projective strongly prime right ideal I containing the Jacobson radical J of R, there exists an idempotent e such that I = eR + J.

Proof. Let R be a right continuous ring and I a projective strongly prime right ideal containing J. Then it is easy to check that I/J is strongly prime right ideal in R/J. By [4, Prop.3.11] R/J is a right continuous ring and by [4, Prop.3.5] $J = \{a \in R : r(a) \text{ is essential right ideal in } R\}$, where r(a) denotes the right annihilator of a in R. Let $f \in Hom(I, R)$. Since for any $x \in R$, $r(x) \subseteq r(f(x))$, then $f(J) \subseteq J$. By the dual basis Lemma it follows that I/J is a projective right ideal in R. By lemma 2, I/J is a direct summand of R/J. Since idempotents of R/J lift to R by [4, Lemma 3.7], an idempotent e exists in R such that I = eR + J. This completes the proof.

Example 4. Let R be a principal ideal domain which is not a field. Let P be a nonzero maximal ideal in R. Then P is a projective and essential ideal. R is not a regular ring but a CS-ring. Every projective proper ideal is isomorphic to R and is not a direct summand of R.

Proposition 5 generalises 40.1 in [12].

Proposition 5. Let R be a non-singular commutative CS-ring with maximal quotient ring Q. Let I be a nonzero ideal in R. Then I is projective if and only if there exists $a_1, ..., a_t \in I$ and $g_1, ..., g_t \in Hom(I, R)$ such that $a = \sum_{i=1}^t a_i g_i(a)$ for all $a \in I$.

Proof. Let *I* be a projective ideal in *R*. Then there are $\{a_{\lambda} \in I : \lambda \in \Lambda\}$ and $\{f_{\lambda} \in Hom(I, R) : \lambda \in \Lambda\}$ such that $a = \sum a_{\lambda} f_{\lambda}(a)$ and $f_{\lambda}(a)$ is zero for all but a finite

number of $\lambda \in \Lambda$. Let g_{λ} denote the extension of f_{λ} from R to Q. Since Q_R is an injective R-module, g_{λ} always exists for each $\lambda \in \Lambda$. Let a be a nonzero element in I. Then $a = \sum_{i=1}^{t} a_i f_i(a) = \sum_{i=1}^{t} a_i g_i(a) = (\sum_{i=1}^{t} a_i g_i(1))a$, and so $(1 - \sum_{i=1}^{t} a_i g_i(1))a = 0$. Since R is commutative and I is essential in R, and then in Q we have $1 = \sum_{i=1}^{t} a_i g_i(1)$. Let $a \in I$ be any element. Then $a = \sum_{i=1}^{t} a_i g_i(a)$. Conversely, assume that there exist $a_1, \ldots, a_t \in I, g_1, \ldots, g_t \in Hom(R, I)$ such that $a = \sum_{i=1}^{t} a_i g_i(a)$ for all $a \in I$. By the dual basis Lemma I is projective.

Lemma 6. Let M be a projective module and N a submodule of M such that M/N has a projective cover. Let $S = End_RM$ and $F(N) = \{\alpha \in S : \alpha N \leq N\}$. Then there exists $\alpha \in F(N)$ such that $\alpha^2 = \alpha$ and $\alpha N \ll M$.

Proof. Let M/N have a projective cover (P, f) with $f: P \to M/N$ and Ker(f) << P. Since M is projective module there exists $g \in Hom(M, P)$ such that P = g(M) and $M = (Ker(g)) \oplus K$ for some $K \leq M$. Assume $N \leq Ker(g)$. Let α denote the natural projection of M on K then $\alpha N = 0 \leq N$ and $\alpha N << M$. If $N \nleq Ker(g)$, then $M = Ker(g) \oplus K$, $g(N) \leq Ker(f)$ and g(N) is small in P. Since g(M) = g(K) = P is projective there exists $\phi \in Hom(g(M), M)$ such that $g\phi = 1_{g(M)}$, the identity map of g(M), and $\phi g(N)$ is small in M. For all $m \in M$, $\pi \phi g(m) = \pi(m)$. It follows that $\phi g(N) \leq N$. Set $\phi g = \alpha$, then $\alpha^2 = \alpha$ and $\alpha(N) << M$ and $\alpha \in F(N)$.

Let R be a ring and I a right ideal in R. In the following N(I) will denote the set $\{r \in R : rI \subseteq I\}$. Note that if e is a nonzero idempotent with $e \in N(I) \setminus I$ and I is a strongly prime right ideal in a ring R such that eI is small in R then R/I has a projective cover. The proof of this fact is known. We give the proof for the sake of completeness.

Proof. Let *I* be a strongly prime ideal in a ring *R* and $e \in N(I) \setminus I$ such that eI is small in *R*. Then $eI \leq I$ so $eI(1-e) \leq I$ and $e(1-e) = 0 \in I$. Since *I* is a strongly prime right ideal then $e \in I$ or $(1-e) \in I$. Assume $e \in I$ then $eR \leq I$. Since $eR \oplus (1-e)R = R$ eI + (1-e)R = R and so (1-e)R = R. Thus eR = 0 and so e = 0. It follows that $1-e \in I$, then $(1-e)R \leq I$. Now we define $f : eR \to R/I$ by f(er) = r + I. Since $(1-e)R \leq I$. Since $(1-e)R \leq I$, then f is well defined and clearly an R-module homomorphism and also

Ker(f) = eI. Since eR is projective R-module and eI is small in R then R/I has projective cover (eR, f).

Definition. Let M be a module and S denote the ring of R-endomorphisms of M. Let N be a submodule of M. We call N an S-prime submodule of M if whenever $f(m) \in N$, for some $f \in S$ and $m \in M$, then $f(M) \leq N$ or $m \in N$. N is called an S-strongly prime submodule of M if whenever $f(m) \in N$ for some $f \in S$ and $m \in M$ then $m \in N$. Any S-strongly prime submodule is S-prime, and for M = R and $I_R \leq R_R$, being I R-(strongly)prime submodule of R in the same as being I (strongly) prime right ideal of R. Note that any S-prime submodule N of M is prime submodule ([see 3 or 11]) over a commutative ring.

Lemma 7. Let N be an S-prime submodule of a projective module M. Assume that there exists $0 \neq f \in S$ such that $f^2 = f$, $f(N) \leq N$ and $f(N) \ll M$. Then M/N has a projective cover.

Proof. Let N be an S-prime submodule of M and $f \in S$ such that $f^2 = f$ and $f(N) \leq N$ and f(N) << M. Let $m \in M$. Since $f(1 - f)(m) = 0 \in N$ and N is S-prime $f(M) \leq N$ or $(1 - f)(m) \in N$. Assume that $(1 - f)(m) \notin N$ for some $m \in M$. Then $f(M) \leq N$ and so $f(M) \leq f(N)$ and M = f(N) + (1 - f)(M). Hence (1 - f)(M) = M since f(N) << M. Thus f = 0. If $(1 - f)(m) \in N$ for all $m \in M$ then we define $h : f(M) \to M/N$ by h(f(m)) = m + N for $m \in M$. Since f(m) = 0 implies $m = (1 - f)(m) \in N$, h is well-defined. Clearly h is an R-homomorphism and Ker(h) = f(N). Since f(M) is projective and f(N) is small in M, (f(M), h) is a projective cover of M/N.

Corollary 8 Let I be a right ideal of R. Assume that I is a prime submodule of R-module R and a nonzero idempotent e exists in R such that $eI \leq I$ and eI is small in R. Then R/I has a projective cover.

References

- [1] R.L. McCasland and M.E. Moore Prime submodules Comm. Algebra 20 1992 1803-1817.
- [2] R.L. McCasland and P.F. Smith Prime submodules of Noetherian modules *Rocky Mtm.J.* 23 1993 1041-1062.
- [3] J. Jenkins and P.F. Smith On prime radical of a module over commutative ring *Comm.Algebra* **20** 1992 3593-3602.
- [4] S.H. Mohamed and B.J. Müller Continuous and Discrete Modules London Math.Soc.LN 147, Cambridge Univ.Press 1990.
- [5] J. von Neumann On regular rings Proc. Mat. Acad. Sci. U.S. A 22 1936 707-713.
- [6] F. Kasch Modules and Rings Academic Press 1982
- [7] A. Kaya and F. Kuzucuoglu Some Module properties of Strongly prime right ideals preprint
- [8] I. Kaplansky Projective Modules Ann. Math. 68 1958 372-377
- [9] A.W. Chatters and C.R. Hajarnavis Rings in which every complement right ideal is a direct summand *Quart.J.Math.Oxford* 28 1977 61-80
- [10] A.S. Karamzadeh Projective maximal right ideals of self-injective regular rings *Proc.AMS*. 48 1975 286-288
- P. F.Smith Multiplication Modules and Projective Modules *Perid. Math. Hung.* 29 1994 163-168
- [12] R. Wisbauer Foundations of Module and Ring Theory Gordon and Breach 1991

Gonca GÜNGÖROĞLU Hacettepe University, Faculty of Education, Part of Mathematics Education, Beytepe, Ankara-TURKEY

Received 28.01.1999