QR-Submanifolds and Almost Contact 3-Structure

Rıfat Güneş, Bayram Şahin and Sadık Keles

Abstract

In this paper, QR-submanifolds of quaternion Kaehlerian manifolds with $\operatorname{dim} \nu^{\perp}=$ 1 has been considered. It is shown that each QR-submanifold of quaternion Kaehlerian manifold with $\operatorname{dim} \nu^{\perp}=1$ is a manifold with an almost contact 3 -structure. We apply geometric theory of almost contact 3-structure to the classification of QRsubmanifolds (resp.Real hypersurfaces) of quaternion Kaehler manifolds (resp. $I R^{4 m}$, $m>1)$. Some results on integrability of an invariant distribution of a QRsubmanifold and on the immersions of its leaves are also obtained.

Key Words: Quaternion Kaehler Manifold,QR-Submanifold, Almost Contact 3Structure

1. Introduction

The geometry of QR-submanifolds of a quaternion Kaehlerian manifolds was firstly reported by Bejancu[1]. Among all submanifolds of a quaternion Kaehlerian manifold, QR-submanifolds have been intensively studied from different points of view by many authors [1],[2], [4].

In case of $\operatorname{dim} \nu^{\perp}=1$, the study of QR -submanifolds has a significant importance. We show that QR-submanifolds of quaternion Kaehler manifolds with $\operatorname{dim} \nu^{\perp}=1$ admit an almost contact 3 -structure.

2. Preliminaries

Let \bar{M} be a $4 n$ - dimensional manifold and g be a Riemannian metric on \bar{M}. Then \bar{M} is said to be quaternion Kaehlerian manifold (see, [1]) if there exists a 3-dimensional vector bundle of tensors of type(1.1) with local basis of almost Hermitian structures

[^0]
GÜNEŞ, ŞAHIN, KELES

J_{1}, J_{2}, J_{3} satisfying

$$
\begin{equation*}
J_{1} o J_{2}=-J_{2} o J_{1}=J_{3} \tag{II.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X} J_{a}=\sum Q_{a b}(X) J_{b}, a=1,2,3 \tag{II.2}
\end{equation*}
$$

for all vector fields X tangent to \bar{M}, where $\bar{\nabla}$ is the Levi-Civita connection determined by g on \bar{M} and $Q_{a b}$ are certain 1-forms locally defined on \bar{M} such that $Q_{a b}+Q_{b a}=0$.

Let M be $(4 m+3)$-dimensional differenntiable manifold and $\left(\phi_{a}, \xi_{a}, \eta_{a}\right)$ be three almost contact structures on M i.e. We have

$$
\begin{gather*}
\phi_{a}^{2}(X)=-X+\eta_{a}(X) \xi_{a}, \phi_{a}\left(\xi_{a}\right)=0 \\
\eta_{a}\left(\xi_{a}\right)=1, \eta_{a} O \phi_{a}=0 \tag{II.3}
\end{gather*}
$$

where X tangent to M. Suppose that the almost contact structures satisfy the following conditions

$$
\begin{gather*}
\eta_{a}\left(\xi_{b}\right)=0, a \neq b, \phi_{a}\left(\xi_{b}\right)=-\phi_{b}\left(\xi_{a}\right)=\xi_{c} \\
\eta_{a} o \phi_{b}=-\eta_{b} o \phi_{a}=\eta_{c} \tag{II.4}\\
\left(\phi_{a} o \phi_{b}\right)(X)-\xi_{a}\left(\eta_{b}(X)\right)=\left(\phi_{b} o \phi_{a}\right)(X)-\xi_{b}\left(\eta_{a}(X)\right)=\phi_{c}(X)
\end{gather*}
$$

for any cyclic permutation (a, b, c) of $(1,2,3)$. Then, we say that M is endowed with an almost contact 3 -structure. If M is a Riemannian manifold, then we can choose a Riemannian metric g on M such that we have

$$
\begin{align*}
\left(\phi_{a} X, \phi_{a} Y\right) & =g(X, Y)-\eta_{a}(X) \eta_{a}(Y) \tag{II.5}\\
\eta_{a}(X) & =g\left(X, \xi_{a}\right)
\end{align*}
$$

for any $X, Y \in \chi(M)$. In this case we say that $\left(\phi_{a}, \xi_{a}, \eta_{a}\right), a=1,2,3$ define an almost contact metric structure (See [5]). Taking account of (II.3) and (II.5), we obtain

$$
g\left(\phi_{a} X, Y\right)+g\left(X, \phi_{a} Y\right)=0, a=1,2,3
$$

for any X, Y tangent to M.

GÜNEŞ, ŞAHIN, KELES

Let M be an m-dimensional Riemannian manifold isometrically immersed in \bar{M}. We denote by $T M$ (resp. $T M^{\perp}$) the tangent (resp. normal) bundle to M. Then we say that M is a quaternion-real submanifold (QR-Submanifold) if there exists a vector bundle v of the normal bundle such that we have

$$
\begin{equation*}
J_{a}\left(v_{x}\right)=v_{x} \tag{II.6}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{a}\left(v_{x}^{\perp}\right) \subset T_{M}(x) \tag{II.7}
\end{equation*}
$$

for $x \in M$ and $a=1,2,3$, where v^{\perp} is the complementary orthogonal bundle to v in $T M^{\perp}$. Let M be a QR-submanifold of \bar{M}. For sake of shortness we use $D_{a x}$ for $D_{a x}=J_{a}\left(v_{x}^{\perp}\right), a=1,2,3$. We consider $D_{1 x} \oplus D_{2 x} \oplus D_{3 x}=D_{x}^{\perp}$ and $3 s$-dimensional distribution $D^{\perp}: x \longrightarrow D_{x}^{\perp}$ globally defined on M. Where $s=\operatorname{dim} v_{x}^{\perp}$. Also we have, for each $x \in M$,

$$
\begin{equation*}
J_{a}\left(D_{a x}\right)=v_{x}^{\perp}, J_{a}\left(D_{b x}\right)=D_{c x} \tag{II.8}
\end{equation*}
$$

where (a, b, c) is a cyclic permutation of $(1,2,3)$. Next, we denote by D the complementary orthogonal distribution to D^{\perp} in $T M$, we see that D is invariant with respect to the action of J_{a}. i.e. we have

$$
\begin{equation*}
J_{a}\left(D_{x}\right)=D_{x} \tag{II.9}
\end{equation*}
$$

for any $x \in M . D$ is called quaternion distribution. Also note that $D_{1 x}, D_{2 x}, D_{3 x}$ are mutually orthogonal vector spaces of $T_{M}(x)$ (see [1]).

In [3] D.E.Blair introduced the concept cosymplectic structure as it follows. An almost contact metric structure (ϕ, ξ, η, g) is a cosymplectic structure if and only if

$$
\left(\nabla_{X} \phi\right) Y=0,\left(\nabla_{X} \eta\right) Y=0
$$

where ∇ is Levi-civita connection on M.

Definition 2.1 An almost 3-contact structure $\left(\phi_{a}, \xi_{a}, \eta_{a}\right)$ is

GÜNEŞ, ŞAHiN, KELEŞ

a) a 3-cosymlectic structure if

$$
\begin{equation*}
\left(\nabla_{X} \phi_{a}\right) Y=0, \quad\left(\nabla_{X} \eta_{a}\right) Y=0 \tag{II.10}
\end{equation*}
$$

b) a 3-Sasakian structure if

$$
\begin{equation*}
\left(\nabla_{X} \phi_{a}\right) Y=\eta_{a}(Y) X-g(X, Y) \xi_{a} \tag{II.11}
\end{equation*}
$$

c) a nearly 3-Sasakian structure if

$$
\begin{equation*}
\left(\nabla_{X} \phi_{a}\right) X=\eta_{a}(X) X-g(X, X) \xi_{a} \tag{II.12}
\end{equation*}
$$

where ∇ denotes the Levi-Civita connection and X, Y, Z are arbitrary vector fields on M.
For $Y \in \chi(M)$, we decompose as follows

$$
\begin{equation*}
J_{a} Y=P_{a} Y+F_{a} Y, a=1,2,3 \tag{II.13}
\end{equation*}
$$

where $P_{a} Y$ and $F_{a} Y$ the tangential and normal parts of $J_{a} Y$, respectively.
The formula Gauss and Weingarten are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{II.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{II.15}
\end{equation*}
$$

for any vector fields X, Y tangent to M and any vector field V normal to M. Where ∇ is the induced Riemann connection in M, h is the second fundemental form, A_{V} is fundemental tensor of Weingarten with respect to the normal section V and ∇^{\perp} normal connection on M. Moreover we have the relation

$$
\begin{equation*}
g\left(A_{V} X, Y\right)=g(h(X, Y), V) \tag{II.16}
\end{equation*}
$$

3. QR-Submanifolds with $\operatorname{dim} v^{\perp}=1$

Let M be a QR-submanifold of a quaternion Kaehlerian manifold \bar{M} such that the dimension v^{\perp} is equal to one. In this case v^{\perp} is generated by unit vector field, say N.

GÜNEŞ, SAHİN, KELEŞ

We shall show in the sequel that N is precisely determined with one of the almost contact 3 -structure. Let $-J_{a}(N)=\xi_{a}, a=1,2,3$ and hence the distributions D_{a} are generated by the vector fields ξ_{a}. It is natural expect that a QR-submanifold of quaternion Kaehlerian manifold with $\operatorname{dim} v^{\perp}=1$ is almost contact 3 -structure, we describe it as follows;

Proposition 3.2 Let \bar{M} be a quaternion Kaehlerian manifold and M be a $Q R$-submanifold of \bar{M}. Then M is a manifold with almost contact 3-structure.

Proof. For any $X \in \Gamma(T M)$, put

$$
\begin{equation*}
\phi_{a} X=P_{a} X, F_{a}(X)=\eta_{a}(X) N \tag{III.1}
\end{equation*}
$$

Then $g\left(F_{a} X, N\right)=\eta_{a}(X)$ and

$$
\begin{equation*}
\eta_{a}(X)=g\left(X, \xi_{a}\right) . \tag{III.2}
\end{equation*}
$$

Moreover $g\left(P_{a} X, P_{a} Y\right)=g\left(J_{a} X, J_{a} Y\right)-g\left(F_{a} X, F_{a} Y\right)$ implies

$$
\begin{equation*}
g\left(\phi_{a} X, \phi_{a} Y\right)=g(X, Y)-\eta_{a}(X) \eta_{a}(Y) \tag{III.3}
\end{equation*}
$$

and

$$
J_{a}^{2} X=J_{a} P_{a} X+J_{a} F_{a} X
$$

or

$$
-X=P_{a}^{2} X+\eta_{a}(X) J_{a} N .
$$

Hence

$$
\begin{equation*}
\phi_{a}^{2} X=-X+\eta_{a}(X) \xi_{a} . \tag{III.4}
\end{equation*}
$$

On the other hand, from (III.2) and (III.4) we obtain $\phi_{a}\left(\xi_{a}\right)=0$ and $\eta_{a}\left(\xi_{a}\right)=1$, respectively. Moreover

$$
\left(\eta_{a} o \phi_{a}\right) X=\eta_{a}\left(\phi_{a} X\right)=g\left(\phi_{a} X, \xi_{a}\right)=0
$$

GÜNEŞ, ŞAHİN, KELEŞ

for any $X \in \Gamma(T M)$. From (III.1) and (III.2)

$$
\eta_{a}\left(\xi_{b}\right)=0
$$

and

$$
\begin{aligned}
\phi_{a}\left(\xi_{b}\right) & =J_{a}\left(\xi_{b}\right)-F_{a}\left(\xi_{b}\right) \\
& =-J a\left(J_{b} N\right) \\
& =-J_{c} N=\xi_{c} .
\end{aligned}
$$

By using (II.13) and (III.4), we obtain

$$
\begin{aligned}
\left(\eta_{a} o \phi_{b}\right)(X) & =\eta_{a}\left(\phi_{b} X\right) \\
& =g\left(\phi_{b} X, \xi_{a}\right) \\
& =\eta_{c}(X)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\phi_{a} o \phi_{b}\right)(X)-\xi_{a}\left(\eta_{b}(X)\right) & =\left(\phi_{b} o \phi_{a}\right)(X)-\xi_{b}\left(\eta_{a}(X)\right) \\
& =\left(\phi_{b}\left(\phi_{a}(X)\right)-\xi_{b}\left(\eta_{a}(X)\right)\right. \\
& =\phi_{c}(X)
\end{aligned}
$$

This shows that on a QR-submanifold of a quaternion Kaehlerian manifold $\operatorname{dim} v^{\perp}=1$ there exists a natural almost contact 3 -structure. i.e. tensor field ϕ_{a} of type (1,1), 1-form η_{a} and unit vector field ξ_{a} satisfy (II.3),(II.4) and (II.5).

From now on will denote by M a QR-submanifold with $\operatorname{dim} v^{\perp}=1$.
Theorem 3.3 Let M be a $Q R$-submanifold of a quaternion Kaehlerian manifold. If for any $X, Y \in \Gamma(T M), h(X, Y)$ has no component in $\Gamma\left(v^{\perp}\right)$ and $D_{a}, a=1,2,3$ are parallel in M, then M is a manifold with cosymplectic 3-structure.

Proof. For any $X, Y \in \Gamma(T M)$, from (II.2) we have

$$
\bar{\nabla}_{X} J_{a} Y=Q_{a b}(X) J_{b} Y+Q_{a c}(X) J_{c} Y+J_{a} \bar{\nabla}_{X} Y
$$

GÜNEŞ, SAHIIN, KELES

Taking account of (II.13),(II.14),(II.15) and (III.1) we obtain

$$
\begin{aligned}
&\left(\nabla_{X} \phi_{a}\right) Y+\left(\nabla_{X} \eta_{a}(Y)\right) N+h\left(X, \phi_{a} Y\right) \\
&-\eta_{a}(Y) A_{N} X+\eta_{a}(Y) \nabla_{X}^{\perp} N= Q_{a b}(X) \phi_{b} Y+Q_{a b}(X) \eta_{b}(Y) N \\
&+Q_{a c}(X) \phi_{c} Y+Q_{a c}(X) \eta_{c}(Y) N \\
&+B_{a} h(X, Y)+C_{a} h(X, Y)
\end{aligned}
$$

Comparing the tangential and normal parts both of sides of this equation, we have

$$
\begin{align*}
\left(\nabla_{X} \phi_{a}\right) Y= & \eta_{a}(Y) A_{N} X+Q_{a b}(X) \phi_{b} Y+Q_{a c}(X) \phi_{c} Y \tag{III.5}\\
& +B_{a} h(X, Y)
\end{align*}
$$

and

$$
\begin{align*}
\left(\nabla_{X} \eta_{a}(Y)\right) N= & -h\left(X, \phi_{a} Y\right)+\eta_{a}(Y) \nabla_{X}^{\perp} N \tag{III.6}\\
& +Q_{a b}(X) \eta_{b}(Y) N+Q_{a c}(X) \eta_{c}(Y) N \\
& +C_{a} h(X, Y)
\end{align*}
$$

Now, we decompose $h(X, Y)$ into components $h^{1}(X, Y)$ and $h^{2}(X, Y)$ in v^{\perp} and v respectively as

$$
h(X, Y)=h^{1}(X, Y)+h^{2}(X, Y)
$$

where we can put $h^{1}(X, Y)=\alpha(X, Y) N$ for some scalar valued bilinear function α. Thus (III.5) and (III.6) gives

$$
\begin{align*}
\left(\nabla_{X} \phi_{a}\right) Y= & \eta_{a}(Y) A_{N} X+Q_{a b}(X) \phi_{b} Y+Q_{a c}(X) \phi_{c} Y \tag{III.7}\\
& -\alpha(X, Y) \xi_{a}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} \eta_{a}\right)(Y)=-\alpha\left(X, \phi_{a} Y\right)+Q_{a b}(X) \eta_{b}(Y)+Q_{a c}(X) \eta_{c}(Y) \tag{III.8}
\end{equation*}
$$

On the other hand, since $\xi_{a}=-J_{a} N$ we have

GÜNEŞ, ŞAHiN, KELEŞ

$$
\bar{\nabla}_{X} \xi_{a}=-\left(\bar{\nabla}_{X} J_{a}\right) N-J_{a} \bar{\nabla}_{X} N
$$

for any $X \in \Gamma(T M)$. Thus by using (II.2),(II.8),(II.15) and taking tangential parts we obtain

$$
\nabla_{X} \xi_{a}=Q_{a b}(X) \xi_{b}+Q_{a c}(X) \xi_{c}+\phi_{a} A_{N} X
$$

for any $X \in \Gamma(T M)$. Thus we have

$$
g\left(\nabla_{X} \xi_{a}, \xi_{b}\right)=Q_{a b}(X)+g\left(\phi_{a} A_{N} X, \xi_{b}\right)
$$

From (II.4) and (II.16) we derive

$$
\begin{equation*}
\eta_{b}\left(\nabla_{X} \xi_{a}\right)+\alpha\left(X, \xi_{c}\right)=Q_{a b}(X) \tag{III.9}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
\eta_{c}\left(\nabla_{X} \xi_{a}\right)-\alpha\left(X, \xi_{b}\right)=Q_{a c}(X) \tag{III.10}
\end{equation*}
$$

Combining (III.7) and (III.8) with (III.9) and (III.10) we have

$$
\begin{align*}
\left(\nabla_{X} \phi_{a}\right) Y= & \eta_{a}(Y) A_{N} X+\left(\eta_{b}\left(\nabla_{X} \xi_{a}\right)+\alpha\left(X, \xi_{c}\right)\right) \phi_{b} Y \tag{III.11}\\
& +\left(\eta_{c}\left(\nabla_{X} \xi_{a}\right)-\alpha\left(X, \xi_{b}\right)\right) \phi_{c} Y-\alpha(X, Y) \xi_{a}
\end{align*}
$$

and

$$
\begin{align*}
\left(\nabla_{X} \eta_{a}\right)(Y)= & -\alpha\left(X, \phi_{a} Y\right)+\left(\eta_{b}\left(\nabla_{X} \xi_{a}\right)+\alpha\left(X, \xi_{c}\right)\right) \eta_{b}(Y)+ \tag{III.12}\\
& \left(\eta_{c}\left(\nabla_{X} \xi_{a}\right)-\alpha\left(X, \xi_{b}\right)\right) \eta_{c}(Y)
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$. From (II.16) and (III.11) we get

$$
\begin{gather*}
g\left(\left(\nabla_{X} \phi_{a}\right) Y, Z\right)=\eta_{a}(Y) \alpha(X, Z)+\eta_{b}\left(\nabla_{X} \xi_{a}\right) g\left(\phi_{b} Y, Z\right) \\
+\alpha\left(X, \xi_{c}\right) g\left(\phi_{b} Y, Z\right)+\left(\eta_{c}\left(\nabla_{X} \xi_{a}\right)-\alpha\left(X, \xi_{b}\right)\right) g\left(\phi_{c} Y, Z\right) \tag{III.13}\\
-\alpha(X, Y) \eta_{a}(Z) .
\end{gather*}
$$

Thus if $h(X, Y)$ has no components in $\Gamma\left(v^{\perp}\right)$ and $D_{a}, a=1,2,3$ are parallel in M, then from (III.12) and (III.13), we get $\left(\nabla_{X} \phi_{a}\right) Y=0$ and $\left(\nabla_{X} \eta_{a}\right)(Y)=0$ that is M is a manifold with cosymplectic 3 -structure.

As immediate consequence of theorem we have the following;
Corollary 3.4 Let M be real hypersurface of quaternion Kaehler manifold \bar{M}. If M is totally geodesic and ξ_{a} are parallel in M then M is a manifold with cosymplectic 3structure.

Corollary 3.5 Let M be real hypersurface in $\operatorname{IR}^{4 m}(m>1)$. Then M is totally geodesic if and only if M is a manifold with cosymplectic 3-structure.

Proof. Since $\bar{M}=I R^{4 m}(m>1)$ we have $\bar{\nabla}_{X} J_{a}=0$. Thus from (III.13) we get

$$
\begin{equation*}
g\left(\left(\nabla_{X} \phi_{a}\right) Y, Z\right)=\eta_{a}(Y) \alpha(X, Z)-\alpha(X, Y) \eta_{a}(Z) \tag{III.14}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T M)$. Let M be a totally geodesic real hypersurface of $I R^{4 m}(m>1)$ then from (III.14) we have

$$
g\left(\left(\nabla_{X} \phi_{a}\right) Y, Z\right)=0
$$

and from (III.8) we obtain

$$
\left(\nabla_{X} \eta_{a}\right)(Y)=0
$$

for any $X, Y \in \Gamma(T M)$. Thus M is a manifold with cosymplectic 3 -structure.
Conversely, if M is a manifold with cosymplectic 3 -structure, from (III.14) we get

$$
\eta_{a}(Y) A_{N} X=\alpha(X, Y) \xi_{a}
$$

or

$$
\begin{aligned}
& \eta_{1}(Y) A_{N} X=\alpha(X, Y) \xi_{1} \\
& \eta_{2}(Y) A_{N} X=\alpha(X, Y) \xi_{2} \\
& \eta_{3}(Y) A_{N} X=\alpha(X, Y) \xi_{3}
\end{aligned}
$$

since $\xi_{1}, \xi_{2}, \xi_{3}$ are linearly independent we get $\alpha(X, Y)=0$. Thus proof is complete.
From (III.14) we have the following corollary.

Corollary 3.6 Let M be real hypersurface in $\operatorname{IR}^{4 m}(m>1)$. Then M is a manifold with Sasakian 3-structure if and only if $\alpha(X, Y)=g(X, Y)$ for any $X, Y \in \Gamma(T M)$.

Corollary 3.7 Let M be totally umbilical real hypersurface in $\operatorname{IR}^{4 m}(m>1)$. Then M is a manifold with nearly Sasakian 3-structure.

Proof. For any $X, Y \in \Gamma(T M)$, from (III.7) we get

$$
\begin{aligned}
g\left(\left(\nabla_{X} \phi_{a}\right) X, Y\right) & =\eta_{a}(X) g(h(X, Y), N)-\alpha(X, X) \eta_{a}(Y) \\
& =\eta_{a}(X) g(X, Y)-g(X, X) g\left(\left(Y, \xi_{a}\right)\right.
\end{aligned}
$$

Thus M is a manifold with nearly Sasakian 3 -structure.
Theorem 3.8 Let M be a $Q R$-submanifold of quaternion Kaehler manifold such that $\left(\nabla x \phi_{a}\right) Y=0, X, Y \in \Gamma(D)$. Then the quaternion distribution is involutive.

Proof. By using (III.6), we obtain

$$
\begin{aligned}
g\left([X, Y], \xi_{a}\right) & =g\left(\nabla_{x} Y, \xi_{a}\right)-g\left(\nabla_{Y} X, \xi_{a}\right) \\
& =X g\left(Y, \xi_{a}\right)-g\left(Y, \nabla_{x} \xi_{a}\right)-Y g\left(X, \xi_{a}\right)+g\left(X, \nabla_{Y} \xi_{a}\right) \\
& =g\left(X, \nabla_{Y} \xi_{a}\right)-g\left(Y, \nabla_{x} \xi_{a}\right) \\
& =-2 g\left(Y, \nabla_{X} \xi_{a}\right) \\
& =2 g\left(\nabla_{X} Y, \xi_{a}\right)
\end{aligned}
$$

for any $X, Y \in \Gamma(D)$ and $\xi_{a} \in \Gamma\left(D^{\perp}\right)$. Since D is invariant under ϕ_{a} there exists nonzero vector field $Z \in \Gamma(D)$ such that $Y=\phi_{a} Z$. Thus we have

$$
\begin{aligned}
g\left([X, Y], \xi_{a}\right) & =2 g\left(\nabla_{x} \phi_{a} Z, \xi_{a}\right) \\
& =2 g\left(\left(\nabla_{x} \phi_{a}\right) Z+\phi_{a}(\nabla x Z), \xi_{a}\right) \\
& =2 g\left(\phi_{a}\left(\nabla_{x} Z\right), \xi_{a}\right)
\end{aligned}
$$

here, by using (II.3) we obtain $g\left([X, Y], \xi_{a}\right)=0$ i.e. $[X, Y] \in \Gamma(D)$.
Corollary 3.9 Let M be a $Q R$-submanifold of quaternionn Kaehler manifold. If D is involutive, then each leaf of D is totally geodesic in M.

Proof. The proof is obvious from proof of the Theorem 3.7.

Theorem 3.10 Let M be a $Q R$-submanifold of quaternionn Kaehler manifold. Then we have

$$
P A_{N} X=-X \Longleftrightarrow P \nabla_{x} \xi_{a}=-\phi_{a} X
$$

for any $X \in \Gamma(D)$. Where P is the projection morphism of $T M$ to the quaternion distribution D.

Proof. From (II.2) we have

$$
\begin{aligned}
-\bar{\nabla}_{X} J_{a} N-h\left(X, J_{a} N\right) & =\nabla_{X} \xi_{a} \\
-\left(\bar{\nabla}_{X} J_{a}\right) N-J_{a}\left(\bar{\nabla}_{X} N\right)-h\left(X, J_{a} N\right) & =\nabla_{X} \xi_{a}
\end{aligned}
$$

By using (II.2) and (II.15) we obtain

$$
-Q_{a b}(X) J_{b} N-Q_{a c}(X) J_{c} N-J_{a}\left(A_{N} X+\nabla_{X}^{\perp} N-h\left(X, \xi_{a}\right)=\nabla x \xi_{a}\right.
$$

Here,(II.1) and [1] we have

$$
\begin{aligned}
&-Q_{a b}(X) J_{b} N-Q_{a c}(X) J_{c} N+J_{a} P A_{N} X \\
&+\eta_{b}\left(A_{n} X\right) \xi_{c}-\eta_{c}\left(A_{n} X\right) \xi_{b}-\eta_{a}\left(A_{n} X\right) N
\end{aligned} \quad \begin{aligned}
&-B_{a} \nabla^{\perp}{ }_{X} N-C_{a} \nabla^{\perp}{ }_{X} N \\
&-h\left(X, \xi_{a}\right)=P \nabla_{X} \xi_{a}+\eta_{a}\left(\nabla x \xi_{a}\right) \xi_{a} \\
&+\eta_{b}\left(\nabla x \xi_{a}\right) \xi_{b}+\eta_{c}\left(\nabla x \xi_{a}\right) \xi_{c}
\end{aligned}
$$

thus we obtain $J_{a} P A_{N} X=P \nabla_{x} \xi_{a}$. Hence we get assertion of theorem.

Acknowledgement

We are thankful to the refree for his(her)valuable comments on the paper.

References

[1] Bejancu, A. QR-Submanifolds of Quaternion Kaehler Manifolds, Chinese Journal of Math. Vol:14 No:42 (1986)
[2] Bejancu, A. Generic Submanifolds of Manifolds with Sasakian 3-Structure, Math. Rep. ToyamaUniv. 75-101 (1985)
[3] Blair, D. E. Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509. Springer-Verlag (1976)
[4] Khan, K. A. CR-Submanifolds and Almost Contact Structure, Math. J. Toyama Univ. Vol:16, 29-37 (1993)
[5] Kuo, Y. Y. On Almost Contact 3-Structure, Tohokou Math. J. 22, 325-332 (1970)
Rıfat GÜNEŞ, Bayram ŞAHiN and Sadık KELEŞ
Received 28.01.1999
Department of Mathematics,
Faculty of Science and Arts,
Inonu University,
44100 Malatya-TURKEY
e-mail: bsahin@inonu.edu.tr

[^0]: AMS Subject Classification: 53C15,53C40

