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On Non-Homogeneous Riemann Boundary Value

Problem

Kadir Kutlu

Abstract

In this paper we consider non-homogeneous Riemann boundary value problem

with unbounded oscillating coefficients on a class of open rectifiable Jordan curve.
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In [1], homogeneous Riemann boundary value problem was studied when curve =
satisfies the condition 6(0) ~ ¢ and G is an oscillating function at the end points of the
curve. In this work we investigate the non-homogeneous Riemann problem in the same
case and we will use terminology and notations introduced in [1].

We need the following class of functions for our future references:

Hal(/'l/lal/l) +Ha2(/'[/2)l/2) = {9 S ny g=01 +92)gk c C’Y,ng(é_)
= O(g_Vk),w;: (55 g) - O(&”’“g_“k_Vk)}

where k= 1;2, u € (0,1], v, € [0,1),4,£ € (0,d],0 <&, d = diam~.

Lemma 1. [3] Suppose that v satisfies 0(0) ~ d, G(t)=exp(2rif(t)), QF*(§) =
(0] (ln%),w;’“(é,g) = O(g),& < &k =1,2,g € H*(u1,v1) + H*?(ug, v2) and suppose
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h is holomorphic in C\v, continuously extendable to 4 from both sides, h(z)#£0 for all z&
C\y, h*(t)#0 for all t€ 4, h*(t) = G(t)h~(t), g/h™ € L (). Then the function

wol) =50 [ D in s ¢ )

- 2mi )T —2)
¥
is holomorphic in C\7, continuously extendable to 4 from both sides and satisfies the
homogeneous boundary conditions

We introduce the quantity

z—arln | 2 —ay |

Zg = lim ! Re/ f(j-)zdr, z &y (2)
v

ek L.
and if A is finite introduce

AL, if Ay €7

= = B8] +1, itEG ¢ 2

Lemma 2. Suppose that v satisfies 8(0) ~ 0, G and g are as in lemmal and
Yo(2) = (z —a1) ®1 (2 — ag)_aeéexp/ %dr, z €.
¥

Then g/x¢ is integrable on 7.
Proof. Tt is obvious that g/x{ is bounded on a compact subset of y\{a;,as} and
measurable. Therefore it is integrable on compact subset of v. Now we estimate g/ Xg

on 7s (a1) for small enough 4. Since g€ H* (g, v1) + H*? (u2, v2) we have

[g(®) [< Qg (1t —ar [) + Qg5 (1t —as ) <

lel(|t—a1 |)+Q;§(|a2—a1|—5)§0|t—a1 |_V1 +C’§C’|t—a1 |_V1.
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From (2) we have

T —

—Re/ /(7) dr < —(Zé—l—a)lnw—al ,
z
8!

where z¢ v is close enough to a;. Hence

1
T—Zz

_ —a = _a ) exp (—Re f(T) -
m\—w Dt — az) | p(RJ dr) <

<Olt—a) | exp(—Be+e)ln|z—ar |)=C |t —ay [24B6= .

Therefore

‘ g(t)
xg (t)

—1
For small enough ¢, we have q=v; — &] + A5 + ¢ > —1, that is, in the vicinity of a;

‘ <C | t—ay |—u1+ae'1—Kg€ )

9(t) ‘
<Clt—a |9 q>-1.
‘XS“ (t)
Analoguosly, similar estimation exists in the vicinity of as. This yields xg+(2) as
0
integrable.
Lemma 3. Suppose v satisfies 6(6) ~ J, G satisfies the conditions of lemmal,
ge H® (Mla 1/1) + H %2 (Mg, 1/2) and
. 1 f(7)
Ak =1 R d 4
G Zi»r{llkln|2_ak| e/T—Z TEEY )
¥

exists. Then the function in (1) is piecewise holomophic while h=y.

Proof. It is obvious that occording to condition (4) we may take se; = o), g = &),
and xo = x. Then for function (1) we only need to estimate in endpoints.

We shall investigate function (1) in the vicinity of a; (in the other end we may show

the proof anologously). Take 2n =| z — a1 |,q = —e&1 + AL. Since ¢ € (—1,0],v1 € [0, 1).
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Choose & small enough such that ¢+ v; + & < 1. Let A > 0 such that for z € {{ € C:
| €& —u [< AP\,

(Aé+5)1n|z—a1|§Re/7‘_f(%)zd7'§(Aé—5)ln|z—a1|. (5)

Let t; € {y € v:| z — y |= dist(z,yr(a1)\ 7 (2))}. We decompose (1) as follows:

Po(2) 1 9(7) oL 9(7) .
O 2wifx+<r><f—z>d 2 \/( | =
1 9(7) oL 9(r) —g(t=) . 9(t:) dr
2mi o xH(r)(r —z)d + 21 /, xH(r)(r — z)d + 21 (/) xH(T)(T —2)

=A; + Ay + Az + Ay

It is obvious that since A; does not depend on 7 it is bounded in the vicinity of a;.
Let 7 € ya(a1)\vy(2) therefore | 7 —ay | +n <| 7 — 2 | +3n <| 7 — 2z |. From lemma 2

and [2] we have

1 Qu(| T — + Qo2 - -
A<t / (T —ai ) +Qg( az — a1 | )|dr|
2 [ xt() [ (| 7—a1|+n)

Y (a)\ vy (2)
~vi| d A —v1—q—¢
<C / |T—a1| | 7—| dTSC/xide(.ﬁ)
|7 —ay [t (|7 —a1 | +n) T+
va(a1) 0

A —v1—q—¢ g —V1i—g—¢
gC/xidng/xidx
r+n n+e
0 0

A A
1
< C’(—/x_”l_q_edx +/x_”1_q_6_1dx) < Cp~nma7s,
n

0 n

If v,(z) = @, then A3 = 0. Otherwise, since | z —t. |<n and 7, (z) C y2y(t.) we get
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Ay < 5 [ STl e 2,
S 7
Ynlz
1 |T—t |/¢1 n_ltl—V1+|T_t |;¢2
SQ_/ - q+e t . |dT|
") e Tt |
Ynlz

< O (g / vt [ dr |

Yan (tz)
2n
w [ rmnptan < opsree [ otase)
Y2 (t2) 0
2 2
+ /T‘“_lde(r)) < Cnp==E(pmn /T’“_ldT
0 0
2n
+ /T’“_ldr) SO T7(Cnp~ " +Cnyt2) < Cp~ 97577,
0

Now we investigate Ay. If v,(2) = &, then Ay = 0. Otherwise since | z —t, |< 7 and
| 7. — a1 |> n then

1g(t2) [ < QgH([ 1 —an ) + Qg0 (11 — a2 [) < Qg (| t: —ar |)
+ Qg (laz —a1 | =0) <C|t, —ar |77 +C < O™

p ~—
Suppose that as & v,(z) and ~,(z) = AU (U ckdi), 1 < p < o0,ep,dip € 32, (2) =
k=1

{£eC:|&—z|=n}. Arcs ckvdk are connected components of v, (z) and A C 3°, (2). The

number of ¢ydy’s may not be more than countable since arbitrary partition of interval
[0,d], d=diam -, is countable.
The points cg, dg, cx # di divide Zn (z) into two arcs with enpoints ¢, d;. Denote

one of them by Ay oriented from ¢y to di. Let D be the domain bounded by AxU ckvdk
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and z¢D. If meas Ay < 7 then meas Ay <| ¢x — di | 7/2 <(meas c;:dk)ﬂ/z If

meas Ap > 7 then meas c;:dk> 2n >meas Ay /m. Therefore meas A <C(meas ckvdk)
C=max{rm,2/r} = m. Meanwhile if 7 € }_, (2) we have | 7 —z |= 7. By means of Cauchy

theorem we get

[ 25 || o)

(2) A k:ledk k=15,

1 P

< —(meas A + Z(meas A)
N k=1
T u — T Poo— T

< —(meas A + Zmeas crdy) = —(meas A + meas U crdy) = —meas v, (z)
K k=1 K k=1 K
T

IN
|
=
I
o
w»n
)
V)
K]
—

t.) = "6, (2n) < Z6(2y) < ZCn=nC.
n n n

Therefore | A4 |< @%n_q_ECﬂ = Cn~7"1=¢. If we round up the result obtained we

!Z T —q—vi— _
have | CI)O(Z) |: X271"L') f X+(i]—§(7)'—z) dr S C?’] 4 N | X(Z) | From (5) | X(Z) |S qu Ea
ol

therefore | ®g(z) |< Cn=97"17¢ | x(z) |< Onp~1— 2.
Since ¢ is small enough we may assume that 7 + 2¢ < 1. This proves the lemma.

In [1] the solution of the homogeneous boundary value problem was given as x(z)P_,_,(z)
where P,_1(z) is a polynomial whose degree is not greater than & — 1. If & = 0

Po_1(z) = 0. For & < 0 the coefficients of z=%, z72,...2z~® in the expantion

A e g 2 er) 2 g(r) s,
2ﬂiJX+(T)(T—z)d B 27m'7 X+(T)d 27m'7/x+(7') d 27m'7 xt+(7) dr=..

must be zero. Thus the following theorem is obtained.

Theorem. Suppose the conditions of lemmal are satisfied and limit in (4) exists.
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i) If & > 0, the Riemann boundary value problem is soluable in K(v) unconditionally,

the solution is given by

_ x(® 9(t)
v = 32 [ Al —dx@ P, )

where P,_1(z) is arbitrary polynomial of degree not greater than & — 1(Py_1(z)= 0 for
& = 0). ii) If & < 0, then the Riemann boundary value problem is solvable in K(v) if

and only if the conditions

t .
/ 9®) gt =0 j=0.1.... w1
Y

are satisfied. Under these conditions the solution is unique and is given by

~ X(2) g(t)
*) = o / OIS

Y
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