Intrinsic Equations for a Relaxed Elastic Line on an Oriented Hypersurface in the Minkowski Space \mathbb{R}_{1}^{n}

N. Gürbüz and A. Görgülü

Abstract

We gived the intrinsic equations for a relaxed elastic line on an oriented surface in $\mathbb{R}_{1}^{3}([1],[2])$.

In this paper, we derived the intrinsic equations for a relaxed elastic line on an oriented time-like hypersurface and space-like hypersurface in the Minkowski space \mathbb{R}_{1}^{n} and gived additional results about relaxed elastic lines on various timelike and spacelike hypersurface in the Minkowski space \mathbb{R}_{1}^{n}.

Key Words: Elastic line, Minkowski space.

1. Introduction

In this section, we give some fundamental definitions and theorems.
Definition 1.1. Let α denote an arc on a connected oriented hypersurface M in \mathbb{R}_{1}^{n} parametrized by arc length $s, 0 \leq s \leq l$. Let $k_{1}(s)$ be the curvature of the first curvature of $\alpha(s)$. The first total square curvature K of α in \mathbb{R}_{1}^{n} is defined by

$$
\begin{equation*}
K=\int_{0}^{l} k_{1}^{2} d s \tag{1.1}
\end{equation*}
$$

Definition 1.2. The arc α is called a relaxed elastic line if it is an extremal for the variational problem of minimizing the value of K within the family of all arcs of length l on M having the same initial point and initial direction as α in the Minkowski space \mathbb{R}_{1}^{n}.

GÜRBÜZ, GÖRGÜLÜ

Definition 1.3. On an $n \times n$ matrix, the following conditions are equivalent:
(1) $\mathrm{g} \epsilon O_{\nu}(n)$
(2) $\mathrm{g}^{t}=\varepsilon g^{-1} \varepsilon$
(3) The columns(rows) of g form an orthonormal basis for \mathbb{R}_{ν}^{n} (first ν vectors are timelike).
(4) g carries one (hence every) orthonormal basis for \mathbb{R}_{ν}^{n} to an orthonormal basis [3].

Definition 1.4. Let M be a pseudo-Euclidean hypersurface in \mathbb{R}_{1}^{n} and a curve α which lies on M. Apart from the Frenet vector field system $\left\{V_{1}, \overline{V_{2}}, \overline{V_{3}} \ldots, \overline{V_{n-1}}, \overline{V_{n}}\right\}$, there is also exist a second orthonormal vector field system $\left\{V_{1}, \ldots, V_{n-1}, N\right\}$ at every point of the curve α. At a point $\alpha(s)$ of α, let $V_{1}(s)=\alpha^{\prime}(s)$ denote the unit tangent vector to α, let $N(s)$ denote the unit hypersurface normal to $M .\left\{V_{1}, \ldots, V_{n-1}, N\right\}$ gives a basis for all vectors at $\alpha(s)$ and $\left\{V_{1}, \ldots, V_{n-1}, N\right\}$ gives a basis for the vectors tangent to M at $\alpha(s)$. Let $I I$ denote the second fundamental form of M. The orthonormal system $\left\{V_{1}, \ldots, V_{n-1}, N\right\}$ is called natural frame field for hypersurface strip (α, M).

Definition 1.5. Let M be a pseudo-Euclidean hypersurface in \mathbb{R}_{1}^{n} and a curve α be a curve on M. Then, for each i, $1 \leq i \leq n-1$, the function

$$
k_{i g}: I \subset R \quad \rightarrow R
$$

defined for $\mathrm{s} \in I$ by

$$
k_{i g}(s)=<V_{i}^{\prime}(s), V_{i+1}(s)>
$$

is called the $\mathrm{i}^{\text {th }}$ geodesic curvature function of the curve α and $k_{i g}(s)$ is called the $\mathrm{i}^{\text {th }}$ geodesic curvature of the curve α at $\alpha(s)$ in \mathbb{R}_{1}^{n}.

Theorem 1.1. Let M be a pseudo-Euclidean hypersurface in \mathbb{R}_{1}^{n} and α denote an arc on M. The derivative formulas of orthonormal vector field system $\left\{V_{1}, \ldots, V_{n-1}, N\right\}$ is

GÜRBÜZ, GÖRGÜLÜ

$$
\left[\begin{array}{c}
V_{1}^{\prime} \tag{1.2}\\
V_{2}^{\prime} \\
\cdot \\
\cdot \\
\cdot \\
V_{n-1}^{\prime} \\
N^{\prime}
\end{array}\right]=\left[\begin{array}{cccccc}
0 & \varepsilon_{2} k_{1 g} & 0 & \ldots & 0 & \varepsilon_{n} a_{1} \\
-\varepsilon_{1} k_{1 g} & 0 & \varepsilon_{3} k_{2 g} & \ldots & 0 & \varepsilon_{n} a_{2} \\
\cdot & \cdot & \cdot & \ldots & \cdot & \cdot \\
\cdot & \cdot & \cdot & \ldots & \cdot & \cdot \\
\cdot & \cdot & \cdot & \ldots & \cdot & \cdot \\
0 & 0 & 0 & \ldots & 0 & \varepsilon_{n} a_{n-1} \\
-\varepsilon_{1} a_{1} & -\varepsilon_{2} a_{2} & -\varepsilon_{3} a_{3} & \ldots & -\varepsilon_{(n-1)} a_{n-1} & 0
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2} \\
\cdot \\
\cdot \\
\cdot \\
V_{n-1} \\
N
\end{array}\right]
$$

where $k_{i g}$ is the $\mathrm{i}^{\text {th }}$ geodesic curvature funtion,

$$
a_{i}=I I\left(V_{1}, V_{i}\right), 1 \leq i \leq n-1
$$

and

$$
<V_{1}, V_{1}>=\varepsilon_{1},<V_{2}, V_{2}>=\varepsilon_{2}, \ldots,<N, N>=\varepsilon_{n}
$$

2. Obtaining the Equations

Now, assume that α lies in a coordinate patch $\left(u_{1}, \ldots, u_{n-1}\right) \rightarrow x\left(u_{1}, \ldots, u_{n-1}\right)$ of M and let $\quad x_{u_{1}}=\frac{\partial x}{\partial u_{1}}, x_{u_{2}}=\frac{\partial x}{\partial u_{2}}, \ldots, x_{u_{n-1}}=\frac{\partial x}{\partial u_{n-1}} \quad$. Then α is expressed as

$$
\alpha(s)=x\left(u_{1}(s), u_{2}(s), u_{3}(s), \ldots, u_{n-1}(s)\right), \quad 0 \leq s \leq l
$$

with

$$
V_{1}(s)=\alpha^{\prime}(s)=x_{u_{1}} \frac{d u_{1}}{d s}+x_{u_{2}} \frac{d u_{2}}{d s}+\ldots+x_{u_{n}} \frac{d u_{n}}{d s}
$$

and

$$
V_{2}(s)=p_{1}(s) x_{u_{1}}+p_{2}(s) x_{u_{2}}+\ldots+p_{n-1}(s) x_{u_{n-1}}
$$

GÜRBÜZ, GÖRGÜLÜ

for suitable scalar functions $p_{1}(s), p_{2}(s), \ldots, p_{n-1}(s)$.
Next, we must define variational fields for our problem. In order to obtain variational arcs of length l, it is generally necessary to extend α to an $\operatorname{arc} \alpha^{*}$ defined for $0 \leq s \leq l^{*}$, with $l^{*}>l$, but sufficiently close to l so that α^{*} lies in the coordinate patch. Let $\mu(s)$, $0 \leq s \leq l^{*}$, be a scalar function of class C^{n-1}, not vanishing identically. Define

$$
\eta_{1}(s)=\mu(s) p_{1}^{*}(s), \eta_{2}(s)=\mu(s) p_{2}^{*}(s), \ldots, \eta_{n-1}(s)=\mu(s) p_{n-1}^{*}(s)
$$

Then, along α

$$
\begin{equation*}
\eta_{1}(s) x_{u_{1}}+\eta_{2}(s) x_{u_{2}}+\ldots+\eta_{n-1}(s) x_{u_{n-1}}=\mu(s) V_{2}(s) \tag{2.1}
\end{equation*}
$$

Assume also that

$$
\begin{equation*}
\mu(0)=0, \mu^{\prime}(0)=0 \tag{2.2}
\end{equation*}
$$

Now define

$$
\begin{equation*}
\beta(\sigma ; t)=x\left(u_{1}(\sigma)+t \eta_{1}(\sigma), \ldots, u_{n-1}(\sigma)+t \eta_{n-1}(\sigma)\right), \tag{2.3}
\end{equation*}
$$

for $0 \leq \sigma \leq l^{*}$. For $|t|<\varepsilon$ (where $\varepsilon>0$ depends upon the choice of α^{*} and of μ), the point $\beta(\sigma ; t)$ lies in the coordinate patch. For fixed $t, \beta(\sigma ; t)$ gives an arc with the same initial point and initial direction as α, because of (2.2). For $t=0, \beta(\sigma ; 0)$ is the same as α^{*} and σ is arc length. For $t \neq 0$, the parameter σ is not arc length in general.

For fixed $t,|t|<\varepsilon$, let $L^{*}(t)$ denote the length of the $\operatorname{arc} \beta(\sigma ; t), 0 \leq \sigma \leq l^{*}$. Then

$$
\begin{equation*}
L^{*}(t)=\int_{0}^{l^{*}} \sqrt{\left|\left\langle\frac{\partial \beta}{\partial \sigma}(\sigma ; t), \frac{\partial \beta}{\partial \sigma}(\sigma ; t)\right\rangle\right|} d \sigma \tag{2.4}
\end{equation*}
$$

with

$$
\begin{equation*}
L^{*}(0)=l^{*}>l . \tag{2.5}
\end{equation*}
$$

It is clear from (2.3) and (2.4) that $L^{*}(t)$ is continuous. In particular, it follows from (2.5) that

$$
\begin{equation*}
L^{*}(t)>\frac{l+l^{*}}{2}>l, \quad\left(|t|<\varepsilon_{*}\right) \tag{2.6}
\end{equation*}
$$

GÜRBÜZ, GÖRGÜLÜ

for a suitable ε_{*} satisfying $0<\varepsilon_{*} \leq \varepsilon$. Because of (2.6), we can restrict $\beta(\sigma ; t), 0 \leq|t|<$ ε_{*}, to an arc of length l by restricting the parameter σ to an interval $0 \leq \sigma \leq \lambda(t) \leq l^{*}$, by requiring

$$
\begin{equation*}
\int_{0}^{\lambda(t)} \sqrt{\left|\left\langle\frac{\partial \beta}{\partial \sigma}, \frac{\partial \beta}{\partial \sigma}\right\rangle\right|} d \sigma=l \tag{2.7}
\end{equation*}
$$

Note that $\lambda(0)=l$. The function $\lambda(t)$ need not be determined explicitly, but we shall need

$$
\begin{equation*}
\left.\frac{d \lambda}{d t}\right|_{t=0}=\varepsilon_{1} \int_{0}^{l} \mu k_{1 g} d s \tag{2.8}
\end{equation*}
$$

The proof of (2.8) and of other results below will depend on calculations from (2.3) such as

$$
\begin{equation*}
\left.\frac{\partial \beta}{\partial \sigma}\right|_{t=0}=V_{1}, \quad 0 \leq \sigma \leq l \tag{2.9}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\left.\frac{\partial^{2} \beta}{\partial \sigma^{2}}\right|_{t=0}=V_{1}^{\prime}=\varepsilon_{2} k_{1 g} V_{2}+\varepsilon_{n} a_{1} N \tag{2.10}
\end{equation*}
$$

Also, it follows from (2.1) that

$$
\begin{equation*}
\left.\frac{\partial \beta}{\partial t}\right|_{t=0}=\mu V_{2} \tag{2.11}
\end{equation*}
$$

Using (2.1), the second differentiation of (2.11) gives

$$
\begin{equation*}
\left.\frac{\partial^{2} \beta}{\partial t \partial \sigma}\right|_{t=0}=-\varepsilon_{1} \mu k_{1 g} V_{1}+\mu^{\prime} V_{2}+\varepsilon_{3} \mu k_{2 g} V_{3}+\varepsilon_{n} \mu a_{2} N \tag{2.12}
\end{equation*}
$$

and the third differentiation of (2.11) gives

GÜRBÜZ, GÖRGÜLÜ

$$
\left.\frac{\partial^{3} \beta}{\partial t \partial \sigma^{2}}\right|_{t=0}=\left(-2 \varepsilon_{1} \mu^{\prime} k_{1 g}-\varepsilon_{1} \mu k_{1 g}^{\prime}-\varepsilon_{1} \varepsilon_{n} \mu a_{1} a_{2}\right) V_{1} .
$$

To prove (2.8), differentiate (2.7) with respect to t, remembering that l is constant, and evaluate at $t=0$ using (2.9) and (2.12), with $\lambda(0)=l$.

$$
\left.\frac{d \lambda}{d t}\right|_{t=0} \sqrt{\left\lvert\,\left\langle\left.\frac{\partial \beta}{\partial \sigma}\right|_{t=0},\left.\frac{\partial \beta}{\partial \sigma}\right|_{t=0}\right\rangle\right.}+\int_{0}^{l}\left\langle\left.\frac{\partial \beta}{\partial \sigma}\right|_{t=0},\left.\frac{\partial^{2} \beta}{\partial \sigma \partial t}\right|_{t=0}\right\rangle \frac{\sqrt{\left\lvert\,\left\langle\left.\frac{\partial \beta}{\partial \sigma}\right|_{t=0},\left.\frac{\partial \beta}{\partial \sigma}\right|_{t=0}\right\rangle\right.}}{\left\langle\left.\frac{\partial \beta}{\partial \sigma}\right|_{t=0},\left.\frac{\partial \beta}{\partial \sigma}\right|_{t=0}\right\rangle} d s=0
$$

Now, let $K(t)$ denote the total square curvature of the arc $\beta(\sigma ; t), 0 \leq \sigma \leq \lambda(t)$, $|t|<\varepsilon_{*}$. Since σ is not generally arc length for $t \neq 0$, the total square curvature is,

$$
K(t)=\int_{0}^{\lambda(t)} \frac{\left\langle\left\langle\frac{\partial \beta}{\partial \sigma}(\sigma, t) \wedge \frac{\partial^{2} \beta}{\sigma^{2}}(\sigma, t), \frac{\partial \beta}{\sigma}(\sigma, t) \frac{\partial^{2} \beta}{\sigma^{2}}(\sigma, t)\right\rangle\right|}{\left|\left\langle\frac{\partial \beta}{\partial \sigma}(\sigma, t), \frac{\partial \beta}{\partial \sigma}(\sigma, t)\right\rangle\right|^{3}}\left|\left\langle\frac{\partial \beta}{\partial \sigma}(\sigma, t), \frac{\partial \beta}{\partial \sigma}(\sigma, t)\right\rangle\right|^{1 / 2} d \sigma .
$$

A necessary condition for α being extremal is that $K^{\prime}(0)=0$ for arbitrary μ satisfying (2.2). In calculating $K^{\prime}(t)$, we give explicitly only those terms which do not vanish for $t=0$. The omitted terms are those with a factor $\left\langle\frac{\partial^{2} \beta}{\partial \sigma^{2}}, \frac{\partial \beta}{\partial \sigma}\right\rangle$, which vanishes at $t=0$,

GÜRBÜZ, GÖRGÜLÜ

since $<V_{1}^{\prime}, V_{1}>=0$. Thus

$$
\begin{aligned}
K^{\prime}(t)= & \frac{d \lambda}{d t}\left\{\left|\left\langle\frac{\partial \beta}{\partial \sigma}, \frac{\partial \beta}{\partial \sigma}\right\rangle\right|^{-3 / 2}\left|-\left\langle\frac{\partial^{2} \beta}{\partial \sigma^{2}}, \frac{\partial^{2} \beta}{\partial \sigma^{2}}\right\rangle\right|\right\}_{\sigma=\lambda(t)} \\
& -3 \int_{0}^{\lambda(t)}\left|\left\langle\frac{\partial \beta}{\partial \sigma}, \frac{\partial \beta}{\partial \sigma}\right\rangle\right|^{-5 / 2}\left\langle\frac{\partial^{2} \beta}{\partial t \partial \sigma}, \frac{\partial \beta}{\partial \sigma}\right\rangle \frac{\left|\left\langle\frac{\partial \beta}{\partial \sigma}, \frac{\partial \beta}{\partial \sigma}\right\rangle\right|}{\left\langle\frac{\partial \beta}{\partial \sigma}, \frac{\partial \beta}{\partial \sigma}\right\rangle}\left|\left\langle\frac{\partial^{2} \beta}{\partial \sigma^{2}}, \frac{\partial^{2} \beta}{\partial \sigma^{2}}\right\rangle\right| d \sigma \\
& +2 \int_{0}^{\lambda(t)}\left|\left\langle\frac{\partial \beta}{\partial \sigma}, \frac{\partial \beta}{\partial \sigma}\right\rangle\right|^{-3 / 2}\left\langle\frac{\partial^{3} \beta}{\partial t \partial \sigma^{2}}, \frac{\partial^{2} \beta}{\partial \sigma^{2}}\right\rangle \frac{\left|\left\langle\frac{\partial^{2} \beta}{\partial \sigma^{2}}, \frac{\partial^{2} \beta}{\partial \sigma^{2}}\right\rangle\right|}{\left\langle\frac{\partial^{2} \beta}{\partial \sigma^{2}}, \frac{\partial^{2} \beta}{\partial \sigma^{2}}\right\rangle} d \sigma+\ldots
\end{aligned}
$$

Using (2.8), (2.9), (2.12) and (2.10), we find

$$
\begin{align*}
K^{\prime}(0)= & \varepsilon_{1} \int_{0}^{l} \mu k_{1 g} d s\left\{\left|\varepsilon_{2} k_{1 g}^{2}+\varepsilon_{n} a_{1}^{2}\right|\right\}_{\sigma=\lambda(0)} \\
& +2 \int_{0}^{l} k_{1 g}\left(\mu^{\prime \prime}-\varepsilon_{1} \varepsilon_{2} \mu k_{1 g}^{2}-\varepsilon_{2} \varepsilon_{3} \mu k_{2 g}^{2}-\varepsilon_{2} \varepsilon_{n} \mu a_{2}^{2}\right) \frac{\left|\varepsilon_{2} k_{1 g}^{2}+\varepsilon_{n} a_{1}^{2}\right|}{\varepsilon_{2} k_{1 g}^{2}+\varepsilon_{n} a_{1}^{2}} d s \\
& +2 \int_{0}^{l} a_{1}\left(-\varepsilon_{1} \varepsilon_{n} \mu k_{1 g} a_{1}+2 \varepsilon_{n} \mu^{\prime} a_{2}+\varepsilon_{3} \varepsilon_{n} \mu k_{2 g} a_{3}+\varepsilon_{n} \mu a_{2}^{\prime}\right) \frac{\left|\varepsilon_{2} k_{1 g}^{2}+\varepsilon_{n} a_{1}^{2}\right|}{\varepsilon_{2} k_{1 g}^{2}+\varepsilon_{n} a_{1}^{2}} d s \\
& +3 \varepsilon_{1} \int_{0}^{l} \mu k_{1 g}\left|\varepsilon_{2} k_{1 g}^{2}+\varepsilon_{n} a_{1}^{2}\right| d s . \tag{2.14}
\end{align*}
$$

However, with integration by parts and (2.2),

$$
\begin{equation*}
2 \int_{0}^{l} \mu^{\prime \prime} k_{1 g} d s=2 \mu^{\prime}(l) k_{1 g}(l)-2 \mu(l) k_{1 g}^{\prime}(l)+2 \int_{0}^{l} \mu k_{1 g}^{\prime \prime} d s \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
4 \int_{0}^{l} \mu^{\prime} a_{1} a_{2} d s=4 \mu(l) a_{1}(l) a_{2}(l)-4 \int_{0}^{l} \mu a_{1}^{\prime} a_{2} d s-4 \int_{0}^{l} \mu a_{1} a_{2}^{\prime} d s \tag{2.16}
\end{equation*}
$$

GÜRBÜZ, GÖRGÜLÜ

2.1. Intrinsic equations for a relaxed elastic line on a timelike hypersurface

If V_{1} is timelike, $V_{2}, V_{3}, \ldots, V_{n-1}$ and N are spacelike then
$<V_{1}, V_{1}>=\varepsilon_{1}=-1,<V_{2}, V_{2}>=\varepsilon_{2}=1, \ldots,<N, N>=\varepsilon_{n}=1$.
In the case of $k_{1 g}^{2}>a_{1}^{2}$,

$$
\begin{equation*}
\left|\varepsilon_{2} k_{1 g}^{2}+\varepsilon_{n} a_{1}^{2}\right|=k_{1 g}^{2}+a_{1}^{2} . \tag{2.17}
\end{equation*}
$$

Substituting (2.8), (2.9), (2.12), (2.13), (2.15), (2.16) and (2.17) in (2.14), we find

$$
\begin{aligned}
K^{\prime}(0)= & \int_{0}^{l} \mu\left\{2 k_{1 g}^{\prime \prime}-2 a_{1} a_{2}^{\prime}-4 a_{2} a_{1}^{\prime}+2 k_{2 g} a_{1} a_{3}\right. \\
& \left.+k_{1 g}\left(-k_{1 g}^{2}(l)-a_{1}^{2}(l)-k_{1 g}^{2}-a_{1}^{2}-2 k_{2 g}^{2}-2 a_{2}^{2}\right)\right\} d s \\
& +2 \mu^{\prime}(l) k_{1 g}(l)-2 \mu(l) k_{1 g}^{\prime}(l)+4 \mu(l) a_{1}(l) a_{2}(l)
\end{aligned}
$$

In order that $K^{\prime}(0)=0$ for all choices of the function $\mu(s)$ satisfying (2.2), with arbitrary values of $\mu(l)$ and $\mu^{\prime}(l)$, the given timelike arc α must satisfy two boundary conditions and differential equation:

$$
\begin{align*}
& \text { (1) } k_{1 g}(l)=0 \\
& \text { (2) } k_{1 g}^{\prime}(l)=2 a_{1}(l) a_{2}(l) \tag{2.18}\\
& \text { (3) } 2 k_{1 g}^{\prime \prime}-2 a_{1} a_{2}^{\prime}-4 a_{2} a_{1}^{\prime}+2 k_{2 g} a_{1} a_{3} \\
& \quad+k_{1 g}\left(-a_{1}^{2}(l)-k_{1 g}^{2}-a_{1}^{2}-2 k_{2 g}^{2}-2 a_{2}^{2}\right)=0
\end{align*}
$$

2.2. Intrinsic equations for a relaxed elastic line on an spacelike hypersurface

If $V_{1}, V_{2}, \ldots, V_{n-1}$ is spacelike and N is timelike,
i) In the case of $k_{1 g}^{2}<a_{1}^{2}$

$$
\begin{equation*}
\left|\varepsilon_{2} k_{1 g}^{2}+\varepsilon_{n} a_{1}^{2}\right|=-k_{1 g}^{2}+a_{1}^{2} \tag{2.19}
\end{equation*}
$$

Substituting (2.8), (2.9), (2.12), (2.13), (2.15), (2.16) and (2.19) in (2.14), $K^{\prime}(0)$ can be written as

GÜRBÜZ, GÖRGÜLÜ

$$
\begin{aligned}
K^{\prime}(0)= & \int_{0}^{l} \mu\left\{-2 k_{1 g}^{\prime \prime}-2 a_{1} a_{2}^{\prime}-4 a_{2} a_{1}^{\prime}+2 k_{2 g} a_{1} a_{3}\right. \\
& \left.+k_{1 g}\left(-k_{1 g}^{2}(l)+a_{1}^{2}(l)-k_{1 g}^{2}+a_{1}^{2}+2 k_{2 g}^{2}-2 a_{2}^{2}\right)\right\} d s \\
& -2 \mu^{\prime}(l) k_{1 g}(l)+2 \mu(l) k_{1 g}^{\prime}(l)+4 \mu(l) a_{1}(l) a_{2}(l)
\end{aligned}
$$

In order that $K^{\prime}(0)=0$ for all choices of the function $\mu(s)$ satisfying (2.2), with arbitrary values of $\mu(l)$ and $\mu^{\prime}(l)$, the given timelike arc α must satisfy two boundary conditions and differential equation
(1) $\quad k_{1 g}(l)=0$
(2) $\quad k_{1 g}^{\prime}(l)=-2 a_{1}(l) a_{2}(l)$
(3) $-2 k_{1 g}^{\prime \prime}-2 a_{1} a_{2}^{\prime}-4 a_{2} a_{1}^{\prime}+2 k_{2 g} a_{1} a_{3}$

$$
+k_{1 g}\left(a_{1}^{2}(l)-k_{1 g}^{2}+a_{1}^{2}+2 k_{2 g}^{2}-2 a_{2}^{2}\right)=0
$$

ii) In the case of $k_{1 g}^{2}>a_{1}^{2}$

$$
\begin{equation*}
\left|\varepsilon_{2} k_{1 g}^{2}+\varepsilon_{n} a_{1}^{2}\right|=k_{1 g}^{2}-a_{1}^{2} \tag{2.21}
\end{equation*}
$$

Substituting (2.8), (2.9), (2.12), (2.13), (2.15), (2.16) and (2.21) in (2.14), $K^{\prime}(0)$ can be written as

$$
\begin{aligned}
K^{\prime}(0)= & \int_{0}^{l} \mu\left\{2 k_{1 g}^{\prime \prime}+2 a_{1} a_{2}^{\prime}+4 a_{2} a_{1}^{\prime}-2 k_{2 g} a_{1} a_{3}\right. \\
& \left.+k_{1 g}\left(k_{1 g}^{2}(l)-a_{1}^{2}(l)+k_{1 g}^{2}-a_{1}^{2}-2 k_{2 g}^{2}+2 a_{2}^{2}\right)\right\} d s \\
& +2 \mu^{\prime}(l) k_{1 g}(l)-2 \mu(l) k_{1 g}^{\prime}(l)-4 \mu(l) a_{1}(l) a_{2}(l)
\end{aligned}
$$

In order that $K^{\prime}(0)=0$ for all choices of the function $\mu(s)$ satisfying (2.2), with arbitrary values of $\mu(l)$ and $\mu^{\prime}(l)$, the given timelike arc α must satisfy two boundary conditions and differential equation

GÜRBÜZ, GÖRGÜLÜ

(1) $\quad k_{1 g}(l)=0$
(2) $\quad k_{1 g}^{\prime}(l)=-2 a_{1}(l) a_{2}(l)$
(3) $2 k_{1 g}^{\prime \prime}+2 a_{1} a_{2}^{\prime}+4 a_{2} a_{1}^{\prime}-2 k_{2 g} a_{1} a_{3}$ $+k_{1 g}\left(k_{1 g}^{2}(l)-a_{1}^{2}(l)+k_{1 g}^{2}-a_{1}^{2}-2 k_{2 g}^{2}+2 a_{2}^{2}\right)=0$.

3. Applications

Theorem 3.1. An arc of a geodesic on hyperbolic n-space $H^{n}(r)$ is a relaxed elastic line.

Proof. For a geodesic arc on hyperbolic n-space $H^{n}(r), k_{1 g}=0\left(\right.$ so $\left.k_{2 g}=0\right)$, $a_{1}^{2}=c^{2}=\frac{1}{r^{2}}$ and $a_{2}=a_{3}=0$. Therefore (2.20) and (2.22) are satisfied.

Theorem 3.2. In the spacelike hyperplane in \mathbb{R}_{1}^{n}, an arc is a relaxed elastic line if and only if it lies on a geodesic.

Proof. In the spacelike hyperplane in $\mathbb{R}_{1}^{n}, k_{2 g}, a_{2}, a_{3}$ vanishes for all curves and $a_{1}=0$. Then the third equation in (2.20) and (2.22) reduces to

$$
\begin{equation*}
2 k_{1 g}^{\prime \prime}+k_{1 g}^{3}=0 \tag{3.1}
\end{equation*}
$$

With integrating factor $k_{1 g}^{\prime}$, the first integral is

$$
\left(k_{1 g}^{\prime}\right)^{2}+\frac{1}{4} k_{1 g}^{4}=\text { const. }
$$

The boundary conditions in (2.20) and (2.22), which reduces to $k_{1 g}^{\prime}(l)=0$, require that the constant be zero. But then we must have $k_{1 g} \equiv 0$.

Conversely, any arc of a geodesic in the spacelike hyperplane satisfies (3.1), (2.20) and (2.22), trivially.

Theorem 3.3. On the spacelike hypersurface in \mathbb{R}_{1}^{n}, an arc of a geodesic is a relaxed elastic line if and only if it satisfies

$$
a_{1}^{2} a_{2}=0
$$

GÜRBÜZ, GÖRGÜLÜ

Proof. If $k_{1 g} \equiv 0$ (so $k_{2 g}=0$), then the third equation in (2.20) and (2.22) reduces to

$$
a_{1} a_{2}^{\prime}+2 a_{1}^{\prime} a_{2}=0
$$

The first integral is

$$
a_{1}^{2} a_{2}=\mathrm{const}
$$

and the constant must vanish because of the second equation in (2.20), (2.22). The boundary conditions in (2.20) and (2.22) are trivial.

Theorem 3.4. An arc of a geodesic on a pseudo-hypersphere $S_{1}^{n}(r)$ is a relaxed elastic line.

Proof. For a geodesic arc on hyperbolic n-space $S_{1}^{n}(r), k_{1 g}=0\left(\right.$ so $\left.k_{2 g}=0\right)$, $a_{1}^{2}=c^{2}=\frac{1}{r^{2}}$ and $a_{2}=a_{3}=0$. Therefore (2.18) is satisfied.

Theorem 3.5. In the timelike hyperplane in \mathbb{R}_{1}^{n}, an arc is a relaxed elastic line if and only if it lies on a geodesic.

Proof. In the timelike hyperplane, $k_{2 g}, a_{2}, a_{3}$ vanishes for all curves and $a_{1}^{2}=c^{2}=0$. The third equation in (2.18) reduces to

$$
\begin{equation*}
2 k_{1 g}^{\prime \prime}-k_{1 g}^{3}=0 \tag{3.2}
\end{equation*}
$$

With integrating factor $k_{1 g}^{\prime}$, the first integral is

$$
\left(k_{1 g}^{\prime}\right)^{2}-\frac{1}{4} k_{1 g}^{4}=\text { const. }
$$

The boundary conditions in (2.18), which reduces to $k_{1 g}^{\prime}(l)=0$, require that the constant be zero. But then we must have $k_{1 g} \equiv 0$.

Conversely, any arc of a geodesic in the timelike hyperplane satisfies (26) and (20), trivially.

Theorem 3.6. On the timelike hypersurface in \mathbb{R}_{1}^{n}, an arc of a geodesic is a relaxed elastic line if and only if it satisfies

$$
a_{1}^{2} a_{2}=0
$$

GÜRBÜZ, GÖRGÜLÜ

Proof. If $k_{1 g} \equiv 0$, then the third equation in (2.18) reduces to

$$
a_{1} a_{2}^{\prime}+2 a_{1}^{\prime} a_{2}=0
$$

The first integral is

$$
a_{1}^{2} a_{2}=\mathrm{const}
$$

and the constant must vanish because of the second equation in (2.18). The boundary conditions in (2.18) are trivial.

References

[1] Gürbüz N, Görgülü A., "Intrinsic equations for a relaxed elastic line on an oriented surface in the Minkowski space \mathbb{R}_{1}^{3}," Hadronic Journal 23, 143-163 (2000).
[2] H.K. Nickerson, Manning Gerald., "Intrinsic equations for a relaxed elastic line on an oriented surface", Geometriae Dedicate 27(1988), 127-136.
[3] O'Neill, B., 1983, Semi-Riemannian Geometry, Acedemic Press. New York,London.
N. GÜRBÜZ and A. GÖRGÜLÜ

Received 29.05.2000
Osmangazi University
Departmant of Mathematics
26480 Eskişehir-TURKEY
e-mail : agorgulu@ogu.edu.tr

