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Intrinsic Equations for a Relaxed Elastic Line on an

Oriented Hypersurface in the Minkowski Space Rn1

N. Gürbüz and A. Görgülü

Abstract

We gived the intrinsic equations for a relaxed elastic line on an oriented surface

in R3
1 ([1],[2]).

In this paper, we derived the intrinsic equations for a relaxed elastic line on an

oriented time-like hypersurface and space-like hypersurface in the Minkowski space

R
n
1 and gived additional results about relaxed elastic lines on various timelike and

spacelike hypersurface in the Minkowski space Rn1.
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1. Introduction

In this section, we give some fundamental definitions and theorems.

Definition 1.1. Let α denote an arc on a connected oriented hypersurface M in Rn1
parametrized by arc length s, 0 ≤ s ≤ l. Let k1(s) be the curvature of the first curvature

of α(s). The first total square curvature K of α in Rn1 is defined by

K =

l∫
0

k2
1ds. (1.1)

Definition 1.2. The arc α is called a relaxed elastic line if it is an extremal for the

variational problem of minimizing the value of K within the family of all arcs of length l

on M having the same initial point and initial direction as α in the Minkowski space Rn1 .

283
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Definition 1.3. On an n × n matrix, the following conditions are equivalent:

(1) gεOν(n)

(2) gt = εg−1ε

(3) The columns(rows) of g form an orthonormal basis for Rnν (first ν vectors are

timelike).

(4) g carries one (hence every ) orthonormal basis for Rnν to an orthonormal basis [3].

Definition 1.4. Let M be a pseudo-Euclidean hypersurface in Rn1 and a curve α

which lies on M. Apart from the Frenet vector field system {V1, V2, V3..., Vn−1, Vn}, there

is also exist a second orthonormal vector field system {V1, ..., Vn−1, N} at every point of

the curve α. At a point α(s) of α, let V1(s) = α′(s) denote the unit tangent vector to

α, let N(s) denote the unit hypersurface normal to M. {V1, ..., Vn−1, N} gives a basis

for all vectors at α(s) and {V1, ..., Vn−1, N} gives a basis for the vectors tangent to M

at α(s). Let II denote the second fundamental form of M. The orthonormal system

{V1, ..., Vn−1, N} is called natural frame field for hypersurface strip (α,M) .

Definition 1.5. Let M be a pseudo-Euclidean hypersurface in Rn1 and a curve α be

a curve on M. Then, for each i, 1 ≤ i ≤ n− 1, the function

kig : I ⊂ R → R

defined for s∈ I by

kig(s) =< V ′i (s), Vi+1(s) >

is called the ith geodesic curvature function of the curve α and kig(s) is called the ith

geodesic curvature of the curve α at α(s) in Rn1 .

Theorem 1.1. Let M be a pseudo-Euclidean hypersurface in Rn1 and α denote an

arc on M. The derivative formulas of orthonormal vector field system {V1, ..., Vn−1, N} is
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V ′1

V ′2

.

.

.

V ′n−1

N ′


=



0 ε2k1g 0 ... 0 εna1

−ε1k1g 0 ε3k2g ... 0 εna2

. . . ... . .

. . . ... . .

. . . ... . .

0 0 0 ... 0 εnan−1

−ε1a1 −ε2a2 −ε3a3 ... −ε(n−1)an−1 0





V1

V2

.

.

.

Vn−1

N


,

(1.2)

where kig is the ith geodesic curvature funtion,

ai = II(V1 , Vi), 1 ≤ i ≤ n − 1

and

< V1, V1 >= ε1, < V2, V2 >= ε2 ,..., < N,N >= εn.

2. Obtaining the Equations

Now, assume that α lies in a coordinate patch (u1, ..., un−1)→ x(u1, ..., un−1) of

M and let xu1 =
∂x

∂u1
, xu2 =

∂x

∂u2
, ..., xun−1 =

∂x

∂un−1
. Then α is expressed as

α(s) = x (u1(s), u2(s), u3(s), ..., un−1(s)) , 0 ≤ s ≤ l

with

V1(s) = α′(s) = xu1

du1

ds
+ xu2

du2

ds
+ ...+ xun

dun
ds

and

V2(s) = p1(s)xu1 + p2(s)xu2 + ...+ pn−1(s)xun−1
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for suitable scalar functions p1(s), p2(s),...,pn−1(s).

Next, we must define variational fields for our problem. In order to obtain variational

arcs of length l, it is generally necessary to extend α to an arc α∗ defined for 0 ≤ s ≤ l∗,
with l∗ > l, but sufficiently close to l so that α∗ lies in the coordinate patch. Let µ(s),

0 ≤ s ≤ l∗, be a scalar function of class Cn−1, not vanishing identically. Define

η1(s) = µ(s)p∗1(s) , η2(s) = µ(s)p∗2(s), ..., ηn−1(s) = µ(s)p∗n−1(s).

Then, along α

η1(s)xu1 + η2(s)xu2 + ...+ ηn−1(s)xun−1 = µ(s)V2(s). (2.1)

Assume also that

µ(0) = 0, µ′(0) = 0. (2.2)

Now define

β(σ; t) = x (u1(σ) + tη1(σ), ..., un−1(σ) + tηn−1(σ)) , (2.3)

for 0 ≤ σ ≤ l∗. For |t| < ε (where ε > 0 depends upon the choice of α∗ and of µ), the

point β(σ; t) lies in the coordinate patch. For fixed t, β(σ; t) gives an arc with the same

initial point and initial direction as α, because of (2.2). For t = 0, β(σ; 0) is the same as

α∗ and σ is arc length. For t 6= 0, the parameter σ is not arc length in general.

For fixed t, |t| < ε, let L∗(t) denote the length of the arc β(σ; t), 0 ≤ σ ≤ l∗. Then

L∗(t) =

l∗∫
0

√∣∣∣∣〈∂β∂σ (σ; t) ,
∂β

∂σ
(σ; t)

〉∣∣∣∣dσ (2.4)

with

L∗(0) = l∗ > l. (2.5)

It is clear from (2.3) and (2.4) that L∗(t) is continuous. In particular, it follows from

(2.5) that

L∗(t) >
l+ l∗

2
> l, (|t| < ε∗ ) (2.6)
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for a suitable ε∗ satisfying 0 < ε∗ ≤ ε. Because of (2.6), we can restrict β(σ; t), 0 ≤ |t| <
ε∗, to an arc of length l by restricting the parameter σ to an interval 0 ≤ σ ≤ λ(t) ≤ l∗,
by requiring

λ(t)∫
0

√∣∣∣∣〈∂β∂σ , ∂β∂σ
〉∣∣∣∣dσ = l. (2.7)

Note that λ(0) = l. The function λ(t) need not be determined explicitly, but we shall

need

dλ

dt

∣∣∣∣
t=0

= ε1

l∫
0

µk1gds. (2.8)

The proof of (2.8) and of other results below will depend on calculations from (2.3) such

as

∂β

∂σ

∣∣∣∣
t=0

= V1, 0 ≤ σ ≤ l (2.9)

which gives

∂2β

∂σ2

∣∣∣∣
t=0

= V ′1 = ε2k1gV2 + εna1N. (2.10)

Also, it follows from (2.1) that

∂β

∂t

∣∣∣∣
t=0

= µV2. (2.11)

Using (2.1), the second differentiation of (2.11) gives

∂2β

∂t∂σ

∣∣∣∣
t=0

= −ε1µk1gV1 + µ′V2 + ε3µk2gV3 + εnµa2N (2.12)

and the third differentiation of (2.11) gives
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∂3β

∂t∂σ2

∣∣∣∣
t=0

=
(
−2ε1µ

′k1g − ε1µk
′
1g − ε1εnµa1a2

)
V1

+
(
µ′′ − ε1ε2µk

2
1g − ε2ε3µk

2
2g − ε2εnµa

2
2

)
V2

+
(
2ε3µ

′k2g + ε3µk
′
2g − ε3εnµa2a3

)
V3

+(ε3ε4µk2gk3g − ε4εnµa2a4)V4

−(ε5εnµa2a5V5 + ε6εnµa2a6V6 + ...+ εn−1εnµa2an−1Vn−1)

+(−ε1εnµk1ga1+2εnµ′a2 + ε3εnµk2ga3 + εnµa
′
2)N.

(2.13)

To prove (2.8), differentiate (2.7) with respect to t, remembering that l is constant,

and evaluate at t=0 using (2.9) and (2.12), with λ(0) = l.

dλ

dt

∣∣∣∣
t=0

√∣∣∣∣〈 ∂β∂σ
∣∣∣∣
t=0

,
∂β

∂σ

∣∣∣∣
t=0

〉∣∣∣∣+

l∫
0

〈
∂β

∂σ

∣∣∣∣
t=0

,
∂2β

∂σ∂t

∣∣∣∣
t=0

〉 vuuut
������

〈
∂β

∂σ

������
t=0

,
∂β

∂σ

������
t=0

〉������〈
∂β

∂σ

������
t=0

,
∂β

∂σ

������
t=0

〉 ds = 0

Now, let K(t) denote the total square curvature of the arc β(σ; t), 0 ≤ σ ≤ λ(t),

|t| < ε∗. Since σ is not generally arc length for t 6= 0, the total square curvature is ,

K (t) =
λ(t)∫
0

���
D
∂β
∂σ (σ,t)∧∂

2β
∂σ2 (σ,t), ∂β∂σ (σ,t)∧ ∂

2β
∂σ2 (σ,t)

E���
|〈 ∂β∂σ (σ,t), ∂β∂σ (σ,t)〉|3

∣∣∣〈∂β∂σ (σ, t) , ∂β∂σ (σ, t)
〉∣∣∣1/2 dσ.

A necessary condition for α being extremal is that K′(0) = 0 for arbitrary µ satisfying

(2.2). In calculating K′(t), we give explicitly only those terms which do not vanish for

t = 0. The omitted terms are those with a factor
〈
∂2β

∂σ2
,
∂β

∂σ

〉
, which vanishes at t = 0,
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since < V ′1 , V1 >= 0. Thus

K′(t) =
dλ

dt

{∣∣∣∣〈∂β∂σ , ∂β∂σ
〉∣∣∣∣−3/2 ∣∣∣∣−〈∂2β

∂σ2
,
∂2β

∂σ2

〉∣∣∣∣
}
σ=λ(t)

−3

λ(t)∫
0

∣∣∣∣〈∂β∂σ , ∂β∂σ
〉∣∣∣∣−5/2〈

∂2β

∂t∂σ
,
∂β

∂σ

〉 ������

〈
∂β

∂σ
,
∂β

∂σ

〉������〈
∂β

∂σ
,
∂β

∂σ

〉 ∣∣∣∣〈∂2β

∂σ2
,
∂2β

∂σ2

〉∣∣∣∣dσ

+2

λ(t)∫
0

∣∣∣∣〈∂β∂σ , ∂β∂σ
〉∣∣∣∣−3/2〈

∂3β

∂t∂σ2
,
∂2β

∂σ2

〉 ∣∣∣∣〈∂2β

∂σ2
,
∂2β

∂σ2

〉∣∣∣∣〈
∂2β

∂σ2
,
∂2β

∂σ2

〉 dσ + ...

Using (2.8), (2.9), (2.12) and (2.10), we find

K′(0) = ε1

l∫
0

µk1gds
{∣∣ε2k

2
1g + εna

2
1

∣∣}
σ=λ(0)

+2
l∫

0

k1g

(
µ′′ − ε1ε2µk

2
1g − ε2ε3µk

2
2g − ε2εnµa

2
2

) ∣∣ε2k
2
1g + εna

2
1

∣∣
ε2k2

1g + εna2
1

ds

+2
l∫

0

a1 (−ε1εnµk1ga1 + 2εnµ′a2 + ε3εnµk2ga3 + εnµa
′
2)

∣∣ε2k
2
1g + εna

2
1

∣∣
ε2k2

1g + εna2
1

ds

+3ε1

l∫
0

µk1g

∣∣ε2k
2
1g + εna

2
1

∣∣ ds.
(2.14)

However, with integration by parts and (2.2),

2

l∫
0

µ′′k1gds = 2µ′(l)k1g(l)− 2µ(l)k′1g(l) + 2

l∫
0

µk′′1gds (2.15)

and

4

l∫
0

µ′a1a2ds = 4µ(l)a1(l)a2(l) − 4

l∫
0

µa′1a2ds− 4

l∫
0

µa1a
′
2ds. (2.16)
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2.1. Intrinsic equations for a relaxed elastic line on a timelike hypersurface

If V1 is timelike, V2, V3, ..., Vn−1 and N are spacelike then

< V1, V1 >= ε1 = −1, < V2, V2 >= ε2 = 1, ..., < N,N >= εn = 1.

In the case of k2
1g > a2

1, ∣∣ε2k
2
1g + εna

2
1

∣∣ = k2
1g + a2

1. (2.17)

Substituting (2.8), (2.9), (2.12), (2.13), (2.15), (2.16) and (2.17) in (2.14), we find

K′(0) =
l∫

0

µ{2k′′1g − 2a1a
′
2 − 4a2a

′
1 + 2k2ga1a3

+k1g

(
−k2

1g(l)− a2
1(l) − k2

1g − a2
1 − 2k2

2g − 2a2
2

)
}ds

+2µ′(l)k1g(l) − 2µ(l)k′1g(l) + 4µ(l)a1(l)a2(l).

In order that K′(0) = 0 for all choices of the function µ(s) satisfying (2.2), with

arbitrary values of µ(l) and µ′(l), the given timelike arc α must satisfy two boundary

conditions and differential equation:

(1) k1g(l) = 0

(2) k′1g(l) = 2a1(l)a2(l)

(3) 2k′′1g − 2a1a
′
2 − 4a2a

′
1 + 2k2ga1a3

+k1g

(
−a2

1(l) − k2
1g − a2

1 − 2k2
2g − 2a2

2

)
= 0.

(2.18)

2.2. Intrinsic equations for a relaxed elastic line on an spacelike hypersurface

If V1, V2, ..., Vn−1 is spacelike and N is timelike,

i) In the case of k2
1g < a2

1 ∣∣ε2k
2
1g + εna

2
1

∣∣ = −k2
1g + a2

1 (2.19)

Substituting (2.8), (2.9), (2.12), (2.13), (2.15), (2.16)and (2.19) in (2.14), K′(0) can be

written as
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K′(0) =
l∫

0

µ{−2k′′1g − 2a1a
′
2 − 4a2a

′
1 + 2k2ga1a3

+k1g

(
−k2

1g(l) + a2
1(l) − k2

1g + a2
1 + 2k2

2g − 2a2
2

)
}ds

−2µ′(l)k1g(l) + 2µ(l)k′1g(l) + 4µ(l)a1(l)a2(l).

In order that K′(0) = 0 for all choices of the function µ(s) satisfying (2.2), with

arbitrary values of µ(l) and µ′(l), the given timelike arc α must satisfy two boundary

conditions and differential equation

(1) k1g(l) = 0

(2) k′1g(l) = −2a1(l)a2(l)

(3) −2k′′1g − 2a1a
′
2 − 4a2a

′
1 + 2k2ga1a3

+k1g

(
a2

1(l) − k2
1g + a2

1 + 2k2
2g − 2a2

2

)
= 0.

(2.20)

ii) In the case of k2
1g > a2

1

∣∣ε2k
2
1g + εna

2
1

∣∣ = k2
1g − a2

1. (2.21)

Substituting (2.8), (2.9), (2.12), (2.13), (2.15), (2.16)and (2.21) in (2.14), K′(0) can be

written as

K′(0) =
l∫

0

µ{2k′′1g + 2a1a
′
2 + 4a2a

′
1 − 2k2ga1a3

+k1g

(
k2

1g(l)− a2
1(l) + k2

1g − a2
1 − 2k2

2g + 2a2
2

)
}ds

+2µ′(l)k1g(l) − 2µ(l)k′1g(l) − 4µ(l)a1(l)a2(l).

In order that K′(0) = 0 for all choices of the function µ(s) satisfying (2.2), with arbitrary

values of µ(l) and µ′(l), the given timelike arc α must satisfy two boundary conditions

and differential equation
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(1) k1g(l) = 0

(2) k′1g(l) = −2a1(l)a2(l)

(3) 2k′′1g + 2a1a
′
2 + 4a2a

′
1 − 2k2ga1a3

+k1g

(
k2

1g(l) − a2
1(l) + k2

1g − a2
1 − 2k2

2g + 2a2
2

)
= 0.

(2.22)

3. Applications

Theorem 3.1. An arc of a geodesic on hyperbolic n-space Hn(r) is a relaxed elastic

line .

Proof. For a geodesic arc on hyperbolic n-space Hn(r), k1g = 0 (so k2g = 0),

a2
1 = c2 =

1
r2

and a2 = a3 = 0. Therefore (2.20) and (2.22) are satisfied.

Theorem 3.2. In the spacelike hyperplane in Rn1 , an arc is a relaxed elastic line if

and only if it lies on a geodesic.

Proof. In the spacelike hyperplane in Rn1 , k2g, a2, a3 vanishes for all curves and

a1 = 0. Then the third equation in (2.20) and (2.22) reduces to

2k′′1g + k3
1g = 0. (3.1)

With integrating factor k′1g, the first integral is

(
k′1g
)2 +

1
4
k4

1g = const.

The boundary conditions in(2.20) and (2.22), which reduces to k′1g(l) = 0, require that

the constant be zero. But then we must have k1g ≡ 0.

Conversely, any arc of a geodesic in the spacelike hyperplane satisfies (3.1), (2.20) and

(2.22), trivially.

Theorem 3.3. On the spacelike hypersurface in Rn1 , an arc of a geodesic is a relaxed

elastic line if and only if it satisfies

a2
1a2 = 0.
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GÜRBÜZ, GÖRGÜLÜ

Proof. If k1g ≡ 0 (so k2g = 0), then the third equation in (2.20) and (2.22) reduces

to

a1a
′
2 + 2a′1a2 = 0.

The first integral is

a2
1a2 = const

and the constant must vanish because of the second equation in (2.20), (2.22). The

boundary conditions in (2.20) and (2.22) are trivial.

Theorem 3.4. An arc of a geodesic on a pseudo-hypersphere Sn1 (r) is a relaxed

elastic line.

Proof. For a geodesic arc on hyperbolic n-space Sn1 (r), k1g = 0 (so k2g = 0),

a2
1 = c2 =

1
r2

and a2 = a3 = 0. Therefore (2.18) is satisfied.

Theorem 3.5. In the timelike hyperplane in Rn1 , an arc is a relaxed elastic line if

and only if it lies on a geodesic.

Proof. In the timelike hyperplane, k2g, a2, a3 vanishes for all curves and a2
1 = c2 = 0.

The third equation in (2.18) reduces to

2k′′1g − k3
1g = 0. (3.2)

With integrating factor k′1g, the first integral is

(
k′1g
)2 − 1

4
k4

1g = const.

The boundary conditions in (2.18), which reduces to k′1g(l) = 0 , require that the con-

stant be zero. But then we must have k1g ≡ 0 .

Conversely, any arc of a geodesic in the timelike hyperplane satisfies (26) and (20),

trivially.

Theorem 3.6. On the timelike hypersurface in Rn1 , an arc of a geodesic is a relaxed

elastic line if and only if it satisfies

a2
1a2 = 0.
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Proof. If k1g ≡ 0, then the third equation in (2.18) reduces to

a1a
′
2 + 2a′1a2 = 0.

The first integral is

a2
1a2 = const

and the constant must vanish because of the second equation in (2.18). The boundary

conditions in (2.18) are trivial.
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