The Pitch and the Angle of Pitch of a Closed Nonnull Ruled Hypersurface Whose Generator is Spacelike in

$$
R_{1}^{k+2}
$$

Ayşe Altın, Aysel Turgut Vanlı

Abstract

In this paper, the pitch and the angle of pitch of a closed nonnull ruled hypersurface whose generators are spacelike are calculated in R_{1}^{k+2}.

1. Introduction

A hypersurface in $\mathrm{k}+2$ - dimensional Minkowski space $R_{1}^{k+2}=\left(R^{k+2}, \sum_{i=1}^{k+1} d x_{i}-\right.$ $d x_{k+2}$) is called a spacelike (timelike) hypersurface if the induced metric tensor on the hypersurface is a positive definite Riemannian metric (Lorentz metric) [2].If the tangent vector at every point of a given curve in R_{1}^{k+2} is a spacelike (timelike) vector, then the given curve is called a spacelike(timelike) curve [6].

Let $\eta: I \rightarrow R_{1}^{k+2}$ be a spacelike curve in R_{1}^{k+2} where $I \subset R$, and let $\left\{e_{1}(t), e_{2}(t), \ldots, e_{k}(t)\right\}$ be a given orthonormal vector defined at each point $\eta(t)$. The set $\left\{e_{1}(t), e_{2}(t), \ldots, e_{k}(t)\right\}$ spans a space of the tangent space $T_{\eta(t)} R_{1}^{k+2}$ at the point $\eta(t)$ of R_{1}^{k+2}. Let us denote this space by $E_{k}(t)$. The set $M=\cup_{t \in I} E_{k}(t)$ is a hypersurface of R_{1}^{k+2}. A parametrization for this hypersurface is

$$
\begin{equation*}
\varphi: I \times R^{k} \rightarrow R_{1}^{k+2}, \varphi\left(t, v_{1}, \ldots, v_{k}\right)=\eta(t)+\sum_{i=1}^{k} v_{i} e_{i}(t) \tag{1}
\end{equation*}
$$

if

$$
\operatorname{rank}\left(\varphi_{t}, \varphi_{v_{1}}, \ldots, \varphi_{v_{k}}\right)=\operatorname{rank}\left(\eta^{\prime}(t)+\sum_{i=1}^{k} v_{i} e_{i}^{\prime}(t), e_{1}(t), \ldots, e_{k}(t)\right)=k+1
$$

then the hypersurface M is said to be a ruled hypersurface, the space $E_{k}(t)$ is called the generator space of the ruled hypersurface at $\eta(t)$ and the curve η is called base curve of the ruled hypersurface. The line, whose director vector is $e_{i}(t)$, that passes through $\eta(t)$ is said to be $i^{\text {th }}$ generator line of the hypersurface.

For real numbers $p>0$, the condition $\eta(t+p)=\eta(t)$ is satisfied, then the surface is called a closed ruled hypersurface [4, p.518]. The smallest $p>0$ satisfying $\eta(t+p)=\eta(t)$ is called the period of the closed ruled hypersurface. A curve which intersects each space $E_{k}(t)$ orthogonally is said to be an orthogonal trajectory of M.

Adapting the algorithm of [5] to R_{1}^{k+2}, if the initial basis $\left\{e_{1}\left(t_{0}\right), e_{2}\left(t_{0}\right), \ldots, e_{k}\left(t_{0}\right)\right\}$ is given, then the basis $\left\{e_{1}(t), e_{2}(t), \ldots, e_{k}(t)\right\}$ satisfying

$$
\begin{equation*}
<e_{i}(t), e_{j}(t)>=\epsilon_{i} \delta_{i j} \quad \text { and } \quad<e_{i}^{\prime}(t), e_{j}(t)>=0, \quad 1 \leq i, j \leq k \tag{2}
\end{equation*}
$$

is uniquely determined, where we donete the derivative of vector field e_{ν} along the curve η by e_{ν}^{\prime}, and $<,>$ donetes the scalar prodoct in R_{1}^{k+2}.

In [3], H. Frank and O.Giering computed the k - number of the pitchs and the angles of pitch for a simple closed $C^{2}-(k+1)$ dimensional ruled surface. That is not the generalization of the pitch and the angle of pitch. Desired generalization has been done in A.Altin [1].

In this paper,the results obtained by [1] is investigated in R_{1}^{k+2}.

2. The Pitch of a Closed Nonnull Ruled Hypersurface in R_{1}^{k+2}

Theorem 2.1. Let M be a nonnull ruled hypersurface in R_{1}^{k+2}. There exists a unique orthogonal trajectory at each point of M.
Proof. An orthogonal trajectory, if exists, is of the form:

$$
\begin{equation*}
\beta: I \rightarrow M, \quad \beta(s)=\eta(s)+\sum_{i=1}^{k} f_{i}(s) e_{i}(s) \tag{3}
\end{equation*}
$$

ALTIN, TURGUT VANLI

where f is a function from I into R.

Differentiating (3), we obtain

$$
\begin{equation*}
\beta^{\prime}(s)=\eta^{\prime}(s)+\sum_{i=1}^{k} f_{i}^{\prime}(s) e_{i}(s)+\sum_{i=1}^{k} f_{i}(s) e_{i}^{\prime}(s) . \tag{4}
\end{equation*}
$$

Since the curve β is orthogonal to generator space $E_{k}(s)$, we have

$$
\begin{equation*}
<\beta^{\prime}(s), e_{j}(s)>=0, \quad \text { for all } \quad j=1, \ldots, k \tag{5}
\end{equation*}
$$

Replacing (4) in (5), we obtain

$$
<\eta^{\prime}(s), e_{j}(s)>+\sum_{i=1}^{k} f_{i}^{\prime}(s)<e_{i}(s), e_{j}(s)>+\sum_{i=1}^{k} f_{i}(s)<e_{i}^{\prime}(s), e_{j}(s)>=0
$$

Using (2) leads to

$$
<\eta^{\prime}(s), e_{j}(s)>+\epsilon_{j} f_{j}^{\prime}(s)=0
$$

Thus we have

$$
f_{j}(s)=-\int \epsilon_{j}<\eta^{\prime}(s), e_{j}(s)>d s+c_{j} .
$$

If we denote

$$
\begin{equation*}
-\int \epsilon_{j}<\eta^{\prime}(s), e_{j}(s)>d s=F_{j}(s) \tag{6}
\end{equation*}
$$

then we have

$$
\begin{equation*}
f_{j}(s)=F_{j}(s)+c_{j} \quad 1 \leq j \leq k \tag{7}
\end{equation*}
$$

Since c_{j} is chosen arbitrarily, there are many curves satisfying (5). However, there exists a unique orthogonal trajectory passing through each $p_{0} \in M$ which is of the from

$$
p_{0}=\varphi\left(s_{0}, v_{1_{0}}, \ldots, v_{k_{0}}\right)=\eta\left(s_{0}\right)+\sum_{i=1}^{k} v_{i_{0}} e_{i}\left(s_{0}\right)
$$

ALTIN, TURGUT VANLI

Definition 2.1. Let M be a closed nonnull ruled hypersurface in R_{1}^{k+2} and let $\left\{e_{1}(t), e_{2}(t), \ldots, e_{k}(t)\right\}$ be the orthonormal frame of M at the point $\eta(t)$. Let β denote the orthogonal trajectory at $\eta(t)$. The distance between $\beta(t)$ and $\beta(t+p)$ is called the pitch of M.

Theorem 2.2. Assume that L_{t} is the pitch of a closed nonnull ruled hypersurface M whose generator η is a spacelike curve in R_{1}^{k+2}.

If M is a spacelike then

$$
L_{t}=\sqrt{L_{1_{t}}^{2}+L_{2_{t}}^{2}+\cdots+L_{k_{t}}^{2}}
$$

If M is a timelike then

$$
L_{t}=\sqrt{\left|L_{1_{t}}^{2}+L_{2_{t}}^{2}+\cdots+L_{(k-1)_{t}}^{2}-L_{k_{t}}^{2}\right|}
$$

Proof. Let M be a closed spacelike ruled hypersurface in R_{1}^{k+2}, that is, $e_{i}(1 \leq i \leq k)$ is a spacelike vector field in R_{1}^{k+2}.

If we choose p_{0} of Theorem 2.1 as $\eta(t)$ then we have $\nu_{i_{t}}=0$, subsequently $f_{i}(t)=0$ and thus $c_{i}=-F_{i}(t)$. From (7), for $s=t+p$, we have

$$
f_{i}(t+p)=F_{i}(t+p)-F_{i}(t)
$$

and

$$
f_{i}(t+p)-f_{i}(t)=F_{i}(t+p)-F_{i}(t)
$$

This, together with (6), implies that

$$
\begin{equation*}
f_{i}(t+p)-f_{i}(t)=-\int_{t}^{t+p} \epsilon_{i}<\eta^{\prime}(s), e_{i}(s)>d s \tag{8}
\end{equation*}
$$

Now, let

$$
f_{i}(t+p)-f_{i}(t)=L_{i_{t}} \quad 1 \leq i \leq k
$$

$L_{i_{t}}$ is called the pitch on the $i^{t h}$ generator at the point $q(t)$. Clearly,

$$
\begin{equation*}
\beta(t) \beta \overrightarrow{\beta(t}+p)=L_{1_{t}} e_{1}+L_{2_{t}} e_{2}+\cdots+L_{k_{t}} e_{k} \tag{9}
\end{equation*}
$$

ALTIN, TURGUT VANLI

The length of this vector renders the pitch of the closed spacelike ruled hypersurface M at $\eta(t)$. We have

$$
L_{t}=\sqrt{L_{1_{t}}^{2}+L_{2_{t}}^{2}+\cdots+L_{k_{t}}^{2}}
$$

Let M be a closed timelike ruled hypersurface in R_{1}^{k+2}, that is the normal vector field of M is spacelike. Then one of the $e_{i}(1 \leq i \leq k)$ must be a timelike vector field. Assume that e_{k} is a timelike vector field.

From (9) we have

$$
L_{t}=\sqrt{\left|L_{1_{t}}^{2}+L_{2_{t}}^{2}+\cdots+L_{(k-1)_{t}}^{2}-L_{k_{t}}^{2}\right|}
$$

The pitch L_{t}, by (8), is independent of the choice of orthogonal trajectory.

3. The Angle of Picth of a Closed Nonnull Ruled Hypersurface in R_{1}^{k+2}

Definition 3.1. Let M be a closed nonnull ruled hypersurface in R_{1}^{k+2} and let $e_{1}(t), e_{2}(t), \ldots, e_{k}(t)$ be unit director vectors at the point $\eta(t)$ of the generator η. Let $e_{k+1}(t)$ denote the unit tangent vector of orthogonal trajectory at $\eta(t)$. The angle between $e_{k+1}(t)$ and $e_{k+1}(t+p)$ is called the angle of pitch of M where $e_{k+1}(t+p)$ is the tangent vector of the orthogonal trajectory at $\eta(t+p)$ and p is the period of the closed curve η.

Suppose that M is a closed nonnull ruled hypersurface in R_{1}^{k+2}. Let $\left\{\bar{e}_{1}(t), \bar{e}_{2}(t), \ldots\right.$, $\left.\bar{e}_{k+2}(t)\right\}$ be an orthonormal frame at the initial point $\beta(t)=\eta(t)$. For all $s \in[t, t+p]$, an orthonormal frame $\left\{e_{1}(s), \ldots, e_{k+2}(s)\right\}$ at the point $\beta(s)$ can be written as

$$
\begin{equation*}
e_{i}(s)=\sum_{j=1}^{k+2} a_{i j}(s) \bar{e}_{j}, \quad 1 \leq i \leq k+2 \tag{10}
\end{equation*}
$$

Since β is an orthogonal trajectory, then, at $s=t+p$, we have

$$
\begin{gather*}
e_{\mu}(s)=\bar{e}_{\mu}, \quad 1 \leq \mu \leq k \\
e_{k+1}(s)=a_{(k+1)(k+1)}(s) \bar{e}_{k+1}+a_{(k+1)(k+2)}(s) \bar{e}_{k+2} \tag{11}\\
e_{k+2}(s)=a_{(k+2)(k+1)}(s) \bar{e}_{k+1}+a_{(k+2)(k+2)}(s) \bar{e}_{k+2}
\end{gather*}
$$

ALTIN, TURGUT VANLI

Since M is a closed spacelike ruled hypersurface whose generator η is spacelike in R_{1}^{k+2}, the orthogonal trajectory must be a spacelike curve. Thus, the angle between $\bar{e}_{k+1}(s)$ and $e_{k+1}(s+p)$ is defined.

Assume that M is a closed a timelike ruled hypersurface whose generator η is spacelike in R_{1}^{k+2}. Then the normal vector field of M is spacelike. Since e_{k} is a timelike vector field, $\bar{e}_{k+1}(s)$ and $e_{k+1}(s+p)$ must be two spacelike vectors.

Theorem 3.1. Let M be a closed nonnull ruled hypersurface whose generator η is spacelike in R_{1}^{k+2}. The angle of pitch of M is

$$
\theta_{t}=-\int_{t}^{t+p}<e_{k+1}^{\prime}(s), e_{k+2}(s)>d s
$$

Proof. We can divide the proof in two cases:

1.case.

Let M be a closed spacelike ruled hypersurface whose η is spacelike in R_{1}^{k+2}. Thus, $e_{i}(s)$ and $\overline{e_{i}} \quad 1 \leq i \leq k+1$ are spacelike vectors, and $e_{k+2}(s), \bar{e}_{k+2}$ are timelike vectors. Hence, $\left\{\bar{e}_{1}(t), \bar{e}_{2}(t), \ldots, \bar{e}_{k+2}(t)\right\}$ is the orthonormal frame at the initial point $\eta(t)=\beta(t)$ and the orthonormal frame is $\left\{e_{1}(s), e_{2}(s), \ldots, e_{k+2}(s)\right\}$ at the point $\beta(s)$ for all $s \in$ $[t, t+p]$, where β is the orthogonal trajectory of M. Let us denote the angle between \bar{e}_{k+1} and $e_{k+1}(s)$ by $\theta(s)$.From (11) we can choose
$a_{(k+1)(k+1)}(s)=\operatorname{ch} \theta(s), \quad a_{(k+1)(k+2)}(s)=\operatorname{sh} \theta(s)$,
$a_{(k+2)(k+1)}(s)=\operatorname{sh} \theta(s) \quad$ and $\quad a_{(k+2)(k+2)}(s)=\operatorname{ch} \theta(s)$.
Hence, we get

$$
\begin{align*}
e_{\mu}(s) & =\bar{e}_{\mu}, \quad 1 \leq \mu \leq k \\
e_{k+1}(s) & =\operatorname{ch} \theta(s) \bar{e}_{k+1}+\operatorname{sh} \theta(s) \bar{e}_{k+2} \tag{12}\\
e_{k+2}(s) & =\operatorname{sh} \theta(s) \bar{e}_{k+1}+\operatorname{ch} \theta(s) \bar{e}_{k+2} .
\end{align*}
$$

Using (12) we have

$$
e_{k+1}^{\prime}(s)=e_{k+2}(s) \theta^{\prime}(s) \text { and }-<e_{k+1}^{\prime}(s), e_{k+2}(s)>=\theta^{\prime}(s)
$$

Thus, we have

$$
\theta_{t}=\int_{t}^{t+p} d \theta=-\int_{t}^{t+p}<e_{k+1}^{\prime}(s), e_{k+2}(s)>d s
$$

2.case.

Let M be a closed timelike ruled hypersurface whose η is spacelike in R_{1}^{k+2}. Thus, $e_{k}(s)$, and $\overline{e_{k}}$ are timelike vectors, and $e_{i}(s)$, and $\bar{e}_{i} 1 \leq i \leq k+2 \quad(i \neq k)$ are spacelike vectors.

Hence, $\left\{\bar{e}_{1}(t), \bar{e}_{2}(t), \ldots, \bar{e}_{k+2}(t)\right\}$ is the orthonormal frame at the initial point $\alpha(t)=$ $\beta(t)$ and the orthonormal frame is $\left\{e_{1}(s), e_{2}(s), \ldots, e_{k+2}(s)\right\}$ at the point $\beta(s)$ for all $s \in[t, t+p]$, where β is the orthogonal trajectory of M. Let us denote the angle between \bar{e}_{k+1} and $e_{k+1}(s)$ by $\theta(s)$.From (11) we can choose
$a_{(k+1)(k+1)}(s)=\cos \theta(s), \quad a_{(k+1)(k+2)}(s)=-\sin \theta(s)$,
$a_{(k+2)(k+1)}(s)=\sin \theta(s)$ and $a_{(k+2)(k+2)}(s)=\cos \theta(s)$.
Hence, we get

$$
\begin{align*}
e_{\mu}(s) & =\bar{e}_{\mu}, \quad 1 \leq \mu \leq k \\
e_{k+1}(s) & =\cos \theta(s) \bar{e}_{k+1}-\sin \theta(s) \bar{e}_{k+2} \tag{13}\\
e_{k+2}(s) & =\sin \theta(s) \bar{e}_{k+1}+\cos \theta(s) \bar{e}_{k+2}
\end{align*}
$$

Using (13) we have

$$
e_{k+1}^{\prime}(s)=-e_{k+2}(s) \theta^{\prime}(s) \text { and }-<e_{k+1}^{\prime}(s), e_{k+2}(s)>=\theta^{\prime}(s)
$$

Thus, we have

$$
\theta_{t}=\int_{t}^{t+p} d \theta=-\int_{t}^{t+p}<e_{k+1}^{\prime}(s), e_{k+2}(s)>d s
$$

which completes the proof.

ALTIN, TURGUT VANLI

References

[1] Altin, A., The Pitch the Ange of Pitch of a Closed Ruled Surface of Dimension (k+1) in E^{n}, Hacettepe Bulletin of Naturel Sci.and Engineering, Vol 25, 77-90, 1996.
[2] Been, J.K and Ehrilich, P.E., Global Lorentzian Geometry, Mercel Dekker. Inc. New York, 1981.
[3] Frank, H. and Giering, O., Verallgemeinerte Regelflächen im Großen I. Arch.Math. Vol 38, 106-115,1982.
[4] Hacısalihoğlu, H. H., Diferensiyel Geometri, İnönü Üniversitesi Fen Fakültesi yayınları,1983.
[5] Juza, M., Linge de Striction sur une Generalization a Plusieurs Dimension d'une Surface Reglee. Czechocl. Math. J. 12 (87), 143-250,1962.
[6] O'Neill, B., Semi-Reimannian Geometry, Acedemic Press, New York, 1983.

Ayşe ALTIN,
Received 30.06.1999
Department of Math. Fac. of Sci. Univ. of Hacettepe, Ankara-TURKEY
Aysel TURGUT VANLI
Department of Math. Fac. of Sci. and Arts, Univ. of Gazi, Ankara-TURKEY.

