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A Borsuk-Ulak Theorem for Heisenberg Group

Actions

Necdet Güner

Abstract

Let G = H2n+1 be a (2n + 1)-dimensional Heisenberg Lie group acts on M =

Cm − {0} and M
′

= Cm
′
− {0} exponentially. By using Cohomological Index we

proved the following theorem.

If f : M→M ′ is a G-equivariant map, then m≤m′.
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1. Introduction

By using cohomological index and relative index theories Fadell, Husseini and Ra-

binowitz proved Borsuk-Ulam type theorems for compact Lie groups. The ideal-valued

index IndexG(X) of a G-space X for a compact Lie group, is the kernel of the map

H∗G(pt)→H∗G(X), where H∗G(pt) is the Borel cohomology of a point, which is isomorphic

to H∗(BG), the cohomology of the classifying space of G, [2,5]. If G is a non-compact

Lie group, where BG may be acyclic, then the preceding method fails.

Fadell and Husseini introduced infinitesimal ideal-valued index theory to overcome

difficulties of this type. Infinitesimal index is the kernel of the map from BG, the basic

subcomplex ofG to H∗G(X), the infinitesimalG-deRham cohomology of a G-spaceX.They

proved a Borsuk-Ulam type theorem for the non-compact abelian Lie group G = C [3,4].

In this work we would like to extend their results to the Heisenberg groups. The
1991 AMS subject classification. 22, 55.
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GÜNER

main theorem of this work is a Borsuk-Ulam type theorem about a Heisenberg Lie group

action.

2. Preliminaries

First recall the definitions of the Lie derivative Θ(X), the substitution operation i(X),

and the differential operator δ.

The Lie derivative of a p-form α with respect to X∈X(M) is the linear map Θ(X)

homogeneous of degree zero, given by

Θ(X)α = X(α(X1 , X2, ...Xp)) − (
p∑
j=1

α(X1, ..., [X,Xj], ..., Xp)).

The substitution operator i(X), induced by X define a (p − 1)-form i(X)α by

i(X)α(X1 , X2, ..., Xp−1) = α(X,X1, X2, ..., Xp−1)

The map i(X) : Ω(M)→Ω(M) is a homogeneous operator of degree (−1).

The exterior derivative is the real linear map δ, homogeneous of degree 1, defined by

δα(X0, X1, ..., Xp) =
p∑
j=0

(−1)jXj(α(X0, .., , X̂j, ..., Xp))

+
∑

0≤i<j≤p
(−1)i+jα([Xi, Xj], ..., X̂i, ..., X̂j, ..., Xp)

where α is a p-form.

Let G be a connected Lie group with its Lie algebra G and dual G∗. The Weil algebra

W (G) = Λ(G∗)⊗S(G∗) where Λ(G∗) is the exterior algebra of the dual G∗ and S(G∗) is

the symmetric algebra generated by elements of degree 2. Let sk be a basis of S(G∗),
h : G∗→S2(G∗) defined by h(αk) = sk, where αk is a basis for G∗. Also we define

ΘS(X)sk = h(ΘE(X)αk), on S(G∗), where ΘE(X) is the usual Lie derivative defined on

G∗. The substitution operation i(X) is as defined above on Λ(G∗) and 0 on S(G∗).
The differential operator δ on W (G) defined as follows:

δ = δE + δS + h
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h =
∑
k

i(Xk)µ(h(αk))

δE = (1/2)
∑
k

µ(αk)ΘE(Xk)

δS =
∑
k

µ(αk)ΘS(Xk)

Xk∈G, αk∈G∗ and µ is a multiplication operator defined as µ(α)β = α∧β, α, β∈Λ(G∗).
Let L be a finite dimensional Lie algebra and i, δ and Θ are defined as above. Let

R =
∑
p≥0R

p be a graded commutative algebra with differential δ.

The horizontal subalgebra of R:

Ri=0 =
⋂

X∈L
ker i(X).

The invariant subalgebra of R:

RΘ=0 =
⋂

X∈L
ker Θ(X).

The basic subalgebra of R:

Ri=0,Θ=0 = (Ri=0)
⋂

(RΘ=0).

The basic subalgebra of the Weil algebra of a Lie group G:

W (G)i=0,Θ=0 = (Λ(G∗)⊗S(G∗))i=0,Θ=0
∼=S(G∗)Θ=0 = BG.

The Basic Weil subalgebra serves as the algebraic analogue of the classifying space BG

and we will denoted by BG, [3].

Infinitesimal Index:

The infinitesimal deRham complex of a differentiable G-manifold M is Ω(M)⊗W (G),

with Θ, i and δ the differential operator, where Ω(M) denotes the differential forms on M .

The basic subcomplex ΩG(M) of Ω(M)⊗W (G) is defined as ΩG(M) = (Ω(M)⊗W (G))i=0,Θ=0

and the cohomology of ΩG(M) is called the infinitesimal deRham cohomology of M and
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denoted by H∗G(M). The inclusion map

jM : W (G)→Ω(M)⊗W (G)

x→1⊗x

jM induces morphisms

˜jM : W (G)i=0,Θ=0→(Ω(M)⊗W (G))i=0,Θ=0

˜jM : BG→ΩG(M)

a morphism ˜jM of differential graded algebras is called the classifying map for the G-space

M . The classifying map ˜jM induces

j∗M : BG→H∗G(M)

since δ = 0 on S(G∗).
The infinitesimal G-index of M , IndexGM , is the kernel of the map

j∗M : BG→H∗G(M)

where j∗M is induced by ˜jM : BG→ΩG(M).

The infinitesimal G-index possesses the following properties:

Continuity. [3] If BG is Noetherian, there is an open G-set V0 such that X⊂V0 and

for every open G-set U , X⊂U⊂V0,

IndexGX = IndexGU.

Monotonicity. [3] Let BG be Noetherian, and f : M→N is a differentiable G-map,

X⊂M and Y⊂N are G-subsets with f(X)⊂Y , then

IndexGY ⊂IndexGX.
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Additivity. [3] Let X∪Y⊂M , X and Y be G-sets and BG is Noetherian, then

(IndexGX)(IndexGY )⊂IndexG(X∪Y ).

Recall that, by definition, the (2n+1)-dimensional Heisenberg Lie group H2n+1 is the

Lie group of real matrices of the form:

1 x1 x2 · · · xn z

0 1 0 · · · 0 y1

0 0 1 · · · 0 y2
...

...
...

. . .
...

...

0 0 0 · · · 1 yn

0 0 0 · · · 0 1


where xi, yi, and z∈R.
H2n+1 is a two-step, nilpotent Lie group. Let H2n+1 denote the Lie algebra of H2n+1.

H2n+1 is generated by {X1, ..., Xn, Y1, ..., Yn, Z} with all its commutators equal to zero

except [Xi, Yi] = Z, i = 1, 2...n. The dual H∗2n+1 is generated by {α1, ..., αn, β1, ..., βn, γ},
where

Xi =
∂

∂xi
, Yi =

∂

∂yi
+ xi

∂

∂z
, Z =

∂

∂z

and αi = dxi, βi = dyi, γ = dz −
∑n

i=1 xidyi, i = 1, ..., n.

Proposition 1. Let G be a (2n + 1)-dimensional Heisenberg Lie group and A =

G/[G,G] be its abelinization , then BG∼=BA. Where BA is the polynomial algebra in

s1 , . . ., sn, t1, . . ., tn, and si = h(αi),and ti = h(βi).

Proof. The basic subcomplex BG∼=(SG∗)Θ=0, where Θ = 0 means that the Lie deriva-

tives is zero with respect to allX∈G. Let {X1, . . ., Xn, Y1, . . ., Yn, Z} , and {α1, . . ., αn, β1,

. . ., βn, γ} denote the generators of G and G∗ respectively, then A and A∗ are gener-

ated by {X1, . . ., Xn, Y1, . . ., Yn} , and {α1, . . ., αn, β1, . . ., βn} respectively. It is known

that, if A is abelian, all the generators of A∗ are invariant differential forms, then

Θ(X)αi = Θ(X)βj = 0 for all X∈G and 1≤i, j≤n, [3]. Therefore

BA = (SA∗)Θ=0 = SA∗⊂(SG∗)Θ=0 = BG
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Now assume that BG has some elements ω which is not an element of BA. Then ω

contains a polynomial of r = h(γ). Let

℘(r) =
m∑
l=0

alr
l 6=0

where al’s are linearly independent in BG.

ω =
k∑
j=1

cjsj1∧. . .∧sjp∧tj1∧. . .∧tjq∧℘(r)

and Θ(X)ω = 0 for all X∈G. Since Θ(X)si = h(Θ(X)αi) = 0 and Θ(X)tj =

h(Θ(X)βj ) = 0,

Θ(X)ω = (
k∑
j=1

cjsj1∧. . .∧sjp∧tj1∧. . .∧tjq)∧Θ(X)℘(r) = 0

Θ(X)℘(r) = 0

Θ(X)℘(r) = Θ(X)(a0 + a1r + a2r
2 + · · ·+ amr

m) = 0

a1(Θ(X)r) + a2(Θ(X)r2) + · · ·+ am(Θ(X)rm) = 0

a1(Θ(X)r) + 2a2r(Θ(X)r) + · · ·+mamr
m−1(Θ(X)r) = 0

(a1 + 2a2r + · · ·+ mamr
m−1)(Θ(X)r) = 0

since Θ(X)r = h(Θ(X)γ)6=0, then

a1 + 2a2r + · · ·+ mamr
m−1 = 0

by linearly independence, ai = 0 for i = 1, ..., m, thus ℘(r) = a0. Therefore, BG∼=BA. 2

Exponential G Action:

Let Cn denote the complex n-space and M = Cn. Fadell and Husseini defined the

right C-action

M×G→M
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(z1, . . ., zn)(x+ iy) = ex(z1(eiy)λ1 , . . ., zn(eiy)λn)

where (λ1, . . ., λn) is an n-tuple of non-zero real numbers, such that λi/λj are irrational

for i6=j. This action takes Cn − {0} onto itself. Fadell and Husseini called this action

an exponential action with parameters λ1, . . ., λn, and then proved the following Borsuk-

Ulam type theorem,[3]:

If G = C acts on Cn and Cm with exponential actions with parameters λ1, . . ., λn and

µ1, . . ., µm, respectively, with m < n. Then every G-map f : Cn→Cm has a non-trivial

zero. Alternatively, there does not exist a G-map f : Cn − {0}→Cm − {0}.
Here we want to use the same action for G = G1⊕· · ·⊕Gn and M = Cm − {0} =

(Cm1⊕· · ·⊕Cmn)− {0} where Gk = R+ iR and Mk = Cmk − {0}.
The Gk action on Mk is defined as follows:

ϕk : (~z, ξk, ~λk)→exk(z1(eiyk )λ1 , . . ., zmk(eiyk)λmk ).

where ξk = xk + iyk∈Gk, ~z = (z1 , . . ., zmk )∈Mk, and ~λk = (λ1, . . ., λmk) is an mk- tuple

of non-zero real numbers such that λi/λj are irrational for i6=j.
Since zj(eiyk )λj = zj for all j, if and only if λjyk = 2qπ, q∈Z, the discrete subgroup

Γj = {(2qπ/λj)}, q∈Z appears as non-trivial isotropy. If we require that λi/λj be

irrational for i6=j, then these would be the only non-trivial isotropy subgroups. We

also note that the representation iyk→diag((eiyk)λ1 , . . ., (eiyk)λmk ) has compact image

R/D = S1 , D discrete, in U(mk) if all ratios λi/λj are rational. Otherwise, this

imbedding of R in U(mk) has closure which is a torus of dimension ≥2.

The G-action on M is defined as follows:

M×G→M

(⊕nk=1Mk)×(⊕nk=1Gk)→(⊕nk=1Mk)

((~z1, . . ., ~zn), (ξ1, . . ., ξn), (~λ1, . . ., ~λn))→e(
∑n

j=1
xj)(ϕ1(~z1, iy1, ~λ1), . . ., ϕn( ~zn, iyn, ~λn)).

Here we have

G = (G1⊕iG1)⊕· · ·⊕(Gn⊕iGn).

This can be written as,

G = (G1⊕· · ·⊕Gn)⊕iG1⊕· · ·⊕iGn
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G = R⊕iR1⊕· · ·⊕iRn.

Let G
′

= R and G
′′

= R1⊕· · ·⊕Rn. Here G
′

acts freely on Cm − {0} and Cm −
{0}∼=R+×S2m−1 with orbit space (Cm − {0})/G′∼=S2m−1. If Γ is a discrete subgroup of

G′, note that G′/Γ = S1 is a compact group and

M/Γ = (Cm − {0})/Γ∼=S1×S2m−1.

By lemmas 4.2, 4.3, and 4.4 of Fadell and Husseini [3], there is a natural chain

equivalence

ν : Ω(M)Θ=0→Ω(S1×S2m−1).

Now, consider M = Cm−{0} as a G
′
-space by restricting the G action. Then the natural

projection M→M/G
′

= S2m−1 is a locally trivial principle G-bundle by Palais’ theorems

[7] .

Proposition 2. [3] There is a chain equivalence γ : ΩG′ (M)→Ω(S2m−1).

Atiyah and Bott showed that, since torus T is compact, the Borel cohomology

H∗T (S2m−1;R) is naturally isomorphic to the infinitesimal cohomology H∗T (S2m−1) [1].

Furthermore, the ideal-valued index, IndexT (S2m−1) and the infinitesimal ideal-valued

index, IndexT (S2m−1) coincide when H∗(BT ;R) and BT are naturally identified. The

inclusion map T⊂Tm⊂U(m) induces homomorphisms λj : T→S1 , j = 1, 2, ..., m., and

if S is the Lie algebra of S1 , λj induces λ∗j : BS→BT . If σ is the generator of BS set

λ
′

j = λ∗j (σ). Then, the natural inclusion

BT →Ω(M)ΘT=0⊗BT

induces a surjection

BT →H∗T (S2m−1)

with kernel PT the principal ideal generated by ε = λ
′

1λ
′

2...λ
′

m. Here each λj : T→S1

is nontrivial because (S2m−1)G
′′

= (S2m−1)T = ∅. This implies that if g : BT →BG′′ is

induced by inclusion g(λ′j)6=0 for j = 1, 2, ..., m.
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Lemma. [6] g(ε), is a polynomial of t1, . . .tn, of degree m.

3. Results

Now consider the exponential G = G1⊕· · ·⊕Gn action on

M = (Cm1⊕· · ·⊕Cmn)− {0} = Cm − {0}

where m = m1 + · · ·+mn, and M = Cm − {0} = R+×S2m−1.

Theorem 1. Let G = G1⊕· · ·⊕Gn acts on M = (Cm1⊕· · ·⊕Cmn) − {0} with an

exponential action with parameters (λ1, . . ., λm). Then, the following inclusion map

jM : W (G)→ΩG(M)

induces a surjection

j∗M : BG→H∗G(M)

The kernel of this map is an ideal generated by s1 + · · ·+ sn and λ
′

1λ
′

2...λ
′

m.

IndexG(M) =< s1 + · · ·+ sn, λ
′

1λ
′

2...λ
′

m > .

Proof. I. First compare the spectral sequences Ω(M)Θ=0⊗S(G∗) and Ω(M)Θ
′
=0⊗S(G′∗)

via the filtration preserving map

Ω(M)Θ=0⊗S(G∗)→Ω(M)Θ
′
=0⊗S(G′∗)

induced by G
′⊂G. Induced map on fibers Ω(M)Θ=0→Ω(M)Θ

′
=0 is a chain equivalence

and on the base S(G∗) = R[s1, ..., sn, t1, ..., tn]→R[s1 + ...+ sn] = S(G′∗). At E2-level we

have the following diagram:

H∗(Ω(M)Θ=0)⊗S(G∗) → H∗(Ω(M)Θ′=0)⊗S(G′∗)
↓d2 ↓d′2

H∗(Ω(M)Θ=0)⊗S(G∗) → H∗(Ω(M)Θ′=0)⊗S(G′∗)

Let u
′∈H1(Ω(M)Θ′=0) = H1(S1 × S2m−1) denotes a generator corresponding to the

S1-factor. Since H∗G′ (M) = H∗(S2m−1) then d
′

2u
′ 6=0. We may assume without loss
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GÜNER

that, if u∈H1(Ω(M)Θ=0) = H1(S1×S2m−1) is the generator corresponding to u
′
, then

d2u = s1 + · · ·+ sn.

II. Now compare the spectral sequences for Ω(M)Θ=0⊗S(G∗) and Ω(S2m−1)Θ
′′

=0⊗S(G′′∗)
via natural map

Ω(M)Θ=0⊗S(G∗)→Ω(S2m−1)Θ
′′

=0⊗S(G
′′∗)

induced by M = Cm − {0}→S2m−1 and G
′′⊂G.

If we take a generator v
′′∈H∗(Ω(S2m−1)Θ

′′
=0)∼=H∗(S2m−1) and apply Husseini’s

Lemma, we will see that d
′′

mv
′′

= Cλ
′

1λ
′

2...λ
′

m., C 6=0. Since v
′′

may be choosen as

the image of v, where v∈H2m−1(Ω(M)Θ=0), which denotes a generator corresponding to

S2m−1 factor, then we have dmv = Cλ
′

1λ
′

2...λ
′

m. 2

Now assume G∼=R2n, and M = Cm − {0} = (Cm1⊕· · ·⊕Cmn) − {0}.
Let ϕ : G−→Glm(C), where m = m1 + · · ·+ mn be a homomorphism. Also assume

that im ϕ⊂ diagonal matrices and closure(ϕ(G)) = R1⊕iR1⊕· · ·⊕Rn⊕iRn.

Corollary 1. Let G∼=R2n and M = Cm − {0} , with exponential G action given as

above. Then IndexG(M) =< s1 + · · ·+ sn, λ
′

1λ
′

2...λ
′

m > .

Now consider G = H2n+1 , (2n + 1) dimensional nilpotent Heisenberg Lie group of

real matrices and let

ψ : G−→G/[G,G]∼=R2n

and M = Cm − {0} = (Cm1⊕· · ·⊕Cmn)− {0}, and G acts on M via ψ.

M×G−→M

((~z1, . . ., ~zn), g)→e(
∑n

j=1
xj)(ϕ1(~z1, iy1, ~λ1), . . ., ϕn( ~zn, iyn, ~λn))

Proposition 3. Let G be a (2n+ 1)-dimensional nilpotent Heisenberg Lie group and

A = G/[G,G] be its abelinization and M = Cm − {0}, the complex m-space. If the

G-action M×G→M is defined as above, then

H∗G(M)∼=H∗A(M).
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Proof. Let {X1, . . ., Xn, Y1, . . ., Yn, Z}, and {α1, . . ., αn, β1, . . ., βn, γ} denote the gen-

erators of G, and G∗ respectively, then A andA∗ are generated by {X1, . . ., Xn, Y1, . . ., Yn}
and {α1, . . ., αn, β1, . . ., βn} respectively. Here SA∗ is generated by

{h(α1), . . ., h(αn), h(β1), . . ., h(βn)} = {s1, . . ., sn, t1, . . ., tn}

also SG∗ is generated by {s1, . . ., sn, t1, . . ., tn, r} where r = h(γ).

We want to show that ΩG(M)∼=ΩA(M) where

ΩG(M) = (Ω(M)⊗S(G∗))ΘG=0

and

ΩA(M) = (Ω(M)⊗S(A∗))ΘA=0.

We need to check that ΘX , for X∈ {Center of G}. Since the center of G is generated

by Z, ΘZ = 0 on Ω(M) and also S(G∗)ΘZ=0 = S(A∗), then

(Ω(M)⊗S(G∗))ΘZ=0 = (Ω(M)⊗S(A∗)).

Since

(Ω(M)⊗S(G∗))ΘG=0 = (Ω(M)⊗S(G∗))ΘZ=0,ΘA=0

then

(Ω(M)⊗S(G∗))ΘG=0 = (Ω(M)⊗S(A∗))ΘA=0.

This gives us

ΩG(M)∼=ΩA(M)

and then

H∗G(M)∼=H∗A(M).

2

Proposition 4. Let G = H2n+1 acts on M = (Cm1⊕· · ·⊕Cmn) − {0} with an

exponential action with parameters {λ1, λ2, . . ., λm}. Then,
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IndexG(M) =< s1 + · · ·+ sn, λ
′

1λ
′

2...λ
′

m > .

Proof. By Proposition.1. and Proposition.3. BG∼=BA and HG(M)∼=HA(M). Then,

IndexA(M) = IndexG(M).

The Proposition follows since IndexA(M) =< s1 + · · ·+ sn, λ
′

1λ
′

2...λ
′

m > from Proposi-

tion.3. 2

We may now give the following Borsuk-Ulam type theorem.

Theorem 2. Let G = H2n+1 acts on M = Cp − {0} = (Cp1⊕· · ·⊕Cpn) − {0} and

N = Cq − {0} = (Cq1⊕· · ·⊕Cqn) − {0} with an exponential actions with parameters

{λ1, λ2, . . ., λp} and {µ1, µ2, . . ., µq} respectively. If f : M→N is a G-equivariant map,

then p≤q.

Proof. Proposition.4. gives that

IndexG(M) =< s1 + · · ·+ sn, λ
′

1λ
′

2...λ
′

p >

and

IndexG(N) =< s1 + · · ·+ sn, µ
′

1µ
′

2...µ
′

q > .

Where λ
′

1λ
′

2...λ
′

p and µ
′

1µ
′

2...µ
′

q are polynomials of t1, . . .tn with degrees p and q

respectively. By monotonicity of IndexG , if f : M→N is a G-equivariant map, then

IndexG(M)⊃IndexG(N).

This implies that the degree of λ
′

1λ
′

2...λ
′

p is smaller than or equal to the degree of µ
′

1µ
′

2...µ
′

q.

Thus p≤q. 2
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