Turk J Math 24 (2000) , 345 – 357. © TÜBİTAK

A Borsuk-Ulak Theorem for Heisenberg Group Actions

Necdet Güner

Abstract

Let $G = H_{2n+1}$ be a (2n + 1)-dimensional Heisenberg Lie group acts on $M = C^m - \{0\}$ and $M^{'} = C^{m'} - \{0\}$ exponentially. By using Cohomological Index we proved the following theorem.

If $f: M \rightarrow M'$ is a *G*-equivariant map, then $m \leq m'$.

Key Words: Borsuk-Ulam Type Theorem, Cohomological Index, Group Action.

1. Introduction

By using cohomological index and relative index theories Fadell, Husseini and Rabinowitz proved Borsuk-Ulam type theorems for compact Lie groups. The ideal-valued index $Index_G(X)$ of a G-space X for a compact Lie group, is the kernel of the map $H^*_G(pt) \rightarrow H^*_G(X)$, where $H^*_G(pt)$ is the Borel cohomology of a point, which is isomorphic to $H^*(BG)$, the cohomology of the classifying space of G, [2,5]. If G is a non-compact Lie group, where BG may be acyclic, then the preceding method fails.

Fadell and Husseini introduced infinitesimal ideal-valued index theory to overcome difficulties of this type. Infinitesimal index is the kernel of the map from $B\mathcal{G}$, the basic subcomplex of G to $H^*_{\mathcal{G}}(X)$, the infinitesimal G-deRham cohomology of a G-space X. They proved a Borsuk-Ulam type theorem for the non-compact abelian Lie group G = C [3,4].

In this work we would like to extend their results to the Heisenberg groups. The 1991 AMS subject classification. 22, 55.

main theorem of this work is a Borsuk-Ulam type theorem about a Heisenberg Lie group action.

2. Preliminaries

First recall the definitions of the Lie derivative $\Theta(X)$, the substitution operation i(X), and the differential operator δ .

The Lie derivative of a *p*-form α with respect to $X \in X(M)$ is the linear map $\Theta(X)$ homogeneous of degree zero, given by

$$\Theta(X)\alpha = X(\alpha(X_1, X_2, ..., X_p)) - (\sum_{j=1}^p \alpha(X_1, ..., [X, X_j], ..., X_p)).$$

The substitution operator i(X), induced by X define a (p-1)-form $i(X)\alpha$ by

$$i(X)\alpha(X_1, X_2, ..., X_{p-1}) = \alpha(X, X_1, X_2, ..., X_{p-1})$$

The map $i(X) : \Omega(M) \rightarrow \Omega(M)$ is a homogeneous operator of degree (-1).

The exterior derivative is the real linear map δ , homogeneous of degree 1, defined by

$$\delta\alpha(X_0, X_1, ..., X_p) = \sum_{j=0}^p (-1)^j X_j(\alpha(X_0, ..., \hat{X}_j, ..., X_p))$$
$$+ \sum_{0 \le i < j \le p} (-1)^{i+j} \alpha([X_i, X_j], ..., \hat{X}_i, ..., \hat{X}_j, ..., X_p)$$

where α is a *p*-form.

Let G be a connected Lie group with its Lie algebra \mathcal{G} and dual \mathcal{G}^* . The Weil algebra $W(\mathcal{G}) = \Lambda(\mathcal{G}^*) \otimes S(\mathcal{G}^*)$ where $\Lambda(\mathcal{G}^*)$ is the exterior algebra of the dual \mathcal{G}^* and $S(\mathcal{G}^*)$ is the symmetric algebra generated by elements of degree 2. Let s_k be a basis of $S(\mathcal{G}^*)$, $h : \mathcal{G}^* \to S^2(\mathcal{G}^*)$ defined by $h(\alpha_k) = s_k$, where α_k is a basis for \mathcal{G}^* . Also we define $\Theta_S(X)s_k = h(\Theta_E(X)\alpha_k)$, on $S(\mathcal{G}^*)$, where $\Theta_E(X)$ is the usual Lie derivative defined on \mathcal{G}^* . The substitution operation i(X) is as defined above on $\Lambda(\mathcal{G}^*)$ and 0 on $S(\mathcal{G}^*)$.

The differential operator δ on $W(\mathcal{G})$ defined as follows:

$$\delta = \delta_E + \delta_S + h$$

$$h = \sum_{k} i(X_k)\mu(h(\alpha_k))$$
$$\delta_E = (1/2)\sum_{k} \mu(\alpha_k)\Theta_E(X_k)$$
$$\delta_S = \sum_{k} \mu(\alpha_k)\Theta_S(X_k)$$

 $X_k \in \mathcal{G}, \ \alpha_k \in \mathcal{G}^*$ and μ is a multiplication operator defined as $\mu(\alpha)\beta = \alpha \wedge \beta, \ \alpha, \beta \in \Lambda(\mathcal{G}^*)$. Let L be a finite dimensional Lie algebra and $i, \ \delta$ and Θ are defined as above. Let $R = \sum_{p \ge 0} R^p$ be a graded commutative algebra with differential δ . The horizontal subalgebra of R:

$$R_{i=0} = \bigcap\nolimits_{X \in L} ker \ i(X).$$

The invariant subalgebra of R:

$$R_{\Theta=0} = \bigcap_{X \in L} ker \ \Theta(X).$$

The basic subalgebra of R:

$$R_{i=0,\Theta=0} = (R_{i=0}) \bigcap (R_{\Theta=0}).$$

The basic subalgebra of the Weil algebra of a Lie group G:

$$W(\mathcal{G})_{i=0,\Theta=0} = (\Lambda(\mathcal{G}^*) \otimes S(\mathcal{G}^*))_{i=0,\Theta=0} \cong S(\mathcal{G}^*)_{\Theta=0} = B\mathcal{G}$$

The Basic Weil subalgebra serves as the algebraic analogue of the classifying space BG and we will denoted by $B\mathcal{G}$, [3].

Infinitesimal Index:

The infinitesimal deRham complex of a differentiable *G*-manifold *M* is $\Omega(M) \otimes W(\mathcal{G})$, with Θ , *i* and δ the differential operator, where $\Omega(M)$ denotes the differential forms on *M*. The basic subcomplex $\Omega_{\mathcal{G}}(M)$ of $\Omega(M) \otimes W(\mathcal{G})$ is defined as $\Omega_{\mathcal{G}}(M) = (\Omega(M) \otimes W(\mathcal{G}))_{i=0,\Theta=0}$ and the cohomology of $\Omega_{\mathcal{G}}(M)$ is called the infinitesimal deRham cohomology of *M* and

denoted by $H^*_{\mathcal{G}}(M)$. The inclusion map

$$j_M: W(\mathcal{G}) \to \Omega(M) \otimes W(\mathcal{G})$$

$$x \rightarrow 1 \otimes x$$

 $j_{\mathcal{M}}$ induces morphisms

$$\begin{split} \tilde{j_M} &: W(\mathcal{G})_{i=0,\Theta=0} \to (\Omega(M) \otimes W(\mathcal{G}))_{i=0,\Theta=0} \\ \\ \tilde{j_M} &: B\mathcal{G} \to \Omega_{\mathcal{G}}(M) \end{split}$$

a morphism \tilde{j}_M of differential graded algebras is called the classifying map for the *G*-space M. The classifying map \tilde{j}_M induces

$$j_M^*: B\mathcal{G} \to H^*_{\mathcal{G}}(M)$$

since $\delta = 0$ on $S(\mathcal{G}^*)$.

The infinitesimal \mathcal{G} -index of M, $Index_{\mathcal{G}}M$, is the kernel of the map

$$j_M^*: B\mathcal{G} \to H^*_{\mathcal{G}}(M)$$

where j_M^* is induced by $\tilde{j_M} : B\mathcal{G} \rightarrow \Omega_{\mathcal{G}}(M)$.

The infinitesimal \mathcal{G} -index possesses the following properties:

Continuity. [3] If BG is Noetherian, there is an open G-set V_0 such that $X \subset V_0$ and for every open G-set U, $X \subset U \subset V_0$,

$$Index_{\mathcal{G}}X = Index_{\mathcal{G}}U.$$

Monotonicity. [3] Let BG be Noetherian, and $f: M \to N$ is a differentiable G-map, $X \subset M$ and $Y \subset N$ are G-subsets with $f(X) \subset Y$, then

$$Index_{\mathcal{G}}Y \subset Index_{\mathcal{G}}X.$$

Additivity. [3] Let $X \cup Y \subset M$, X and Y be G-sets and BG is Noetherian, then

 $(Index_{\mathcal{G}}X)(Index_{\mathcal{G}}Y) \subset Index_{\mathcal{G}}(X \cup Y).$

Recall that, by definition, the (2n+1)-dimensional Heisenberg Lie group H_{2n+1} is the Lie group of real matrices of the form:

(1)	x_1	x_2		x_n	z
0	1	0		0	y_1
0	0	1		0	y_2
:	÷	÷	۰.	÷	:
0	0	0		1	y_n
$\int 0$	0	0		0	1 /

where x_i, y_i , and $z \in R$.

 H_{2n+1} is a two-step, nilpotent Lie group. Let \mathcal{H}_{2n+1} denote the Lie algebra of H_{2n+1} . \mathcal{H}_{2n+1} is generated by $\{X_1, ..., X_n, Y_1, ..., Y_n, Z\}$ with all its commutators equal to zero except $[X_i, Y_i] = Z, i = 1, 2...n$. The dual \mathcal{H}_{2n+1}^* is generated by $\{\alpha_1, ..., \alpha_n, \beta_1, ..., \beta_n, \gamma\}$, where

$$X_i = \frac{\partial}{\partial x_i}, \quad Y_i = \frac{\partial}{\partial y_i} + x_i \frac{\partial}{\partial z}, \quad Z = \frac{\partial}{\partial z}$$

and $\alpha_i = dx_i$, $\beta_i = dy_i$, $\gamma = dz - \sum_{i=1}^n x_i dy_i$, i = 1, ..., n.

Proposition 1. Let G be a (2n + 1)-dimensional Heisenberg Lie group and A = G/[G,G] be its abelinization, then $BG \cong BA$. Where BA is the polynomial algebra in $s_1, \ldots, s_n, t_1, \ldots, t_n$, and $s_i = h(\alpha_i)$, and $t_i = h(\beta_i)$.

Proof. The basic subcomplex $B\mathcal{G}\cong(S\mathcal{G}^*)_{\Theta=0}$, where $\Theta = 0$ means that the Lie derivatives is zero with respect to all $X \in \mathcal{G}$. Let $\{X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z\}$, and $\{\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n, \gamma\}$ denote the generators of \mathcal{G} and \mathcal{G}^* respectively, then \mathcal{A} and \mathcal{A}^* are generated by $\{X_1, \ldots, X_n, Y_1, \ldots, Y_n\}$, and $\{\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n\}$ respectively. It is known that, if \mathcal{A} is abelian, all the generators of \mathcal{A}^* are invariant differential forms, then $\Theta(X)\alpha_i = \Theta(X)\beta_j = 0$ for all $X \in \mathcal{G}$ and $1 \leq i, j \leq n$, [3]. Therefore

$$B\mathcal{A} = (S\mathcal{A}^*)_{\Theta=0} = S\mathcal{A}^* \subset (S\mathcal{G}^*)_{\Theta=0} = B\mathcal{G}$$

Now assume that $B\mathcal{G}$ has some elements ω which is not an element of $B\mathcal{A}$. Then ω contains a polynomial of $r = h(\gamma)$. Let

$$\wp(r) = \sum_{l=0}^{m} a_l r^l \neq 0$$

where a_l 's are linearly independent in $B\mathcal{G}$.

$$\omega = \sum_{j=1}^{k} c_j s_{j_1} \wedge \ldots \wedge s_{j_p} \wedge t_{j_1} \wedge \ldots \wedge t_{j_q} \wedge \wp(r)$$

and $\Theta(X)\omega = 0$ for all $X \in \mathcal{G}$. Since $\Theta(X)s_i = h(\Theta(X)\alpha_i) = 0$ and $\Theta(X)t_j = h(\Theta(X)\beta_j) = 0$,

$$\Theta(X)\omega = \left(\sum_{j=1}^{k} c_j s_{j_1} \wedge \ldots \wedge s_{j_p} \wedge t_{j_1} \wedge \ldots \wedge t_{j_q}\right) \wedge \Theta(X) \wp(r) = 0$$

$$\Theta(X)\wp(r) = 0$$

$$\Theta(X)\wp(r) = \Theta(X)(a_0 + a_1r + a_2r^2 + \dots + a_mr^m) = 0$$

$$a_1(\Theta(X)r) + a_2(\Theta(X)r^2) + \dots + a_m(\Theta(X)r^m) = 0$$

$$a_1(\Theta(X)r) + 2a_2r(\Theta(X)r) + \dots + ma_mr^{m-1}(\Theta(X)r) = 0$$

$$(a_1 + 2a_2r + \dots + ma_mr^{m-1})(\Theta(X)r) = 0$$

since $\Theta(X)r = h(\Theta(X)\gamma) \neq 0$, then

$$a_1 + 2a_2r + \dots + ma_mr^{m-1} = 0$$

by linearly independence, $a_i = 0$ for i = 1, ..., m, thus $\wp(r) = a_0$. Therefore, $B\mathcal{G} \cong B\mathcal{A}$. \Box

Exponential G Action:

Let C^n denote the complex *n*-space and $M = C^n$. Fadell and Husseini defined the right *C*-action

$$M \times G \rightarrow M$$

$$(z_1, ..., z_n)(x + iy) = e^x (z_1 (e^{iy})^{\lambda_1}, ..., z_n (e^{iy})^{\lambda_n})$$

where $(\lambda_1, \ldots, \lambda_n)$ is an *n*-tuple of non-zero real numbers, such that λ_i/λ_j are irrational for $i \neq j$. This action takes $C^n - \{0\}$ onto itself. Fadell and Husseini called this action an exponential action with parameters $\lambda_1, \ldots, \lambda_n$, and then proved the following Borsuk-Ulam type theorem,[3]:

If G = C acts on C^n and C^m with exponential actions with parameters $\lambda_1, \ldots, \lambda_n$ and μ_1, \ldots, μ_m , respectively, with m < n. Then every G-map $f : C^n \to C^m$ has a non-trivial zero. Alternatively, there does not exist a G-map $f : C^n - \{0\} \to C^m - \{0\}$.

Here we want to use the same action for $G = G_1 \oplus \cdots \oplus G_n$ and $M = C^m - \{0\} = (C^{m_1} \oplus \cdots \oplus C^{m_n}) - \{0\}$ where $G_k = R + iR$ and $M_k = C^{m_k} - \{0\}$.

The G_k action on M_k is defined as follows:

$$\varphi_k: (\vec{z}, \xi_k, \vec{\lambda_k}) \rightarrow e^{x_k} (z_1 (e^{iy_k})^{\lambda_1}, \dots, z_{m_k} (e^{iy_k})^{\lambda_{m_k}}).$$

where $\xi_k = x_k + iy_k \in G_k$, $\vec{z} = (z_1, \dots, z_{m_k}) \in M_k$, and $\vec{\lambda_k} = (\lambda_1, \dots, \lambda_{m_k})$ is an m_k - tuple of non-zero real numbers such that λ_i / λ_j are irrational for $i \neq j$.

Since $z_j(e^{iy_k})^{\lambda_j} = z_j$ for all j, if and only if $\lambda_j y_k = 2q\pi$, $q \in \mathbb{Z}$, the discrete subgroup $\Gamma_j = \{(2q\pi/\lambda_j)\}, q \in \mathbb{Z}$ appears as non-trivial isotropy. If we require that λ_i/λ_j be irrational for $i \neq j$, then these would be the only non-trivial isotropy subgroups. We also note that the representation $iy_k \rightarrow diag((e^{iy_k})^{\lambda_1}, \ldots, (e^{iy_k})^{\lambda_{m_k}})$ has compact image $R/D = S^1$, D discrete, in $U(m_k)$ if all ratios λ_i/λ_j are rational. Otherwise, this imbedding of R in $U(m_k)$ has closure which is a torus of dimension ≥ 2 .

The G-action on M is defined as follows:

$$M \times G \to M$$

$$(\oplus_{k=1}^{n} M_{k}) \times (\oplus_{k=1}^{n} G_{k}) \to (\oplus_{k=1}^{n} M_{k})$$

$$((\vec{z_{1}}, \dots, \vec{z_{n}}), (\xi_{1}, \dots, \xi_{n}), (\vec{\lambda_{1}}, \dots, \vec{\lambda_{n}})) \to e^{(\sum_{j=1}^{n} x_{j})} (\varphi_{1}(\vec{z_{1}}, iy_{1}, \vec{\lambda_{1}}), \dots, \varphi_{n}(\vec{z_{n}}, iy_{n}, \vec{\lambda_{n}}))$$

Here we have

$$G = (G_1 \oplus iG_1) \oplus \cdots \oplus (G_n \oplus iG_n).$$

This can be written as,

$$G = (G_1 \oplus \cdots \oplus G_n) \oplus i G_1 \oplus \cdots \oplus i G_n$$

$$G = R \oplus i R_1 \oplus \cdots \oplus i R_n.$$

Let G' = R and $G'' = R_1 \oplus \cdots \oplus R_n$. Here G' acts freely on $C^m - \{0\}$ and $C^m - \{0\} \cong R^+ \times S^{2m-1}$ with orbit space $(C^m - \{0\})/G' \cong S^{2m-1}$. If Γ is a discrete subgroup of G', note that $G'/\Gamma = S^1$ is a compact group and

$$M/\Gamma = (C^m - \{0\})/\Gamma \cong S^1 \times S^{2m-1}.$$

By lemmas 4.2, 4.3, and 4.4 of Fadell and Husseini [3], there is a natural chain equivalence

$$\nu: \Omega(M)_{\Theta=0} \to \Omega(S^1 \times S^{2m-1}).$$

Now, consider $M = C^m - \{0\}$ as a G'-space by restricting the G action. Then the natural projection $M \rightarrow M/G' = S^{2m-1}$ is a locally trivial principle G-bundle by Palais' theorems [7].

Proposition 2. [3] There is a chain equivalence $\gamma : \Omega_{\mathcal{G}'}(M) \rightarrow \Omega(S^{2m-1})$.

Atiyah and Bott showed that, since torus T is compact, the Borel cohomology $H_T^*(S^{2m-1}; R)$ is naturally isomorphic to the infinitesimal cohomology $H_T^*(S^{2m-1})$ [1]. Furthermore, the ideal-valued index, $Index_T(S^{2m-1})$ and the infinitesimal ideal-valued index, $Index_T(S^{2m-1})$ coincide when $H^*(BT; R)$ and BT are naturally identified. The inclusion map $T \subset T^m \subset U(m)$ induces homomorphisms $\lambda_j : T \to S^1$, j = 1, 2, ..., m, and if S is the Lie algebra of S^1 , λ_j induces $\lambda_j^* : BS \to BT$. If σ is the generator of BS set $\lambda'_j = \lambda_j^*(\sigma)$. Then, the natural inclusion

$$B\mathcal{T} \to \Omega(M)_{\Theta_T=0} \otimes B\mathcal{T}$$

induces a surjection

$$B\mathcal{T} \rightarrow H^*_{\mathcal{T}}(S^{2m-1})$$

with kernel P_T the principal ideal generated by $\varepsilon = \lambda'_1 \lambda'_2 \dots \lambda'_m$. Here each $\lambda_j : T \to S^1$ is nontrivial because $(S^{2m-1})^{G''} = (S^{2m-1})^T = \emptyset$. This implies that if $g : BT \to BG''$ is induced by inclusion $g(\lambda'_j) \neq 0$ for j = 1, 2, ..., m.

Lemma. [6] $g(\varepsilon)$, is a polynomial of $t_1, \ldots t_n$, of degree m.

3. Results

Now consider the exponential $G = G_1 \oplus \cdots \oplus G_n$ action on

$$M = (C^{m_1} \oplus \cdots \oplus C^{m_n}) - \{0\} = C^m - \{0\}$$

where $m = m_1 + \dots + m_n$, and $M = C^m - \{0\} = R^+ \times S^{2m-1}$.

Theorem 1. Let $G = G_1 \oplus \cdots \oplus G_n$ acts on $M = (C^{m_1} \oplus \cdots \oplus C^{m_n}) - \{0\}$ with an exponential action with parameters $(\lambda_1, \ldots, \lambda_m)$. Then, the following inclusion map

$$j_M: W(G) \to \Omega_{\mathcal{G}}(M)$$

induces a surjection

$$j_M^*: B\mathcal{G} \rightarrow H^*_{\mathcal{G}}(M)$$

The kernel of this map is an ideal generated by $s_1 + \cdots + s_n$ and $\lambda_1^{'} \lambda_2^{'} ... \lambda_m^{'}$.

$$Index_{\mathcal{G}}(M) = < s_1 + \dots + s_n, \lambda_1' \lambda_2' \dots \lambda_m' > .$$

Proof. I. First compare the spectral sequences $\Omega(M)_{\Theta=0} \otimes S(\mathcal{G}^*)$ and $\Omega(M)_{\Theta'=0} \otimes S(\mathcal{G}'^*)$ via the filtration preserving map

$$\Omega(M)_{\Theta=0} \otimes S(\mathcal{G}^*) \to \Omega(M)_{\Theta'=0} \otimes S(\mathcal{G}'^*)$$

induced by $G' \subset G$. Induced map on fibers $\Omega(M)_{\Theta=0} \to \Omega(M)_{\Theta'=0}$ is a chain equivalence and on the base $S(\mathcal{G}^*) = R[s_1, ..., s_n, t_1, ..., t_n] \to R[s_1 + ... + s_n] = S(\mathcal{G}'^*)$. At E_2 -level we have the following diagram:

$$\begin{array}{rccc} H^*(\Omega(M)_{\Theta=0}) \otimes S(\mathcal{G}^*) & \to & H^*(\Omega(M)_{\Theta'=0}) \otimes S(\mathcal{G}'^*) \\ \downarrow d_2 & & \downarrow d'_2 \\ H^*(\Omega(M)_{\Theta=0}) \otimes S(\mathcal{G}^*) & \to & H^*(\Omega(M)_{\Theta'=0}) \otimes S(\mathcal{G}'^*) \end{array}$$

Let $u' \in H^1(\Omega(M)_{\Theta'=0}) = H^1(S^1 \times S^{2m-1})$ denotes a generator corresponding to the S^1 -factor. Since $H^*_{\mathcal{G}'}(M) = H^*(S^{2m-1})$ then $d'_2 u' \neq 0$. We may assume without loss

that, if $u \in H^1(\Omega(M)_{\Theta=0}) = H^1(S^1 \times S^{2m-1})$ is the generator corresponding to u', then $d_2u = s_1 + \cdots + s_n$.

II. Now compare the spectral sequences for $\Omega(M)_{\Theta=0} \otimes S(\mathcal{G}^*)$ and $\Omega(S^{2m-1})_{\Theta''=0} \otimes S(\mathcal{G}''^*)$ via natural map

$$\Omega(M)_{\Theta=0} \otimes S(\mathcal{G}^*) \to \Omega(S^{2m-1})_{\Theta''=0} \otimes S(\mathcal{G}^{''*})$$

induced by $M = C^m - \{0\} \rightarrow S^{2m-1}$ and $G^{''} \subset G$.

If we take a generator $v^{''} \in H^*(\Omega(S^{2m-1})_{\Theta^{''}=0}) \cong H^*(S^{2m-1})$ and apply Husseini's Lemma, we will see that $d_m^{''}v^{''} = C\lambda_1^{'}\lambda_2^{'}...\lambda_m^{'}$, $C \neq 0$. Since $v^{''}$ may be choosen as the image of v, where $v \in H^{2m-1}(\Omega(M)_{\Theta=0})$, which denotes a generator corresponding to S^{2m-1} factor, then we have $d_mv = C\lambda_1^{'}\lambda_2^{'}...\lambda_m^{'}$.

Now assume $G \cong R^{2n}$, and $M = C^m - \{0\} = (C^{m_1} \oplus \cdots \oplus C^{m_n}) - \{0\}.$

Let $\varphi : G \longrightarrow Gl_m(C)$, where $m = m_1 + \cdots + m_n$ be a homomorphism. Also assume that $im \ \varphi \subset$ diagonal matrices and $closure(\varphi(G)) = R_1 \oplus iR_1 \oplus \cdots \oplus R_n \oplus iR_n$.

Corollary 1. Let $G \cong \mathbb{R}^{2n}$ and $M = \mathbb{C}^m - \{0\}$, with exponential G action given as above. Then $Index_{\mathcal{G}}(M) = \langle s_1 + \cdots + s_n, \lambda'_1 \lambda'_2 \dots \lambda'_m \rangle$.

Now consider $G = H_{2n+1}$, (2n+1) dimensional nilpotent Heisenberg Lie group of real matrices and let

$$\psi:G{\longrightarrow} G/[G,G]{\cong} R^{2n}$$

and $M = C^m - \{0\} = (C^{m_1} \oplus \cdots \oplus C^{m_n}) - \{0\}$, and G acts on M via ψ .

$$M \times G \longrightarrow M$$
$$((\vec{z_1}, \dots, \vec{z_n}), g) \rightarrow e^{(\sum_{j=1}^n x_j)} (\varphi_1(\vec{z_1}, iy_1, \vec{\lambda}_1), \dots, \varphi_n(\vec{z_n}, iy_n, \vec{\lambda}_n))$$

Proposition 3. Let G be a (2n + 1)-dimensional nilpotent Heisenberg Lie group and A = G/[G,G] be its abelinization and $M = C^m - \{0\}$, the complex m-space. If the G-action $M \times G \rightarrow M$ is defined as above, then

$$H^*_{\mathcal{G}}(M) \cong H^*_{\mathcal{A}}(M).$$

Proof. Let $\{X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z\}$, and $\{\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n, \gamma\}$ denote the generators of \mathcal{G} , and \mathcal{G}^* respectively, then \mathcal{A} and \mathcal{A}^* are generated by $\{X_1, \ldots, X_n, Y_1, \ldots, Y_n\}$ and $\{\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n\}$ respectively. Here $S\mathcal{A}^*$ is generated by

$$\{h(\alpha_1), \dots, h(\alpha_n), h(\beta_1), \dots, h(\beta_n)\} = \{s_1, \dots, s_n, t_1, \dots, t_n\}$$

also $S\mathcal{G}^*$ is generated by $\{s_1, \ldots, s_n, t_1, \ldots, t_n, r\}$ where $r = h(\gamma)$.

We want to show that $\Omega_{\mathcal{G}}(M) \cong \Omega_{\mathcal{A}}(M)$ where

$$\Omega_{\mathcal{G}}(M) = (\Omega(M) \otimes S(\mathcal{G}^*))_{\Theta_{\mathcal{G}}=0}$$

and

$$\Omega_{\mathcal{A}}(M) = (\Omega(M) \otimes S(\mathcal{A}^*))_{\Theta_{\mathcal{A}}=0}.$$

We need to check that Θ_X , for $X \in \{\text{Center of } \mathcal{G}\}$. Since the center of \mathcal{G} is generated by Z, $\Theta_Z = 0$ on $\Omega(M)$ and also $S(\mathcal{G}^*)_{\Theta_Z = 0} = S(\mathcal{A}^*)$, then

 $(\Omega(M) \otimes S(\mathcal{G}^*))_{\Theta_Z = 0} = (\Omega(M) \otimes S(\mathcal{A}^*)).$

Since

$$(\Omega(M) \otimes S(\mathcal{G}^*))_{\Theta_{\mathcal{G}}=0} = (\Omega(M) \otimes S(\mathcal{G}^*))_{\Theta_{\mathcal{G}}=0,\Theta_{\mathcal{A}}=0}$$

then

$$(\Omega(M) \otimes S(\mathcal{G}^*))_{\Theta_{\mathcal{G}}=0} = (\Omega(M) \otimes S(\mathcal{A}^*))_{\Theta_{\mathcal{A}}=0}.$$

This gives us

 $\Omega_{\mathcal{G}}(M) \cong \Omega_{\mathcal{A}}(M)$

and then

$$H^*_{\mathcal{G}}(M) \cong H^*_{\mathcal{A}}(M).$$

Proposition 4. Let $G = H_{2n+1}$ acts on $M = (C^{m_1} \oplus \cdots \oplus C^{m_n}) - \{0\}$ with an exponential action with parameters $\{\lambda_1, \lambda_2, \ldots, \lambda_m\}$. Then,

 $Index_{\mathcal{G}}(M) = < s_1 + \dots + s_n, \lambda'_1 \lambda'_2 \dots \lambda'_m > .$

Proof. By Proposition.1. and Proposition.3. $B\mathcal{G}\cong B\mathcal{A}$ and $H_{\mathcal{G}}(M)\cong H_{\mathcal{A}}(M)$. Then,

 $Index_{\mathcal{A}}(M) = Index_{\mathcal{G}}(M).$

The Proposition follows since $Index_{\mathcal{A}}(M) = \langle s_1 + \cdots + s_n, \lambda'_1 \lambda'_2 \dots \lambda'_m \rangle$ from Proposition.3.

We may now give the following Borsuk-Ulam type theorem.

Theorem 2. Let $G = H_{2n+1}$ acts on $M = C^p - \{0\} = (C^{p_1} \oplus \cdots \oplus C^{p_n}) - \{0\}$ and $N = C^q - \{0\} = (C^{q_1} \oplus \cdots \oplus C^{q_n}) - \{0\}$ with an exponential actions with parameters $\{\lambda_1, \lambda_2, \ldots, \lambda_p\}$ and $\{\mu_1, \mu_2, \ldots, \mu_q\}$ respectively. If $f : M \to N$ is a G-equivariant map, then $p \leq q$.

Proof. Proposition.4. gives that

$$Index_{\mathcal{G}}(M) = < s_1 + \dots + s_n, \lambda_1' \lambda_2' \dots \lambda_p' >$$

and

$$Index_{\mathcal{G}}(N) = < s_1 + \dots + s_n, \mu'_1 \mu'_2 \dots \mu'_q > .$$

Where $\lambda'_1 \lambda'_2 \dots \lambda'_p$ and $\mu'_1 \mu'_2 \dots \mu'_q$ are polynomials of $t_1, \dots t_n$ with degrees p and q respectively. By monotonicity of $Index_{\mathcal{G}}$, if $f: M \to N$ is a G-equivariant map, then

$$Index_{\mathcal{G}}(M) \supset Index_{\mathcal{G}}(N).$$

This implies that the degree of $\lambda'_1 \lambda'_2 \dots \lambda'_p$ is smaller than or equal to the degree of $\mu'_1 \mu'_2 \dots \mu'_q$. Thus $p \leq q$.

Acknowledgement

Author would like to thank his Ph.D. adviser Prof. Sufian Y. Husseini and Prof. Edward Fadell for their help and encouragement during his studies at University of Wisconsin-Madison.

References

- Atiyah, M., Bott, R., The Moment Map and Equivariant Cohomology. Topology 23, 1-28 (1984).
- [2] Fadell, E., Husseini, S.Y., Rabinowitz, P. H., Borsuk-Ulam Theorems for Arbitrary S¹ Actions and Applications. Trans. Amer. Math. Soc. 274, 345-360 (1982).
- [3] Fadell, E., Husseini, S.Y., Index Theory for Non-compact Group Actions With Applications to Borsuk-Ulam Theorems. *Lecture Notes in Math. Springer* 1411, 52-68 (1989).
- [4] Fadell, E., Husseini, S.Y., An Ideal-valued Cohomological Index Theory With Applications to Borsuk-Ulam and Bourgin- Yang Theorems. *Ergodic Theory and Dynamical Systems* 8, 73-85 (1988).
- [5] Fadell, E., Rabinowitz, P. H., Generalized Cohomological Index Theories for Lie Group Action With an Application to Bifurcation Questions for Hamiltonian Systems. *Inventiones Mathematica* 45, 139-174 (1978).
- [6] Husseini, S.Y., Applications of Equivariant Characteristic Classes to Problems of Borsuk-Ulam and Degree Theory Type. To appear in Topology and Its Applications.
- [7] Palais, P., On the Existence of Slices for Actions of Non- compact Lie Groups. Annals of Math. 73, 295-323 (1961).
- [8] Vanstone, R., Halperin, S., and Greub, W., Connections, Curvature, and Cohomology I, II, III Academic Press 1976.

Received 21.06.2000

Necdet GÜNER Department of Computer Engineering, Başkent University, Ankara-TURKEY