On Conjugation in the Mod- p Steenrod algebra

Ismet Karaca and Ilkay Yaslan Karaca

Abstract

In this paper we prove a formula involving the canonical anti-automorphism χ of the mod- p Steenrod algebra.

Key Words: Steenrod algebra, anti-automorphism, Milnor basis

1. Introduction and Main Result

Let \mathcal{A} be a mod- p Steenrod algebra. Let $R=\left(r_{1}, r_{2}, \ldots\right)$ be a sequence of nonnegative integers with finitely many nonzero terms. Let $\mathcal{P}(R)$ denote the corresponding Milnor basis element in \mathcal{A} so that the elements $\mathcal{P}(R)$ form an additive basis for the subalgebra A_{p} of \mathcal{A} generated by the Steenrod powers $\mathcal{P}^{i}, \quad i \geq 0$. We define $|R|=\sum_{i=1}^{\infty}\left(p^{i}-1\right) r_{i}$ and $e(R)=\sum_{i=1}^{\infty} r_{i}$. Thus, considered as a mod- p cohomology operation, $\mathcal{P}(R)$ raises the dimension of a cohomology class by $2|R|$ and has excess $2 e(R)$. The anti-automorphism χ of A_{p} plays a fundamental part in our argument, and we find it convenient to write

$$
\widehat{\theta}=(-1)^{\operatorname{dim} \theta} \chi(\theta)
$$

for every element $\theta \in A_{p}$.
We are interested in an explicit conjugation formula for the Steenrod operations of A_{p} in the form

$$
X(k, n)=\mathcal{P}\left(p^{k} n\right) \mathcal{P}\left(p^{k-1} n\right) \cdots \mathcal{P}(p n) \mathcal{P}(n),
$$

[^0]
KARACA, KARACA

where k and n are nonnegative integers. So the following formula is the mod- p analogue of Theorem 3.1 in [6].

Theorem 1.1 For all positive integers j and i, we have

$$
\widehat{X}\left(j, p^{i+1}-1\right)=X\left(i, p^{j+1}-1\right)
$$

We will introduce the following useful notation: each natural number a has a unique p-adic expansion

$$
a=\sum_{i=0}^{\infty} \alpha_{i}(a) p^{i}
$$

with $0 \leq \alpha_{i}(a)<p$. It is a fact that

$$
\begin{equation*}
\binom{a}{b} \equiv \prod_{i=0}^{\infty}\binom{\alpha_{i}(a)}{\alpha_{i}(b)} \tag{1}
\end{equation*}
$$

Using Davis' method [1] we can derive the following formulae.

Proposition 1.2

$$
\begin{gather*}
\mathcal{P}(u) \cdot \widehat{\mathcal{P}}(v)=\sum_{R}\binom{|R|+e(R)}{p u} \mathcal{P}(R) \tag{2}\\
\widehat{\mathcal{P}}(u) \cdot \mathcal{P}(v)=\sum_{R}\binom{e(R)}{v} \mathcal{P}(R), \tag{3}
\end{gather*}
$$

where the sum is taken over all R for which $|R|=(p-1)(u+v)$.
Proof. See [2] for the proof of (2) and look at [4] for the proof of (3).
Using these formulae, we can prove the following proposition.

Proposition 1.3 For nonnegative integers k, l, m, n and $k>l$, suppose that
(1) $m+n=p^{k}-p^{l}$
(2) $m<p^{k-1}$
(3) $m \equiv 0 \bmod p^{l}$.

Then
(i) When $l=0$, we have

$$
\mathcal{P}(m) \cdot \widehat{\mathcal{P}}(n)=\widehat{\mathcal{P}}(n-(p-1) m-1) \mathcal{P}(p m+1)
$$

(ii) When $l>0$, we have
$\mathcal{P}(m) \cdot \widehat{\mathcal{P}}(n)=\widehat{\mathcal{P}}\left(n-(p-1)\left(m+p^{l}\right)\right) \mathcal{P}\left(p m+(p-1) p^{l}\right)-\sum_{w=1}^{p-1}\binom{p-1}{w} \mathcal{P}\left(m+w p^{l-1}\right) \cdot \widehat{\mathcal{P}}\left(n-w p^{l-1}\right)$.

Proof.

(i) Let $l=0$. Using Proposition 1.3, we have

$$
\mathcal{P}(m) \cdot \widehat{\mathcal{P}}(n)=\sum_{R}\binom{|R|+e(R)}{p m} \mathcal{P}(R)
$$

and

$$
\widehat{\mathcal{P}}(n-(p-1) m-1) \cdot \mathcal{P}(p m+1)=\sum_{R}\binom{e(R)}{p m+1} \mathcal{P}(R),
$$

where $|R|=(p-1)\left(p^{k}-1\right)$ and $1 \leq e(R) \leq p^{k}-1$. In order to prove these sums are equivalent in mod $-p$, we need to show that their binomial coefficients are equivalent in $\bmod -p$, i.e.

$$
\binom{|R|+e(R)}{p m} \equiv\binom{e(R)}{p m+1} \quad \bmod p
$$

We know that $|R|=\sum_{i=1}^{\infty} r_{i}\left(p^{i}-1\right)$ and $e(R)=\sum_{i=1}^{\infty} r_{i}$. Using these facts, we have

$$
\begin{aligned}
p^{k}-1 & =\frac{|R|}{p-1}=r_{1}+\sum_{i=2}^{\infty} r_{i}\left(p^{i-1}+p^{i-2}+\cdots+p+1\right) \\
& =e(R)-\sum_{i=2}^{\infty} r_{i}+\sum_{i=2}^{\infty} r_{i}\left(p^{i-1}+p^{i-2}+\cdots+p+1\right) \\
& =e(R)+\sum_{i=2}^{\infty} r_{i} p\left(p^{i-2}+p^{i-3}+\cdots+p+1\right)
\end{aligned}
$$

Since $\sum_{i=2}^{\infty} r_{i} p\left(p^{i-2}+p^{i-3}+\cdots+p+1\right) \equiv 0 \bmod p, e(R) \equiv p-1 \bmod p$. Using Equation (1), and the upper bounds of $e(R)$ and m, we have

$$
\binom{|R|+e(R)}{p m}=\binom{(p-1)\left(p^{k}-1\right)+e(R)}{p m} \equiv\binom{e(R)}{p m+1} \quad \bmod p
$$

This completes the proof of part (i).
(ii) Let $l>0$. Again using Proposition 1.3, we have

$$
\begin{gathered}
\mathcal{P}(m) \cdot \widehat{\mathcal{P}}(n)=\sum_{R}\binom{|R|+e(R)}{p m} \mathcal{P}(R), \\
\mathcal{P}\left(m+w p^{l-1}\right) \cdot \widehat{\mathcal{P}}\left(n-w p^{l-1}\right)=\sum_{R}\binom{|R|+e(R)}{p m+w p^{l}} \mathcal{P}(R),
\end{gathered}
$$

and

$$
\widehat{\mathcal{P}}\left(n-(p-1)\left(m+p^{l}\right)\right) \cdot \mathcal{P}\left(p m+(p-1) p^{l}\right)=\sum_{R}\binom{e(R)}{p m+(p-1) p^{l}} \mathcal{P}(R)
$$

where $|R|=(p-1)\left(p^{k}-p^{l}\right)$ and $1 \leq e(R) \leq p^{k}-p^{l}$. In order to prove the sums in part (ii) are equivalent, we need to show that

$$
\binom{|R|+e(R)}{p m}+\sum_{w=1}^{p-1}\binom{p-1}{w}\binom{|R|+e(R)}{p m+w p^{l}} \equiv\binom{e(R)}{p m+(p-1) p^{l}} \quad \bmod p
$$

Case 1: $0 \leq \alpha_{l}(e(R))<p-1$. Then $\binom{e(R)}{p m+(p-1) p^{l}}$ are equivalent to zero in mod- p. So it is enough to show that

$$
\binom{|R|+e(R)}{p m}+\sum_{w=1}^{p-1}\binom{p-1}{w}\binom{|R|+e(R)}{p m+w p^{l}} \equiv 0 \quad \bmod p
$$

i.e.

$$
1+\sum_{w=1}^{p-1}\binom{p-1}{w}\binom{1+\alpha_{l}(e(R))}{w} \equiv 0 \quad \bmod p
$$

for $0 \leq \alpha_{l}(e(R))<p-1$. The following equivalent holds

$$
\sum_{w=0}^{p-1}\binom{p-1}{w}\binom{1+\alpha_{l}(e(R))}{w} \equiv\binom{p+\alpha_{l}(e(R))}{p-1} \quad \bmod p
$$

by considering coefficient of x^{p-1} in the binomial expansion of

$$
(x+1)^{p+\alpha_{l}(e(R))}=(x+1)^{p-1}(x+1)^{1+\alpha_{l}(e(R))}
$$

Since $0 \leq \alpha_{l}(e(R))<p-1,\binom{p+\alpha_{l}(e(R))}{p-1}$ is equivalent to zero in mod- p. Hence

$$
\sum_{w=0}^{p-1}\binom{p-1}{w}\binom{1+\alpha_{l}(e(R))}{w} \equiv 0 \quad \bmod p
$$

i.e.

$$
1+\sum_{w=1}^{p-1}\binom{p-1}{w}\binom{1+\alpha_{l}(e(R))}{w} \equiv 0 \quad \bmod p
$$

So the result holds.
Case 2: $\alpha_{l}(e(R))=p-1$. Then

$$
\sum_{w=1}^{p-1}\binom{p-1}{w}\binom{|R|+e(R)}{p m+w p^{l}} \equiv 0 \quad \bmod p
$$

and

$$
\binom{|R|+e(R)}{p m} \equiv\binom{e(R)}{p m+(p-1) p^{l}} \quad \bmod p
$$

Therefore the result holds.

2. Proof of Main Result

Proof of Theorem 1.1 We are going to prove the theorem by induction on i under the assumption that $i \leq j$. For $i=0$ and all $j, \widehat{X}(j, p-1)=\mathcal{P}\left(p^{j+1}-1\right)=X\left(0, p^{j+1}-1\right)$ by Davis' formula in [1]. Assume that for all $\hat{i} \leq i-1$ and all j, and for $\hat{i}=i$ and $\hat{j} \leq j-1$,

$$
\widehat{X}\left(\hat{i}, p^{\hat{j}+1}-1\right)=X\left(\hat{j}, p^{\hat{i}+1}-1\right)
$$

The inductive proof will draw on the following remark: under the above assumptions,

$$
\begin{equation*}
\widehat{\mathcal{P}}\left(c p^{l-1}\right) \cdot X\left(l-1, p^{i+1}-1\right)=0 \tag{4}
\end{equation*}
$$

where c is a unit in mod p and $1 \leq l \leq i$. Indeed, by induction on l, we have

$$
\begin{aligned}
\widehat{\mathcal{P}}\left(c p^{l-1}\right) \cdot X\left(l-1, p^{i+1}-1\right) & =\overbrace{\left[\widehat{X}\left(l-1, p^{i+1}-1\right) \cdot \mathcal{P}\left(c p^{l-1}\right)\right]}^{\widehat{ }} \\
& =\overbrace{\left[X\left(i, p^{l}-1\right) \cdot \mathcal{P}\left(c p^{l-1}\right)\right]}^{\widehat{-}} \\
& =\overbrace{\left[X\left(i-1, p\left(p^{l}-1\right)\right) \mathcal{P}\left(p^{l}-1\right) \cdot \mathcal{P}\left(c p^{l-1}\right)\right]} .
\end{aligned}
$$

By Adem relations, $\mathcal{P}\left(p^{l}-1\right) \cdot \mathcal{P}\left(c p^{l-1}\right)=0$. Therefore this verifies Equation (4).
We claim that for $0 \leq l \leq j$

$$
\begin{equation*}
X\left(l, p^{i}-1\right) \cdot \widehat{\mathcal{P}}\left(p^{i}\left(p^{j+1}-1\right)\right)=\widehat{\mathcal{P}}\left(p^{i}\left(p^{j+1}-p^{l+1}\right)\right) \cdot X\left(l, p^{i+1}-1\right) \tag{5}
\end{equation*}
$$

The case $l=0$ follows from Proposition $1.4(i)$. Suppose that the statement is true for $l-1$. Then by induction on l and Proposition 1.4 (ii), we have

$$
\begin{aligned}
& X\left(l, p^{i}-1\right) \cdot \widehat{\mathcal{P}}\left(p^{i}\left(p^{j+1}-1\right)\right)=\mathcal{P}\left(p^{l}\left(p^{i}-1\right)\right) \cdot \widehat{\mathcal{P}}\left(p^{i}\left(p^{j+1}-p^{l}\right)\right) \cdot X\left(l-1, p^{i+1}-1\right) \\
& \quad=\left[\widehat{\mathcal{P}}\left(p^{i}\left(p^{j+1}-p^{l+1}\right)\right) \cdot \mathcal{P}\left(p^{l}\left(p^{i+1}-1\right)\right)\right] \cdot X\left(l-1, p^{i+1}-1\right) \\
& \quad-\left[\sum_{w=1}^{p-1}\binom{p-1}{w} \mathcal{P}\left(p^{l}\left(p^{i}-1\right)+w p^{l-1}\right) \cdot \widehat{\mathcal{P}}\left(p^{i+j+1}-p^{l+i}-w p^{l-1}\right)\right] \cdot X\left(l-1, p^{i+1}-1\right) .
\end{aligned}
$$

From Equation (4),

$$
\widehat{\mathcal{P}}\left(p^{i+j+1}-p^{l+i}-w p^{l-1}\right) \cdot X\left(l-1, p^{i+1}-1\right)=0
$$

for every $w=1,2,3, \ldots, p-1$. Hence we have

$$
X\left(l, p^{i}-1\right) \cdot \widehat{\mathcal{P}}\left(p^{i}\left(p^{j+1}-1\right)\right)=\widehat{\mathcal{P}}\left(p^{i}\left(p^{j+1}-p^{l+1}\right)\right) \cdot X\left(l, p^{i+1}-1\right)
$$

KARACA, KARACA

This proves our claim. Finally, taking $l=j$, we find that

$$
\begin{aligned}
\widehat{X}\left(i, p^{j+1}-1\right) & \left.=\widehat{X}\left(i-1, p^{j+1}-1\right)\right) \cdot \widehat{\mathcal{P}}\left(p^{i}\left(p^{j+1}-1\right)\right) \\
& =X\left(j, p^{i}-1\right) \cdot \widehat{\mathcal{P}}\left(p^{i}\left(p^{j+1}-1\right)\right) \\
& =\widehat{\mathcal{P}}(0) \cdot X\left(j, p^{i+1}-1\right) .
\end{aligned}
$$

This completes the proof.

Acknowledgement

We would like to sincerely thank Referee for many helpful comments on this paper.

References

[1] D.M. Davis The Anti-automorphism of the Steenrod Algebra Proc. Amer. Math. Soc. 44, (1974), 235-236.
[2] A.M. Gallant Excess and Conjugation in the Steenrod Algebra Proc. Amer. Math. Soc. 76, (1979) 161-166.
[3] I. Karaca On the action of Steenrod algebra on polynomial algebra Turkish Journal of Mathematics 22, (1998), 163-170.
[4] I. Karaca The nilpotence height of P_{t}^{s} for odd primes Trans.Amer. Math. Soc. 351, (1999), 547-558.
[5] J. Milnor The Steenrod Algebra and Its Dual Ann. of Math. 67, (1958), 150-171.
[6] J.H. Silverman Conjugation and Excess in the Steenrod Algebra Proc. Amer. Math. Soc. 119, (1993), 657-661.

Ismet KARACA and Ilkay Yaslan KARACA

Department of Mathematics Ege University,
35100 İzmir-TURKEY
e-mail: karaca@fenfak.ege.edu.tr and
e-mail: yaslan@fenfak.ege.edu.tr

[^0]: AMS Mathematics Subject Classification: Primary 55S10, 55S05

